

Identifying Helpful Learnwares without Examining the Whole Market Yi Xie, Zhi-Hao Tan, Yuan Jiang, Zhi-Hua Zhou

{xiey, tanzh, jiangy, zhouzh} @lamda.nju.edu.cn

1. Background: Learnware Paradigm

Building high-quality models:

- Complex, time-consuming and expensive: data, computing resources, expertise...
 - \blacktriangleright A heavy burden for ordinary users.
- Difficult to reuse among different users: data privacy concerns, catastrophic forgetting.

Learnware paradigm [Zhou, 2016; Zhou and Tan, 2022]

- Construct a **model market** that manages numerous well-performing models.
- Solve future tasks by leverage these models without having to build models from scratch. **LEARNWARE MARKET**

1) Learnware components

learnware = model \bigcirc + specification \equiv

describe the functionality of the model

- 2) Procedure of learnware paradigm Submitting stage: The learnware market assigns specifications to submitted models. **Deploying stage:** The market helps the user **identify** &
 - reuse helpful models according to the requirement.

Data privacy is preserved in both stages.

Key challenge: how to *identify* helpful models for a specific user task *efficiently* without leaking user *data privacy*?

3) Reduced Kernel Mean Embedding (**RKME**) specification [Zhou and Tan, 2022]

- Sketch the dataset via weighted samples in lacksquareRKHS.
- Capture major distribution information while protecting data privacy.
- Assumption: each learnware is a wellperforming model on its on training data.
- > Identifying a suitable model for user task can be approached by identifying a model whose training distribution is close to the distribution of user task.

2. Motivation

Previous algorithms based on RKME specification [Wu et al., 2023][Zhang et al., 2021] [Tan et al., 2022] [Tan et al., 2023]

- Require examining all learnwares in the market:
 - ≻Computationally unaffordable in large markets.
- Impose strict restrictions on the market:
 - ≻E.g., all learnwares share the same ground-truth labeling function.

This paper: a more efficient and flexible method

- A learnware scoring criterion with fewer restrictions.
- An anchor-based framework only examining only a small portion of the market.

4. Anchor-based Learnware Identification Framework

3. Whether a learnware is helpful?

Question 1: How to judge whether a learnware is potentially helpful based on the limited labeled data of the user?

Case 1: There exists one learnware that can solve user's task.

Solution: Calculate losses on user's data, and choose the learnware with the smallest loss.

Case 2: No single learnware can tackle the user task as a whole, but multiple learnwares can each tackle a part of user's task separately.

Instance-recurrent Assumptions

• The user's distribution is a mixture of multiple key learnwares' distributions

$$D = \sum W D$$

- PAM: a k-medoids algorithm, medoids as anchors. \bullet
- Multi-level clustering is available for very large markets.
- Analyses: helpfulness on user's task: Informally, for any user's task,

- Each key learnware *i* performs well in the corresponding mixture component $\mathcal{L}(P_i, \hat{f}_i, f_t) \leq \epsilon$

Judge

helpful

unhelpful

unhelpful

 $O+^O$

 \triangle

 Δ

Learnwares

Learnware 1

Learnware 2

Learnware 3

RKME Model **Our method:** For learnware $(\tilde{\mu}_i, \hat{f}_i)$, corresponds to user's data $\{x_{tn}, y_{tn}\}_{n=1}^{N_t}$

- Reweight:
 - Reweight the user's samples to simulate learnware's distribution in RKHS
 - Get a weighted dataset $\{\eta_{in}, (\boldsymbol{x}_{tn}, y_{tn})\}_{n=1}^{N_t}$ with RKME defined as $\tilde{\mu}_{t \to i}$
- **Compare:** on this reweighted dataset,

$$h_{i} = U \|\tilde{\mu}_{i} - \tilde{\mu}_{t \to i}\|_{\mathcal{H}} + \sum_{n=1}^{N_{t}} \eta_{in} L(\hat{f}_{i}(\boldsymbol{x}_{tn}), y_{tn})$$

- Judge: $h_i \leq \theta$: helpful; $h_i > \theta$: unhelpful
- Analyses: There exists a good θ , with a high probability, • All key learnwares are considered helpful;

 \rightarrow

 $|help(learnware) - help(anchor)| \leq radius.$ **Deploying stage**:

5. Conclusion

- 1. Propose a novel learnware scoring criterion based on the RKME specification to assess the potential helpfulness of a learnware;
- 2. Design an anchor-based framework to achieve efficient learnware identification by examining only a small portion of learnwares in the market;
- 3. Theoretical guarantees + Experimental verification.

• And all learnwares considered helpful can solve one part of user's task.

5. Experiments

Market construction:

Solution: Reweight & Compare

User

 \triangle

User's dataset

Positive samples

Negative samples

Mislabeled samples

Unconsidered samples

 \bigcirc

 \bigcirc

 \bigtriangleup

 \bigcirc

 \bigtriangleup

 \times

 \bigtriangleup

- 4 real-world datasets that can be naturally divided into several parts;
- Train 15 models on each part: different linear models, LightGBM, and neural networks.

Dataset	Task	#Instance	Split Criterion	#Models	#Users
M5	Regression	46M	Department	1050	10
PFS	Regression	9M	Shop	795	17
PPG-DaLiA	Regression	517K	Activity	675	22
Covtype	Classification	581K	Soil	450	10

Results:

1. Our learnware scoring criterion (Ours-traversal) achieve the best performance;

2. Our anchor method (Ours-anchor) greatly improves efficiency (examine 11.8%, 14.9%,

21.42%, 19.91% learnwares) with very little performance degradation.

	M5		PFS		PPG-DaLiA		Covtype					
	RMSE	Imp.	Time	RMSE	Imp.	Time	MSE	Imp.	Time	Error	Imp.	Time
From-scratch	4.142	1.85%	-	3.081	13.79%	-	19.83	45.43%	-	0.334	50.60%	-
Random	4.085	0.00%	-	3.297	0.00%	-	36.62	0.00%	-	0.683	0.00%	-
RKME-task	3.389	18.27%	7.77	2.798	25.42%	2.35	24.53	33.64%	0.73	0.380	44.05%	0.30
RKME-instance	3.586	13.72%	137.57	2.931	14.56%	277.10	22.40	38.51%	201.42	0.240	65.00%	21.33
Validate	3.266	21.12%	4.09	2.671	29.46%	3.34	14.70	59.87%	10.07	0.245	64.01%	2.43
Ours-traversal	3.154	23.80%	10.61	2.609	32.48%	8.27	13.29	63.71%	11.35	0.222	67.67%	4.94
Ours-anchor	3.148	23.80%	1.13	2.616	32.07%	1.37	14.03	61.71%	2.57	0.244	64.45%	1.12