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Abstract

In this paper, we study a special bandit setting of
online stochastic linear optimization, where only
one-bit of information is revealed to the learn-
er at each round. This problem has found many
applications including online advertisement and
online recommendation. We assume the binary
feedback is a random variable generated from the
logit model, and aim to minimize the regret de-
fined by the unknown linear function. Although
the existing method for generalized linear bandit
can be applied to our problem, the high compu-
tational cost makes it impractical for real-world
applications. To address this challenge, we de-
velop an efficient online learning algorithm by
exploiting particular structures of the observa-
tion model. Specifically, we adopt online New-
ton step to estimate the unknown parameter and
derive a tight confidence region based on the ex-
ponential concavity of the logistic loss. Our anal-
ysis shows that the proposed algorithm achieves
a regret bound of O(dv/T), which matches the
optimal result of stochastic linear bandits.

1. Introduction

Online learning with bandit feedback plays an importan-
t role in several industrial domains, such as ad placement,
website optimization, and packet routing (Bubeck & Cesa-
Bianchi, 2012). A canonical framework for studying this
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problem is the multi-armed bandits (MAB), which models
the situation that a gambler must choose which of K slot
machines to play (Robbins, 1952). In the basic stochas-
tic MAB, each arm is assumed to deliver rewards that are
drawn from a fixed but unknown distribution. The goal of
the gambler is to minimize the regret, namely the differ-
ence between his expected cumulative reward and that of
the best single arm in hindsight (Auer et al., 2002).

Although MAB is a powerful framework for modeling on-
line decision problems, it becomes intractable when the
number of arms is very large or even infinite. To address
this challenge, various algorithms have been designed to
exploit different structure properties of the reward func-
tion, such as Lipschitz (Kleinberg et al., 2008) and con-
vex (Flaxman et al., 2005; Agarwal et al., 2013). Among
them, stochastic linear bandits (SLB) has received consid-
erable attentions during the past decade (Auer, 2002; Dani
et al., 2008; Abbasi-yadkori et al., 2011). In each round
of SLB, the learner is asked to choose an action x; from a
decision set D C R, then he observes y; such that

Ely[x:] = x; W, (1)

where w, € R? is a vector of unknown parameters. The
goal of the learner is to minimize the (pseudo) regret

T
T max XTW* — XTW*. 2)
E t
xeD e}

In this paper, we consider a special bandit setting of on-
line linear optimization where the feedback y; only con-
tains one-bit of information. In particular, y; € {£1}. Our
setting is motivated from the fact that in many real-world
applications, such as online advertising and recommender
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systems, user feedback (e.g., click or not, like or dislike)
is usually binary. Since the feedback is binary-valued, we
assume it is generated according to the logit model (Hastie
etal., 2009), i.e.,

1

Priye = £1p] = 77 exp(—yix, W)’ ®

Without loss of generality, suppose 1 is the preferred out-
come. Then, it is natural to define the regret in terms of the
expected times that 1 is observed, i.e.,

T

exp(x'w,)
Tmax —————
xeb 1+ exp(xTw,) ;

exp( xt Tw.) @
1+ exp(x] w.)’

The observation model in (3) and the nonlinear regret in (4)
can be treated as a special case of the Generalized Linear
Bandit (GLB) (Filippi et al., 2010). However, the existing
algorithm for GLB is inefficient in the sense that: i) it is not
a truly online algorithm since the whole learning history is
stored in memory and used to estimate w; and ii) it is lim-
ited to the case that the number of arms is finite because an
upper bound for each arm needs to be calculated explicitly
in each round.

The main contribution of this paper is an efficient online
learning algorithm that effectively exploits particular struc-
tures of the logit model. Based on the analytical proper-
ties of the logistic function, we first show that the linear
regret defined in (2) and the nonlinear regret in (4) only
differs by a constant factor, and then focus on minimiz-
ing the former one due to its simplicity. Similar to pre-
vious studies (Bubeck & Cesa-Bianchi, 2012), we follow
the principle of “optimism in face of uncertainty” to deal
with the exploration-exploitation dilemma. The basic idea
is to maintain a confidence region for w,, and choose an
estimate from the confidence region and an action so that
the linear reward is maximized. Thus, the problem reduces
to the construction of the confidence region from one-bit
feedback that satisfies (3). Based on the exponential con-
cavity of the logistic loss, we propose to use a variant of
the online Newton step (Hazan et al., 2007) to find the cen-
ter of the confidence region and derive its width by a rather
technical analysis of the updating rule. Theoretical anal-
ysis shows that our algorithm achieves a regret bound of
O(dv/T)," which matches the result for SLB (Dani et al.,
2008). Furthermore, we provide several strategies to reduce
the computational cost of the proposed algorithm.

2. Related Work

The stochastic multi-armed bandits (MAB) (Robbins,
1952), has become the canonical formalism for studying

'We use the O notation to hide constant factors as well as poly-
logarithmic factors in d and 7.

the problem of decision-making under uncertainty. A long
line of successive problems have been extensively stud-
ied in statistics (Berry & Fristedt, 1985) and computer sci-
ence (Bubeck & Cesa-Bianchi, 2012).

2.1. Stochastic Multi-armed Bandits (MAB)

In their seminal paper, Lai & Robbins (1985) establish an
asymptotic lower bound of O(K logT') for the expected
cumulative regret over 1" periods, under the assumption that
the expected rewards of the best and second best arms are
well-separated. By making use of upper confidence bound-
s (UCB), they further construct policies which achieve the
lower bound asymptotically. However, this initial algorith-
m is quite involved, because the computation of UCB relies
on the entire sequence of rewards obtained so far. To ad-
dress this limitation, Agrawal (1995) introduces a family
of simpler policies that only needs to calculate the sample
mean of rewards, and the regret retains the optimal logarith-
mic behavior. A finite time analysis of stochastic MAB is
conducted by Auer et al. (2002). In particular, they propose
an UCB-type algorithm based on the Chernoff-Hoeffding
bound, and demonstrate it achieves the optimal logarithmic
regret uniformly over time.

2.2. Stochastic Linear Bandits (SLB)

SLB is first studied by Auer (2002), who considers the
case D is finite. Although an elegant UCB-type algorith-
m named LinRel is developed, he fails to bound its regret
due to independence issues. Instead, he designs a compli-
cated master algorithm which uses LinRel as a subroutine,
and achieves a regret bound of O((log | D|)/2v/Td), where
|D| is the number of feasible decisions. In a subsequent
work, Dani et al. (2008) generalize LinRel slightly so that
it can be applied in settings where D may be infinite. They
refer to the new a1g0r~ithm as ConfidenceBall,, and show
it enjoys a bound of O(dv/T'), which does not depend on
the cardinality of D. Later, Abbasi-yadkori et al. (2011)
improve the theoretical analysis of ConfidenceBalls by em-
ploying tools from the self-normalized processes. Specif-
ically, the worst case bound is improved by a logarithmic
factor and the constant is also improved.

2.3. Generalized Linear Bandit (GLB)

Filippi et al. (2010) extend SLB to the nonlinear case based
on the Generalized Linear Model framework of statistic-
s. In the so-called GLB model, y; is assumed to satisfy
Ely:|x:] = p(x/ w.) where u : R ~ R is certain link
function. The regret is also defined in terms of p(-) and
given by

Mq

Tmax,u x! W)

* 5
ma nlx] w,) 5)

t=1
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Note that by setting pu(z) = exp(z)/[1 + exp(z)], the
problem considered in this paper becomes a special case of
GLB. An UCB-type algorithm has been proposed for GLB
and achieves a regret bound of O(dv/T'). Different from
ConfidenceBall, which constructs a confidence region in
the parameter space, the algorithm of Filippi et al. (2010)
operates only in the reward space. However, the space and
time complexities of that algorithm in the ¢-th iteration are
O(t) and O(t + |D|), respectively. The O(t) factor comes
from the fact it needs to store the past action-feedback pairs
(x1,Y1)s- - - (X¢—1,yt—1) and use all of them to estimate
w... The O(|D|) factor is due to the fact it needs to calcu-
late an upper bound for each arm in order to decide the next
action x;.

Although we can reduce the computational cost of GLB
by replacing the batch optimization with online algorithm-
s, such as online gradient descent (Zinkevich, 2003), the
theoretical guarantee of the new algorithm needs to be de-
veloped. Furthermore, it is also unclear how to extend GLB
to the case of infinite number of arms.

2.4. Bandit Learning with One-bit Feedback

There are several new variants of bandit learning that also
rely on one one-bit feedback, such as multi-class bandit-
s (Kakade et al., 2008; Chen et al., 2014) and K-armed
dueling bandits (Yue et al., 2009; Ailon et al., 2014). For
example, in multi-class bandits, the feedback is whether
the predicted label is correct or not, and in K-armed du-
eling bandits, the feedback is the comparison between the
rewards from two arms. However, none of them are de-
signed for online linear optimization.

2.5. One-bit Compressive Sensing (CS)

Finally, we would like to discuss one closely related work
in signal processing—one-bit Compressive Sensing (C-
S) (Boufounos & Baraniuk, 2008; Plan & Vershynin, 2013;
Zhang et al., 2014). One-bit CS aims to recover a sparse
vectors w,, from a set of one-bit measurements {y; } where
y; is generated from x; w, according to certain observa-
tion model such as (3). The main difference is that one-bit
CS is studied in batch setting with the goal to minimize
the recovery error, while our problem is studied in online
setting with the goal to minimize the regret. Another differ-
ence is that w, needs to be sparse in one-bit CS, but could
be dense in our case.

3. Online Learning for Logit Model (OL2M)

We first describe the proposed algorithm for online stochas-
tic linear optimization given one-bit feedback, next com-
pare it with existing methods, then state its theoretical guar-
antees, and finally discuss implementation issues.

3.1. The Algorithm

For a positive definite matrix A € R*?, the weighted /-
norm is defined by [|x||% = x' Ax. Without loss of gen-
erality, we assume the decision space D is contained in the
unit ball, that is,

x|l <1, Vx € D. (6)

We further assume the ¢5-norm of w, is upper bounded by
some constant R, which is known to the learner. Our first
observation is that the linear regret in (2) and the nonlinear
regret in (4) only differs by a constant factor as indicated
below.

Lemma 1. Let Ry, and Ry be the linear and nonlinear
regrets in (2) and (4), respectively. We have

1 1
— R, <Ry < -R 7
2(1+exp(R)) = N =g @)
In the following, we will develop an efficient algorithm that
minimizes the linear regret, which in turn minimizes the
nonlinear regret as well.

The algorithm is motivated as follows. Suppose action-
S Xi,...,X; have been submitted to the oracle, and let
Y1, - ..,y be the one-bit feedback from the oracle. To ap-
proximate w,, the most straightforward way is to find the
maximum likelihood estimator by solving the following 1-
ogistic regression problem

¢

. 1

l‘ngHl;l’éR n g log (1 + exp(—yixjw)) .
= =1

However, this approach does not scale well since it requires
the leaner to store the entire learning history. Instead, we
propose an online algorithm to find an approximate solu-
tion. The key observation is that the logistic loss

fe(w) = log (1 + exp(—y:x, W))

is exponentially concave over bounded domain (Hazan
et al., 2014), which motivates us to apply a variant of the
online Newton step (Hazan et al., 2007). Specifically, we
propose to find an approximate solution wy4; by solving
the following problem

lw —willZ, .,

min
lwll2<R 2

+(w—wy) Vfi(we)  (8)

where 5
L1 = 2Ly + §XtXtT, &)

and S is defined in (14). Although our updating rule is
similar to the method in (Hazan et al., 2007), there also
exist some differences. As indicated by (9), in our case
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Algorithm 1 Online Learning for Logit Model (OL2M)
1: Input: Regularization Parameter A
2: Z1 :>\I,W1 =0
3: fort=1,2,...do
4:

(x4, W;) = argmax X' w
xeD,wel,
5:  Submit x; and observe y; € {£1}
6:  Solve the optimization problem in (8) to find w; 1
7: end for

x;x, is used to approximate the Hessian matrix, while in

Hazan et al. (2007) V f;(w¢)[V f;(w;) T] is used.
After a theoretical analysis, we are able to show that with a
high probability

W, € Cry1 = {w: [[Ww—wi1llzs < VA1) (10)

where the value of ;41 is given in (12). Given the confi-
dence region, we adopt the principle of “optimism in face
of uncertainty”, and the next action x;; is given by

argmax x'w. an
XED,wWECy1

(Xt+17 ‘/7\Vt+1) =

At the beginning, we set
Zl = )\I, andw1 =0.

The above procedure is summarized in Algorithm 1, and is
refer to as Online Learning for Logit Model (OL2M).

Since both ConfidenceBall; (Dani et al., 2008) and our
OL2M are UCB-type algorithms, their overall framework-
s are similar. The main difference lies in the construction
of the confidence region and the related analysis. While
ConfidenceBall, uses online least square to update the cen-
ter of the confidence region, OL2M resorts to online New-
ton step. Due to the difference in the updating rule and the
observation model, the self-normalized bound for vector-
valued martingales (Abbasi-yadkori et al., 2011) can not
be applied here.

Although our observation model in (3) can be handled by
the Generalized Linear Bandit (GLB) (Filippi et al., 2010),
this paper differs from GLB in the following aspects.

e To estimate w,, GLB needs to store the learning his-
tory and perform batch updating in each round. In
contrast, the proposed OL?M performs online updat-
ing.

e While GLB only considers a finite number of arms,
we allow the number of arms to be infinite.

e QOur algorithm follows the learning framework of
SLB. Thus, existing techniques for speeding up SLB
can also be used to accelerate our algorithm, which is
discussed in Section 3.3.

3.2. Theoretical Guarantees

The main theoretical contribution of this paper is the fol-
lowing theorem regarding the confidence region of w, at
each round.

Theorem 1. With a probability at least 1 — §, we have

[Werr = Willz,,, < Vs, VE>0

where

- § E g det(Zt+1)
e [8R+ (6 "3 R> 518 et (Z) ] (12)

+ AR?,

2
Tt=10g<2’—2b§2ﬂt )) (13)

1

p “2(1+ exp(R))’

(14)

The main idea is to analyze the growth of |w:;1 —
w*||22t+1 by exploring the properties of the logistic loss
(Lemmas 2 and 4) and concentration inequalities for
martingales (Lemma 5). By a simple upper bound of
log det(Z;41)/ det(Z7), we can show that the width of the
confidence region is O(+/dlogt).

Corollary 2. We have

det(Zt_H) Bt
S glog (14 L&
%% ~Ger(zn = e {1t o5g

and thus
Ye+1 < O(dlogt), Vvt > 0.

Based on Theorem 1, we have the following regret bound
for OL2M.

Theorem 3. With a probability at least 1 — §, we have

T
T T
Trileal))(x Wy — th W
t=1
B yrT
— 1
2 R 5 og

Combining with the upper bound in Corollary 2, the above
theorem implies our algorithm achieves a regret bound of
O(d/T) which matches the bound for Stochastic Linear
Bandits (Dani et al., 2008). One limitation of Theorem 3
is that the upper bound has an exponential dependence on
R, which is an upper bound of ||w.||2. That is because our
algorithm is built upon online Newton step (Hazan et al.,

det(ZTJrl)
det(Zl)

< 4max (1,

holds for all T > 0.



Online Stochastic Linear Optimization under One-bit Feedback

2007), the regret of which has such a undesirable depen-
dence on R. From the recent studies on logistic regression
(Bach & Moulines, 2013; Bach, 2014; Hazan et al., 2014),
we conjecture that it is possible to obtain a polynomial de-
pendence on R, but with a higher dependence on T'. We
will investigate this issue in the future.

3.3. Implementation Issues

The main computational cost of OL?M comes from (11)
which is NP-hard in general (Dani et al., 2008). In the fol-
lowing, we discuss two strategies for reducing the compu-
tational cost. More results can be found in the supplemen-
tary material.

Finite Decision Set If the decision set D is finite, (11)
can be solved by computing an upper bound for each deci-
sion in D. Specifically, we have

X¢y1 = argmax max x'w

xeD IWw—wip1 ‘|Zt+1 <Vtr1

= argmax max x" (Wiy1 + 2)

xeD ||ZHZt+1 <Vt

= argmax (XTWt+1 + Vel 7 ) :
XGD t4+1

Optimization Over Ball As mentioned by Dani et al.
(2008), in the special case that D is the unit ball, (11) could
be solved in time O(poly(d)). Here, we provide an expla-
nation using techniques from convex optimization. To this
end, we rewrite the optimization problem in (11) as follows

XTW

max
Ixll2<1,[[w=wit1llz,,, <V/AFet1

= max

= [[wl|2
lw—witi1llz, 4 <V/Ferr

which is equivalent to

—[lwl3-

<741

|\W—Wt+1|\zzt+l_

The above problem is an optimization problem with a
quadratic objective and one quadratic inequality constraint,
it is well-known that strong duality holds provided there ex-
ists a strictly feasible point (Boyd & Vandenberghe, 2004).
Thus, we can solve its dual problem which is convex and
given by

max 7y
s.t. A>0
—I+ /\Zt+1 —)\Zt+1Wt+1 -0
W/ Zer MIwellZ,,, —wes) =) =

After obtaining the dual solution, we can get the primal
solution based on KKT conditions.

4. Analysis

Due to the limitation of space, we only prove Theorem 1.
The omitted proofs are provided in the supplementary ma-
terial.

4.1. Proof of Theorem 1

We begin with several lemmas that are central to our anal-
ysis.

Although the application of online Newton step (Hazan
et al., 2007) in Algorithm 1 is motivated from the fact that
fi(w) is exponentially concave over bounded domain, our
analysis is built upon a related but different property that
the logistic loss log(1 + exp(z)) is strongly convex over
bounded domain, from which we obtain the following lem-
ma.

Lemma 2. Denote the ball of radius R by Bg, i.e.,
Br = {w : ||w|l2 < R}. The following holds for
B < sireamy’

fr(w2) > fi(wi) + [V fi(wi)] T (wa — w1)
3

+ 3 ((w2 —Wl)Txt)Q, Ywi,ws € Bg.

Comparing Lemma 2 with Lemma 3 in (Hazan et al., 2007),
we can see that the quadratic term in our inequality does not
depends on y;. This independence allows us to simplify the
subsequent analysis involving martingales.

Our second lemma is devoted to analyzing the property of
the updating rule in (8).

Lemma 3.

1
<Wt - W*,Vft(Wt)> - §vat(wt)”2z;rl1

15
Iwe = w2, (15)

B W1 — W*||2z,,Jrl
- 2 2 '

For each function f;(-), we denote its conditional expecta-
tion over y; by fi(w), i.e.,

fi(w) =E,, [log (1 + exp (—ytxtTw))} . (16)

According to the Leibniz integral rule, we have
Vf(w) = Ey, [V fu(w)]. (17)

Based the property of Kullback—Leibler divergence (Cover
& Thomas, 2006), we obtain the following lemma.

Lemma 4. We have

fr(w) > fi(w,), Yw € R%
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Next, we introduce one inequality for bounding the weight-
ed /5-norm of the gradient

T 2
v 2 _ exp(—yix, W) TA
VAl = (R )

<|x:%, VA= 0, w € R™.

(18)

We continue the proof of Theorem 1 in the following. Our
updating rule in (8) ensures |w:||s < R, Vt > 0. Com-
bining with the assumption ||w, |2 < R, Lemma 2 implies

fr(we) <fr(wa) + [V fi(we)] T (we — W)
_ g ((W* — W,E)TX,E)2 .

By taking expectation over ¥, (19) becomes

19)

_ 16),(17) _ _ -
fiwe) < fo(wa) + [V fe(we)] ' (W — wy)

5 -]

Combining with Lemma 4, we have

0 <[VFy(wo)] T (wi — W) — § (s — we)Txe)?

=ay

[V wo)] T (we —wa) 2

+ [V fe(we) = Vfi(w)] T (wy — w)

:=by

Q¢

_ 2
(Vo] — ) — e el

' 2
% - gat + b
_ 2
e
W - gat + by
B 2
@Ml e
>
W - gat + by
(2 B ||Wt+1 —2W*2Zt+1 _ gat + by + §ct

[we —w.lZ, B 2
st (x] (wy —w,))

[Wit1 *W»ﬂszt+1 B 1
= — —_ b -
5 4at + 0 + 2ct
[we — w7,

2

We thus have

B
[Wip1 — W*||2Zt+1 < lwy — W*||2Zt - 56115 + 20 + ¢4
Summing the above inequality over iterations 1 to ¢, we
obtain

t
p
[Wegr — W*||22t+1 Ty Zai

=1
t t
<A\R? +22b1- +Zci.
=1 =1

Next, we discuss how to bound the summation of martin-
gale difference sequence 22:1 b;. To this end, we prove
the following lemma, which is built up the Bernstein’s in-
equality for martingales (Cesa-Bianchi & Lugosi, 2006)
and the peeling technique (Bartlett et al., 2005).

(20)

Lemma 5. With a probability at least 1 — 0, we have
t t 3
b; <4R+2 ; + =R, Vi > 0
;Z_ + Tt;az+3 Tt, >
where T is defined in (13).

From Lemma 5 and the basic inequality

with a probability at least 1 — J, we have

i B < 4 8
S < 4 = . 4= 21
;bz_ R+4;az+(6+3]{>n 21)

holds for all £ > 0. Substituting (21) into (20), we obtain

Wit = wallZ,,,

4 8 (22)

t
<AR? +2 [4R+ (ﬂ + 3R> Tt:| +) i

=1

Finally, we show an upper bound for 22:1 ¢;, which is a
direct consequence of Lemma 12 in Hazan et al. (2007).

Lemma 6. We have
t
2 det(Zt 1)
12 < Zlog —HL
;HleZH_l — 6 0g det(Zl)

We complete the proof by combining (22) with the above
lemma.
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Figure 1. Instantaneous regret of OL>M when D is the unit ball in R'°.

5. Experiments

In this section, we present experimental results to demon-
strate the effectiveness of the proposed algorithm.

5.1. Experimental Setting

We sample a point uniformly at random from the (d — 1)-
sphere as w,, and each time the learner submits an action
X;, a one-bit feedback y; € {£1} is generated according
to the logit model in (3). To apply our algorithm, we need
to determine the values of two parameters: A and ;. A is
introduced to make Z, invertible, and the performance of
our algorithm is insensitive to its value. Thus, we simply
choose A = 1 in the following. 7, is an essential parameter
which is the width of the confidence region, and its value is
tuned as clog ggsg;g according to (12), where c is searched
in the range of [le—3, 1].

5.2. Experimental Results

In the first experiment, we choose the unit ball as the deci-
sion set, i.e., D = {x:||x||2 < 1} C R?, which contains
infinite number of actions. As discussed in Section 3.3, in
this case, (11) can be cast as a convex optimization prob-
lem, which is then solved by the CVX package (Grant &
Boyd, 2008; 2014). We first investigate how the instanta-
neous regret X, w, — X, w, varies with ¢ during the learn-

ing process. The results for d = 10 with different settings
of c are shown in Fig. 1. As can be seen, the instantaneous
regret decreases overall, although exhibits some local fluc-
tuations. These fluctuations actually reflect the switches
between exploitation and exploration. Generally speaking,
valley and peak of the curve correspond to exploitation and
exploration, respectively.

The value of ¢ determines the width of the confidence re-
gion, which in turn controls the exploitation-exploration
trade-off. A small value of ¢ prefers exploitation, which
may select an action which is not optimal because of too lit-
tle exploration. For example, in Fig. 1(a) where ¢ = 0.001,
after 2 x 10* rounds, the learner always submits a sub-
optimal action and suffers a constant instantaneous regret.
On the other hand, a larger value of ¢ favors exploration,
which might results in a large regret because too much
exploration prevents the algorithm from playing the op-
timal action. This phenomenon can also be observed in
Fig. 1(d) where ¢ = 1. From Fig. 1(b) and Fig. 1(c), we
see that a good trade-off between exploitation-exploration
is achieved when ¢ = 0.02 or 0.2, for which the instan-
taneous regret approaches 0 gradually. The behavior of
the instantaneous regret for d = 100 is similar and can be
found in the supplementary.

Next, we examine the O(dv/T) regret bound indicated by
Theorem 3. Let Regret(¢) be the regret till round ¢, i.e.,
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Figure 3. Regret of OL?*M and GLB when D contains finite number of actions.

Regret(t) = 22:1 x,] w, — x, w,. If the learner achieves
an O(dv/T) regret bound, the curve of Regret(t)/(dv/%)
should increase at most polylogarithmically. Fig. 2 plots
the curve of Regret(t)/(d/t) with respect to ¢ for d = 10
and 100. As can be seen, with a suitable choice of ¢, the
curve indeed increases very slowly (e.g., d = 100 and ¢ =
0.02 ), or even decreases slightly after certain rounds (e.g.,
d=10and ¢ = 0.02).

In the last experiment, we study the case that D is finite,
so that the GLB algorithm (Filippi et al., 2010) can also be
applied. In the experiments, the parameter of GLB is also
manually tuned. The decision set D C R? is constructed by
sampling 10d points uniformly at random from the (d —1)-
sphere. In Fig. 3, we plot the regret of OL?M and GLB
with respect to t. Note that in each round, GLB solves a
logistic regression problem that utilizes the whole learning
history to estimate w,. Thus, it is not surprising that the
regret of GLB is smaller than OL?M by a constant factor.
On the other hand, OL?M performs online updating, which
is more efficient when ¢ is large.

6. Conclusions

In this paper, we consider the problem of online linear op-
timization under one-bit feedback. Under the assumption
that the binary feedback is generated from the logit model,
we develop a variant of the online Newton step to approxi-
mate the unknown vector, and discuss how to construct the
confidence region theoretically. Given the confidence re-
gion, we choose the action that produces maximal reward
in each round. Theoretical analysis reveals that our algo-
rithm achieves a regret bound of O(dv/T).

The current algorithm assumes that the one-bit feedback is
generated from a logit model. In contrast, a much broader
class of observation models are allowed in one-bit com-
pressive sensing (Plan & Vershynin, 2013). In the future,
we will investigate how to extend our algorithm to other ob-
servation models. Recently studies in online learning have
shown that Thompson sampling is both competitive and ef-
ficient for addressing the exploration-exploitation dilemma
(Chapelle & Li, 2011; Li, 2013). We leave the application
of Thompson sampling to our problem for future work.
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