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Abstract
Minimizing a convex function of matrices regular-
ized by the nuclear norm arises in many applica-
tions such as collaborative filtering and multi-task
learning. In this paper, we study the general setting
where the convex function could be non-smooth.
When the size of the data matrix, denoted bym×n,
is very large, existing optimization methods are in-
efficient because in each iteration, they need to per-
form a singular value decomposition (SVD) which
takes O(m2n) time. To reduce the computation
cost, we exploit the dual characterization of the
nuclear norm to introduce a convex-concave opti-
mization problem and design a subgradient-based
algorithm without performing SVD. In each iter-
ation, the proposed algorithm only computes the
largest singular vector, reducing the time complex-
ity from O(m2n) to O(mn). To the best of our
knowledge, this is the first SVD-free convex op-
timization approach for nuclear-norm regularized
problems that does not rely on the smoothness as-
sumption. Theoretical analysis shows that the pro-
posed algorithm converges at an optimalO(1/

√
T )

rate where T is the number of iterations. We also
extend our algorithm to the stochastic case where
only stochastic subgradients of the convex function
are available and a special case that contains an ad-
ditional non-smooth regularizer (e.g., `1 norm reg-
ularizer). We conduct experiments on robust low-
rank matrix approximation and link prediction to
demonstrate the efficiency of our algorithms.

1 Introduction
Low-rank matrices are preferred in real applications for dif-
ferent reasons. For instance, collaborative filtering uses low-
rank matrices to model the fact that preferences of users are
limited [Candès and Recht, 2009; Abernethy et al., 2009].
Multi-task learning uses low-rank matrices to enforce differ-
ent tasks to share a common structure [Argyriou et al., 2008;
Pong et al., 2010]. To yield low-rank solutions, the fol-
lowing nuclear-norm regularized problems have been widely
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adopted:

min
A∈Rm×n

F (A) = f(A) + λ‖A‖∗ (1)

where f(·) is a convex loss, λ > 0 is a regularization param-
eter, and ‖A‖∗ = trace(

√
A>A) denotes the nuclear norm

of A (i.e., the sum of all the singular values), which is also
referred to as the trace norm. Without loss of generality, we
assume m ≤ n.

The optimization problem in (1) can be solved by first-
order optimization methods such as subgradient descent
[Nesterov, 2004], proximal gradient descent [Duchi and
Singer, 2009; Nesterov, 2013]. Although these methods are
guaranteed to converge, they are inefficient because a singular
value decomposition (SVD), which takesO(m2n) time, is re-
quired at each iteration. To reduce the computation complex-
ity, many efficient solvers have been developed by replacing
the full SVD with a partial SVD. However, those approaches
either require the function f(·) to be smooth [Dudık et al.,
2012; Hsieh and Olsen, 2014] or are designed for nuclear-
norm constrained problems instead of regularized problems
[Jaggi et al., 2010; Jaggi, 2013].

In this paper, we study the general setting of (1), where the
function f(·) could be non-smooth, and develop a series of
SVD-free optimization algorithms. First, based on the dual
characterization of the nuclear norm, we reformulate (1) as
a convex-concave optimization problem, and solve it by the
subgradient method. In each iteration, we only need to com-
pute the largest singular vector instead of a full SVD, thus re-
ducing the time complexity from O(m2n) to O(mn). As far
as we know, this is the first SVD-free convex optimization al-
gorithm for general nuclear-norm regularized problems. The-
oretically the proposed algorithm converges at an O(1/

√
T )

rate, which matches the optimal rate of non-smooth optimiza-
tion under the first-order black-box model [Nesterov, 2004].
Second, we extend our algorithm to stochastic composite op-
timization, where only stochastic subgradients of f(·) are
available, and show that an O(1/

√
T ) rate of convergence is

still attainable. Finally, we study the case where an additional
non-smooth regularizer such as the `1-norm is presented, and
propose a proximal subgradient method that solves the prob-
lem at the same rate.



Applications As mentioned above, nuclear norm regular-
ization occurs in many machine learning applications. To
motivate this work, we list some applications which involve a
convex but non-smooth loss function:

• Robust Low-rank Matrix Approximation: The goal
is to fit a target matrix Y with a low-rank matrix A in a
robust way [Baccini et al., 1996; Croux and Filzmoser,
1998; Ke and Kanade, 2005]. For this problem, the ob-
jective function f(A) =

∑
ij |Aij − Yij |/mn, which is

non-smooth.
• Sparse and Low-rank Link Prediction: The goal is to

discover links from a partially observed adjacency ma-
trix Y such that the link matrix is both sparse and low-
rank [Richard et al., 2012]. The objective function is
defined as f(A) = `(A, Y ) + γ‖A‖1, where `(A, Y ) is
the empirical average of hinge loss over observed entries
and thus non-smooth.

2 Related Work
In this section, we provide a brief review of existing meth-
ods for nuclear-norm regularized problems, as well as related
work on nuclear-norm constrained problems.

2.1 Nuclear-norm Regularized Problems
Owing to the non-smoothness nature of the nuclear norm, the
conventional approach for solving (1) is the subgradient de-
scent (GD):

At+1 = At − ηt (∇f(At) + ∂‖At‖∗)

where ∂‖At‖∗ denotes a subgradient of ‖·‖∗ evaluated atAt,
and ηt > 0 is the step size. It is well-known that GD con-
verges to the optimum at an O(1/

√
T ) rate, which is already

optimal for first-order optimization of non-smooth functions
[Nemirovski et al., 1982; Nesterov, 2004]. When the function
f(·) is smooth, proximal gradient descent (PGD), defined as

At+1 = argmin
A∈Rm×n

1

2
‖A− (At − ηt∇f(At))‖2F + ηtλ‖A‖∗

is preferred and achieves an O(1/T ) rate of convergence
[Nesterov, 2013]. Following the Nesterov’s method for accel-
erating the gradient method [Nesterov, 2004], an accelerated
version of PGD that converges at an O(1/T 2) rate has been
developed [Ji and Ye, 2009; Toh and Yun, 2010]. Although
GD and PGD are guaranteed to converge, they need to calcu-
late the SVD ofAt orAt−ηt∇f(At) in each iteration [Cai et
al., 2010], which takes O(m2n) time. Due to the high com-
putational cost of full SVD, GD and PGD do not scale well
to large-scale problems.

To reduce the computational complexity, many efficient
nuclear norm minimization solvers have been developed. In
[Dudık et al., 2012], the authors lift the non-smooth convex
problem into an infinitely dimensional smooth problem and
apply coordinate descent to solve it. In each round, the al-
gorithm only needs to calculate a partial SVD instead of a
full SVD. In [Hsieh and Olsen, 2014], the authors propose
the active subset selection (ASS) algorithm, which selects an
active subspace by approximating SVD and then cast (1) to a

small-size problem that can be solved easily. Although these
algorithms are efficient in solving nuclear-norm regularized
problem, they are restricted to the case that f(·) is smooth. In
contrast, we only assume the function f(·) is convex and it
could be non-smooth.

To avoid computing full SVDs, some methods rely on the
following variational characterization of the nuclear norm

‖A‖∗ = min
U,V :A=UV >

1

2
(‖U‖2F + ‖V ‖2F )

where the size of the matrices U and V is not constrained.
In [Srebro et al., 2005], the authors formulate the problem
as semi-define programming and solve it with standard SDP
solvers. However, it can not scale up to large datasets. To
deal with this limitation, some authors [Rennie and Srebro,
2005; Signoretto et al., 2013] propose alternating direction
methods. However, these approaches break the convexity of
the original problem and there is no global convergence.

2.2 Nuclear-norm Constrained Problems
In [Jaggi et al., 2010], the authors consider a constrained ver-
sion of (1), i.e.,

min
A∈Rm×n

f(A) s. t. ‖A‖∗ ≤ τ.

They transform it to the problem of optimizing a convex
function over the set of positive semi-definite matrices with
unit trace, and then use the approximate SDP solver [Hazan,
2008], which in each iteration only calculates an approxi-
mate largest eigenvector of the gradient. A similar greedy
algorithm has been developed for convex optimization with a
low-rank constraint [Shalev-Shwartz et al., 2011]

min
A∈Rm×n

f(A) s. t. rank(A) ≤ r.

Recently, the Frank-Wolfe Algorithm has been applied to the
nuclear-norm constrained problems [Jaggi, 2013], and also
avoids the full SVD operation.

Finally, we note that moving the constraint function into
the objective function—a technique utilized in this work, has
been leveraged for developing stochastic gradient methods
with only one projection [Mahdavi et al., 2012]. However,
the differences include (i) we do not need to perform any pro-
jection at the end; (ii) their algorithm is to handle the con-
straint on the primal variable and our algorithm is to handle
the constraint on the dual variable.

3 Main Results
In this section, we introduce the details of our SVD-free
convex-concave optimization algorithm and several exten-
sions to the basic version.

3.1 The Basic Algorithm
We first recall the dual characterization of the nuclear norm,
i.e.,

‖A‖∗ = max
U∈Rm×n,‖U‖2≤1

tr(U>A)

where ‖U‖2 represents the spectral norm of U . Then, we cast
(1) to the following problem

min
A∈Rm×n

max
U∈Rm×n,‖U‖2≤1

f(A) + λtr(U>A) (2)



Algorithm 1 SVD-freE CONvex-ConcavE Algorithm
(SECONE)

1: Initialize: A1 = U1 = 0 ∈ Rm×n
2: for t = 1 to T do
3: Update At+1 by

At+1 = At − ηt(∂f(At) + λUt)

4: Update Ut+1 by

Ut+1 = Ut + τt(λAt − ρ∂[‖Ut‖2 − 1]+)

5: end for
6: Output: ÂT =

∑T
t=1At/T

Since the above optimization problem is convex-concave, we
can apply the standard subgradient method to solve it. How-
ever, due to the presence of the spectral norm constraint of
U , we have to project the intermediate solution onto the unit
spectral norm ball, which again requires a full SVD opera-
tion.

To address this issue, we propose to remove the constraint
‖U‖2 ≤ 1, and introduce an additional term into the objective
function to control the spectral norm of U :

min
A∈Rm×n

max
U∈Rm×n

f(A) + λtr(U>A)− ρ[‖U‖2 − 1]+ (3)

where ρ > 0 is a parameter whose value will be specified
later and [s]+ = max{s, 0} is the hinge operator. To solve the
above problem, we can use the standard subgradient method,
which iterates as follows:

At+1 = At − ηt(∂f(At) + λUt),

Ut+1 = Ut + τt(λAt − ρ∂[‖Ut‖2 − 1]+).

Note that the subgradient ∂[‖U‖2 − 1]+ can be computed
efficiently. To show this, we denote σ1 the leading singular
value of U , and u1,v1 the corresponding left and right singu-
lar vectors. Then, we have

u1v
>
1 1[σ1 > 1] ∈ ∂[‖U‖2 − 1]+.

This implies that in each iteration, we only need to compute
the leading singular vectors of Ut with O(mn) time. By con-
trast, a full SVD takes O(m2n) time. The detailed procedure
is summarized in Algorithm 1.

To present the theoretical guarantee of our algorithm, we
make the following assumptions of f(·):

Assumption 1. Assume that f(A) ≥ 0 for any A ∈ Rm×n
and there exists C > 0 and G > 0 such that f(0) ≤ C and
‖∂f(A)‖F ≤ G.1

We have the following theorem regarding the optimization
error.

Theorem 1. Let ρ ≥ C and run Algorithm 1 with ηt = c1/
√
t

and τt = c2/
√
t. Let ÂT =

∑T
t=1At/T be the output and

1To ensure the gradient is bounded, we can add a norm constraint
on A if necessary.

U∗T = argmax‖U‖2≤1 tr(U
>ÂT ). Under Assumption 1 and

max{‖At‖F , ‖Ut‖F } ≤ σ, we have

F (ÂT )− F (A∗) ≤
1√
T

(
D2

1

2c1
+ c1(G+ λσ)2

)
+

1√
T

(
D2

2

2c2
+ c2(ρ+ λσ)2

)
where D1 = ‖A∗‖F + σ and D2 = ‖U∗T ‖F + σ.

The above theorem implies the proposed algorithm has an
O(1/

√
T ) convergence rate. And the upper bound is mini-

mized by choosing c1 = D1√
2(G+λσ)

and c2 = D2√
2(ρ+λσ)

.

3.2 The Stochastic Setting
In this subsection, we extend the basic algorithm to the
stochastic setting: f(A) = Eξ[f(A; ξ)], where ξ is a random
variable. In this case, the optimization problem becomes

min
A∈Rm×n

Eξ[f(A; ξ)] + λ‖A‖∗.

Although existing algorithms for stochastic composite opti-
mization [Lan, 2012; Lin et al., 2014] can be applied to the
above problem, they are inefficient because a full SVD oper-
ation is required in each iteration.

Following the derivation of (3), we convert the above prob-
lem to the unconstrained convex-concave optimization prob-
lem

min
A∈Rm×n

max
U∈Rm×n

Eξ[f(A; ξ)] + λtr(U>A)− ρ[‖U‖2 − 1]+

(4)
Generally speaking, it is impossible to compute the gradient
of Eξ[f(A; ξ)] w. r. t. A, thus the subgradient algorithm in
Algorithm 1 cannot be applied here. Instead, we will first
sample a random variable ξt and use the stochastic gradient
∂f(At; ξt) to update the intermediate solution. Specifically,
the updating rules are as follows:

At+1 = At − ηt(∂f(At; ξt) + λUt),

Ut+1 = Ut + τt(λAt − ρ∂[‖Ut‖2 − 1]+).

The complete procedure is summarized in Algorithm 2.
Before presenting the convergence rate, we make the fol-

lowing assumption.
Assumption 2. Assume that f(A) ≥ 0 for any A ∈ Rm×n
and there exists C > 0 and G > 0 such that f(0) ≤ C and
Eξ
[
‖[∂f(A; ξ)]‖2F

]
≤ G2.

The above assumption requires that the stochastic gradient
is bounded in expectation, which is different from Assump-
tion 1 in the deterministic setting. Then, we have the follow-
ing theorem.
Theorem 2. Let ρ ≥ C and run Algorithm 2 with ηt = c1/

√
t

and τt = c2/
√
t. Let ÂT =

∑T
t=1At/T be the output and

U∗T = arg max‖U‖2≤1 tr(U
>ÂT ). Under Assumption 2 and

max{‖At‖F , ‖U‖F } ≤ σ, we have

E[F (ÂT )]− F (A∗) ≤
1√
T

(
D2

1

2c1
+ c1(G+ λσ)2

)
+

1√
T

(
E[D2

2]

2c2
+ c2(ρ+ λσ)2

)
where D1 = ‖A∗‖F + σ and D2 = ‖U∗T ‖F + σ.



Algorithm 2 Extension to Stochastic Setting (SECONE-S)
1: Initialize: A1 = U1 = 0 ∈ Rm×n
2: for t = 1 to T do
3: Sample ξt
4: Update At+1 by

At+1 = At − ηt(∂f(At; ξt) + λUt)

5: Update Ut+1 by

Ut+1 = Ut + τt(λAt − ρ∂[‖Ut‖2 − 1]+)

6: end for
7: Output: ÂT =

∑T
t=1At/T

The above theorem implies the stochastic version of our al-
gorithm shares the same O(1/

√
T ) rate of convergence with

the deterministic version. Given the non-smoothness of the
objective function, this rate cannot be improved in general.

3.3 Problems with an Additional Regularizer
In this subsection, we consider the case that besides the nu-
clear norm regularizer, there is an additional non-smooth reg-
ularizer. The optimization problem is given by

min
A∈Rm×n

f(A) + γφ(A) + λ‖A‖∗ (5)

where φ(·) is a non-smooth regularizer such as ‖A‖1 and γ >
0 is a regularizer parameter. Note that the proximal gradient
descent [Nesterov, 2013] can not be directly applied to (5),
because there are two regularizers and there is no closed-form
solution to the proximal mapping.

To address this limitation, we propose to solve the follow-
ing problem

min
A∈Rm×n

max
U∈Rm×n

f(A)+γφ(A)+λtr(U>A)−ρ[‖U‖2−1]+.

In this way, we only have one regularizer γφ(·), which can be
handled by proximal mapping. To be specific, we define the
proximal mapping of the convex function h(·) as:

Proxη,h(·)(Ā) = argmin
A∈Rm×n

h(A) +
1

2η
‖A− Ā‖2F .

We let h(A) = γφ(A), and introduce the updating rules as:

Āt+1 = At − ηt(∂f(At) + λUt),

At+1 = Proxηt,γφ(·)(Āt+1),

Ut+1 = Ut + τt(λAt − ρ∂[‖Ut‖2 − 1]+).

The detailed procedure is presented in Algorithm 3.
We establish the convergence rate of Algorithm 3 in the

following theorem.
Theorem 3. Under the same condition as Theorem 1 and
assume φ(0) = 0, we have

F (ÂT )− F (A∗) ≤
1√
T

(
D2

1

2c1
+ c1(G+ λσ)2

)
+

1√
T

(
D2

2

2c2
+ c2(ρ+ λσ)2

)
where D1 = ‖A∗‖F + σ and D2 = ‖U∗T ‖F + σ.

Algorithm 3 Extension to Proximal Variant (SECONE-P)
1: Initialize: A1 = U1 = 0 ∈ Rm×n
2: for t = 1 to T do
3: Update Āt+1 by

Āt+1 = At − ηt(∂f(At) + λUt)

4: Update At+1 by

At+1 = arg min
A∈Rm×n

γφ(A) +
1

2ηt
‖A− Āt+1‖2F

5: Update Ut+1 by

Ut+1 = Ut + τt(λAt − ρ∂[‖Ut‖2 − 1]+)

6: end for
7: Output: ÂT =

∑T
t=1At/T

The theorem proves that the proximal variant of our algo-
rithm also converges at an O(1/

√
T ) rate. Though the con-

vergence rate is as same as the one of SECONE, the proximal
mapping for `1 norm usually gives us sparse solutions. Also,
it is trivial to extend this method to the stochastic optimiza-
tion algorithm by following the derivation in Section 3.2.

4 Theoretical analysis
In this section, we provide proofs of Theorems 1 and 3. The
proof of Theorem 2 is included in the supplementary.

4.1 Proof of Theorem 1
We start with the unconstrained convex-concave optimization
problem (3) by denoting the objective function as

L(A,U) = f(A) + λtr(U>A)− ρ[‖U‖2 − 1]+.

For clarity, we divide the proof into two individual parts.
Part I: Recall that At+1 is the update of subgradient de-

scent applied to L(At, Ut), according to the standard analysis
of subgradient descent update, we have for any A ∈ Rm×n

L(At, Ut) ≤ L(A,Ut) +
ηt
2
‖∂f(At) + λUt‖2F

+
1

2ηt
(‖A−At‖2F − ‖A−At+1‖2F )

Similarly, Ut+1 is the update of subgradient descent applied
to L(At, Ut), hence for any U ∈ Rm×n

L(At, U) ≤ L(At, Ut) +
τt
2
‖λAt − ρ∂[‖Ut‖2 − 1]+‖2F

+
1

2τt
(‖U − Ut‖2F − ‖U − Ut+1‖2F )

With the assumption max{‖At‖F , ‖Ut‖F } ≤ σ and
‖∂f(At)‖F ≤ G, we combine the above inequalities

L(At, U) ≤ L(A,Ut) +
ηt
2

(G+ λσ)2 +
τt
2

(ρ+ λσ)2

+
1

2ηt
(‖A−At‖2F − ‖A−At+1‖2F )

+
1

2τt
(‖U − Ut‖2F − ‖U − Ut+1‖2F )

(6)



Let ηt = c1/
√
t, then simple mathematics shows that

T∑
t=1

1

2ηt
(‖A−At‖2F − ‖A−At+1‖2F )

≤ 1

2η1
‖A−A1‖2F +

T−1∑
t=1

(
1

2ηt+1
− 1

2ηt

)
‖A−At‖2F

≤ 1

2η1
D2

1 +

(
1

2ηT
− 1

2η1

)
D2

1 ≤
1

2ηT
D2

1 =

√
T

2c1
D2

1

where D1 = ‖A‖+ σ ≥ maxt ‖A−At‖F .
We can apply the same analysis for τt = c2/

√
t and obtain

T∑
t=1

L(At, U) ≤
T∑
t=1

L(A,Ut) +

√
T

2c1
D2

1 +

√
T

2c2
D2

2

+ c1
√
T (G+ λσ)2 + c2

√
T (ρ+ λσ)2

where we use the fact
∑T
t=1

1√
t
≤ 1 +

∫ T
t=1

1√
t
dt ≤ 2

√
T

and the notation D2 = ‖U‖F + σ ≥ maxt ‖U − Ut‖F .
Denote that ÂT =

∑T
t=1At/T and ÛT =

∑T
t=1 Ut/T .

By the convexity of L(A,U) in terms of A and concavity in
terms of U , we obtain

L(ÂT , U)− L(A, ÛT ) ≤ 1√
T

(
D2

1

2c1
+ c1(G+ λσ)2

)
+

1√
T

(
D2

2

2c2
+ c2(ρ+ λσ)2

)
To summarize what we have proved, the gap L(Ât, U) −
L(A, Ût) decreases at an O(1/

√
T ) rate, which indicates the

solution (ÂT , ÛT ) converges to the optimal solution of the
unconstrained convex-concave optimization problem in (3).

Part II: In the rest of the proof, we will show that the ob-
jective value F (Ât) also converges to F (A∗), where A∗ is an
optimal solution of the original problem. To see this, we will
prove the following inequality

F (ÂT )− F (A∗) ≤ L(ÂT , U
∗
T )− L(A∗, ÛT ).

where U∗T = arg max‖U‖2≤1 tr(U
>ÂT ). First, we have

L(ÂT , U
∗
T ) = f(ÂT ) + λ‖ÂT ‖∗ = F (ÂT ).

Thus, it remains to show that

λ‖A∗‖∗ ≥ λtr(Û>T A∗)− ρ[‖ÛT ‖2 − 1]+. (7)
Note that tr(A>B) ≤ ‖A‖2‖B‖∗ for any matrices A and B.
When ‖ÛT ‖2 ≤ 1, it is easy to verify that (7) holds. In the
following, we focus on the case ‖ÛT ‖2 ≥ 1.

Let ÛT have the SVD ÛT = PΣQ>, where the diagonal
matrix Σ = diag(σ1, . . . , σr, σr+1, . . . , σm). The sequence
of singular values {σi} is non-increasing and satisfy σr ≥
1 > σr+1. Denote ŨT the projection of ÛT onto the unit
spectral norm ball. Specifically, it has the form ŨT = P Σ̃Q,
where Σ̃ = diag(1, . . . , 1, σr+1, . . . , σm). It follows that

tr(Ũ>T A∗) ≤ ‖A∗‖∗,
‖ÛT − ŨT ‖2 ≤ σ1 − 1 = ‖ÛT ‖2 − 1.

We are now in a position to prove that (7) holds. From As-
sumption 1, it is easy to verify λ‖A∗‖∗ ≤ C. We have

λtr(Û>T A∗)− λ‖A∗‖∗ ≤ λtr((ÛT − ŨT )>A∗)

≤λ‖ÛT − ŨT ‖2‖A∗‖∗ ≤ C(‖ÛT ‖2 − 1)

≤ρ(‖ÛT ‖2 − 1)

which is due to the inequality λ‖A∗‖∗ ≤ C and the parameter
ρ ≥ C. This completes the proof of Theorem 1.

4.2 Proof of Theorem 3
We may abuse some notations from the previous section. Let
L(A,U) = f(A) + λtr(U>A) + γφ(A) − ρ[‖U‖2 − 1]+.
Denote that

gt(A) = f(A) + λtr(U>t A), h(A) = γφ(A)

and Gt = ∂gt(At) = ∂f(At) + λUt.

From the convexity of gt(A) and h(A), we have

ηt(gt(At) + h(At+1)− gt(A)− h(A))

≤〈At −A, ηtGt〉+ 〈At+1 −A, ηt∂h(At+1)〉
=〈A−At+1, At −At+1 − ηtGt − ηt∂h(At+1)〉

+ 〈A−At+1, At+1 −At〉+ ηt〈At −At+1, Gt〉

From the optimality of At+1 in Algorithm 3, we have

〈A−At+1, At+1 −At + ηtGt + ηt∂h(At+1)〉 ≥ 0.

By combining the above two inequality and choosingA = A∗
which is the optimal solution, we obtain

ηt(gt(At) + h(At+1)− gt(A∗)− h(A∗))

≤〈A∗ −At+1, At+1 −At〉+ ηt〈At −At+1, Gt〉

≤1

2

(
‖A∗ −At‖2F − ‖A∗ −At+1‖2F − ‖At+1 −At‖2F

)
+

1

2

(
‖At −At+1‖2F + η2t ‖Gt‖2F

)
≤1

2

(
‖A∗ −At‖2F − ‖A∗ −At+1‖2F

)
+
η2t
2
‖Gt‖2F

The second inequality follows from Cauchy-Schwartz in-
equality. Let’s consider L(At, Ut)− L(A∗, Ut), which is

L(At, Ut)− L(A∗, Ut)

=gt(At) + h(At)− gt(A∗)− h(A∗)

≤ 1

2ηt
(‖A∗ −At‖2F − ‖A∗ −At+1‖2F ) +

ηt
2
‖Gt‖2F

+ γ(φ(At)− φ(At+1))

Note that the trailing term γ(φ(At)− φ(At+1)) has little im-
pact on the convergence as we assume φ(A1) = φ(0) = 0.

Using the same argument as in the proof of Theorem 1, we
can then easily carry out the rest proof of this theorem.

5 Experiments
We present numerical experiments on real datasets to demon-
strate the efficiency of the proposed algorithms, and more re-
sults can be found in the supplementary.



Figure 1: Results of robust low-rank matrix approximation

Table 1: Statistics for matrix approximation
Method c1 c2 T Total CPU time

SECONE 1e7 1e4 8500 6.12e5
PGD 1e6 80 6.26e5
GD 1e6 90 6.62e5

5.1 Robust Low-rank Matrix Approximation
We consider the robust low-rank approximation problem
[Baccini et al., 1996; Croux and Filzmoser, 1998; Ke and
Kanade, 2005]:

min
A∈Rm×n

1

mn

m∑
i=1

n∑
j=1

|Yij −Aij |+ λ‖A‖∗

where Y is a given data matrix. Due to the non-smoothness
of the objective function, we compare our method with two
classical methods: subgradient descent (GD) and proximal
subgradient descent (PGD) [Duchi and Singer, 2009]. We use
the News202 dataset, which contains m = 11, 269 instances,
each of which has n = 20, 302 features (we filter the features
which appear less than 7 times). According to Theorem 1, we
set step sizes in Algorithm 1 as ηt = c1/

√
t and τt = c2/

√
t,

where c1, c2 are some constants. The same step size ηt =
c1/
√
t is also used for GD and PGD. We tune the value of c1

and c2 in a range of {1e−5, 1e−4, . . . , 1e10} and report the
best results based on the objective value.

In Fig. 1, we plot the objective value versus the running
time for λ = 1e−6. We choose this value of λ because it can
produce a low-rank output, and the convergence behavior is
insensitive to λ. As can be seen, SECONE decreases much
faster than GD and PGD. This is as expected as SECONE is
SVD-free and time-efficient, which is also convinced by the
statistics shown in Table 1. As can be seen, each iteration of
SECONE takes much less time than other two methods.

5.2 Sparse and Low-rank Link Prediction
Given the adjacency matrix Y of a graph with 0/1 filled en-
tries, we consider the sparse and low-rank link prediction
problem:

min
A∈Rm×n

∑
ij

max(1− (2Yij−1) ·Aij , 0)+γ‖A‖1 +λ‖A‖∗.

2http://qwone.com/˜jason/20Newsgroups/

Figure 2: Results of sparse and low-rank link prediction

Table 2: Statistics for link prediction
Method c1 or θ c2 T Total CPU time

SECONE-P 1 1e−5 2000 6.43e5
IPD 0.1 50 6.57e5
GD 1 40 6.25e5

Following the setting in [Richard et al., 2012], we perform
experiments on the Facebook100 dataset which contains the
friendship relations between students. We select a single uni-
versity with 41, 554 students and keep the first m = n =
15, 000 users only with the highest degree. We flip 15% of
randomly chosen entries and the goal is to learn a sparse and
low-rank matrix from the noisy adjacency matrix Y .

We compare Algorithm 3 (SECONE-P) with subgradient
descent (GD) and Incremental Proximal Decent (IPD), which
is an iterative algorithm designed for the above problem but
with no theoretical guarantees [Richard et al., 2012]. The
step sizes in SECONE-P and GD are set in the same way as
in Section 5.1. The parameter θ of IPD is searched in the
range of {1e−2, 1e−1, . . . , 1e2}.

In Fig. 2, we plot objective value versus the running time
when λ = 10 and γ = 0.4. As can be seen, SECONE-P
converges much faster than other methods. The tuning of
IPD is somewhat tricky since it does not converge to the op-
timum. The statistics of different methods are shown in Ta-
ble 2. Again, the running time per iteration of SECONE-P is
much smaller than other methods.
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Jérôme Malick. Lifted coordinate descent for learning
with trace-norm regularization. In Proceedings of the
15th International Conference on Artificial Intelligence
and Statistics, volume 22, pages 327–336, 2012.

[Hazan, 2008] Elad Hazan. Sparse approximate solutions to
semidefinite programs. In Proceedings of the 8th Latin
American Conference on Theoretical Informatics, pages
306–316, 2008.

[Hsieh and Olsen, 2014] Cho-Jui Hsieh and Peder A Olsen.
Nuclear norm minimization via active subspace selection.
In Proceedings of The 31st International Conference on
Machine Learning, pages 575–583, 2014.

[Jaggi et al., 2010] Martin Jaggi, Marek Sulovsk, et al. A
simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on
Machine Learning, pages 471–478, 2010.

[Jaggi, 2013] Martin Jaggi. Revisiting frank-wolfe:
Projection-free sparse convex optimization. In Proceed-
ings of the 30th International Conference on Machine
Learning, pages 427–435, 2013.

[Ji and Ye, 2009] Shuiwang Ji and Jieping Ye. An acceler-
ated gradient method for trace norm minimization. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, pages 457–464, 2009.

[Ke and Kanade, 2005] Qifa Ke and Takeo Kanade. Robust
l1 norm factorization in the presence of outliers and miss-
ing data by alternative convex programming. In Proceed-
ings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, volume 1, pages
739–746, 2005.

[Lan, 2012] Guanghui Lan. An optimal method for stochas-
tic composite optimization. Mathematical Programming,
133:365–397, 2012.

[Lin et al., 2014] Qihang Lin, Xi Chen, and Javier Peña. A
sparsity preserving stochastic gradient methods for sparse
regression. Computational Optimization and Applications,
58(2):455–482, 2014.

[Mahdavi et al., 2012] Mehrdad Mahdavi, Tianbao Yang,
Rong Jin, Shenghuo Zhu, and Jinfeng Yi. Stochastic gradi-
ent descent with only one projection. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 503–
511, 2012.

[Nemirovski et al., 1982] Arkadi Nemirovski, David Boriso-
vich Yudin, and E-R Dawson. Problem complexity and
method efficiency in optimization. Wiley-Interscience se-
ries in discrete mathematics. Wiley, 1982.

[Nesterov, 2004] Yurii Nesterov. Introductory lectures on
convex optimization: a basic course, volume 87 of Applied
optimization. Kluwer Academic Publishers, 2004.

[Nesterov, 2013] Yu Nesterov. Gradient methods for mini-
mizing composite functions. Mathematical Programming,
140(1):125–161, 2013.

[Pong et al., 2010] Ting Kei Pong, Paul Tseng, Shuiwang Ji,
and Jieping Ye. Trace norm regularization: Reformula-
tions, algorithms, and multi-task learning. SIAM Journal
on Optimization, 20(6):3465–3489, 2010.

[Rennie and Srebro, 2005] Jasson DM Rennie and Nathan
Srebro. Fast maximum margin matrix factorization for col-
laborative prediction. In Proceedings of the 22nd Interna-
tional Conference on Machine Learning, pages 713–719,
2005.

[Richard et al., 2012] Emile Richard, Pierre-Andre Savalle,
and Nicolas Vayatis. Estimation of simultaneously sparse
and low rank matrices. In Proceedings of the 29th Inter-
national Conference on Machine Learning, pages 1351–
1358, 2012.

[Shalev-Shwartz et al., 2011] Shai Shalev-Shwartz, Alon
Gonen, and Ohad Shamir. Large-scale convex minimiza-
tion with a low-rank constraint. In Proceedings of the 28th
International Conference on Machine Learning, pages
329–336, 2011.

[Signoretto et al., 2013] Marco Signoretto, Volkan Cevher,
and JA Suykens. An svd-free approach to a class of struc-
tured low rank matrix optimization problems with applica-
tion to system identification. In Proceedings of the IEEE
Conference on Decision and Control, 2013.

[Srebro et al., 2005] Nathan Srebro, Jason Rennie, and
Tommi S. Jaakkola. Maximum-margin matrix factoriza-
tion. In Advances in Neural Information Processing Sys-
tems 17, pages 1329–1336, 2005.

[Toh and Yun, 2010] Kim-Chuan Toh and Sangwoon Yun.
An accelerated proximal gradient algorithm for nuclear
norm regularized linear least squares problems. Pacific
Journal of Optimization, 6(615-640):15, 2010.


