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1. Background: Learnware Paradigm

Building high-quality models: 1) Learnware components Key challenge: how to identify helpful models
. Comple.x, time-consuming apd expensive: data, learnware = model @ + specification (= for a specific user task efficiently without
computing resources, expertise. .. leaking user data privacy?
» A heavy burden for ordinary users. describe the functionality of the model .
privacy concerns, catastrophic forgetting. Submitting stage: The learnware market assigns (RKME) specification [Zhou and Tan, 2022]
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. my data fo \ : 217 while protecting data privacy.
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% ' . — P ok J e performing model on its on training data.
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2. Motivation

3. Whether a learnware is helpful?

Previous algorithms based on RKME specification
[Wu et al., 2023][Zhang et al., 2021] [Tan et al., 2022] [Tan et al., 2023]

* Require examining all learnwares 1n the market:
» Computationally unaffordable in large markets.
* Impose strict restrictions on the market:
»E.g., all learnwares share the same ground-truth labeling function.

This paper: a more efficient and flexible method

* A learnware scoring criterion with fewer restrictions.

* An anchor-based framework only examining only a small
portion of the market.

4. Anchor-based Learnware Identification Framework

Question 2: how to 1dentify helpful learnwares efficiently?
* Examining the whole market: No!

* Uploading user’s data: No!
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Scores 1. Market sends anchor
\ learnwares to user;

esS : 2. User tests anchor learnwares
learnwal |
He\pfu\ ; and returns scores to market;

3. Market 1dentifies helpful
learnwares based on scores.

Submitting stage: Cluster of learnwares
* A helpful anchor + a good cluster «» The whole cluster may
be helpful
* Define a dissimilarity
dij =U-d(P, P;) + min{L(P, fi, ), L(P;, fi, 1))
and then transform to the RKME version.
* C(Cluster algorithm:
 PAM: a k-medoids algorithm, medoids as anchors.
* Multi-level clustering 1s available for very large markets.
* Analyses: helpfulness on user’s task:
Informally, for any user’s task,
|help(learnware)- help(anchor)| < radius.
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5. Conclusion

1. Propose a novel learnware scoring criterion based on the
RKME specification to assess the potential helpfulness of a
learnware;

2. Design an anchor-based framework to achieve efficient
learnware 1dentification by examining only a small portion of
learnwares 1n the market;

3. Theoretical guarantees + Experimental verification.

._+i% Unconsidered samples
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Question 1: How to judge whether a learnware 1s potentially
helpful based on the limited labeled data of the user?

Case 1: There exists one learnware that can solve user’s task.
Solution: Calculate losses on user’s data, and choose the learnware with the smallest loss.
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Case 2: No single learnware can tackle the user task as a whole, but multiple learnwares can
each tackle a part of user’s task separately.

Instance-recurrent Assumptions

* The user’s distribution 1s a mixture of multiple key learnwares’ distributions

P, = z w; P;
i

* Each key learnware i performs well in the corresponding mixture component
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Solution: Reweight & Compare l RKME Model
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* Reweight the user’s samples to simulate
learnware’s distribution in RKHS
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User’s dataset

» Get a weighted dataset {n;,, (X¢,, ytn)}gtzl
with RKME defined as ji;_,;

O  Positive samples * Compare: on this reweighted dataset,
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Judge: h; < 0: helpful; h; > 6: unhelpful

Learnware 3 unhelpful

Analyses: There exists a good 8, with a high probability,
* All key learnwares are considered helpful;
* And all learnwares considered helpful can solve one part of user’s task.

S. Experiments

Market construction:
* 4 real-world datasets that can be naturally divided into several parts;
* Train 15 models on each part: different linear models, LightGBM, and neural networks.

Dataset Task #Instance Split Criterion #Models #Users
M35 Regression 46M Department 1050 10
PES Regression oM Shop 795 17

PPG-DalLiA  Regression 517K Activity 675 22

Covtype  Classification 581K Soil 450 10

Results:
1.Our learnware scoring criterion (Ours-traversal) achieve the best performance;

2.0ur anchor method (Ours-anchor) greatly improves efficiency (examine 11.8%, 14.9%,
21.42%, 19.91% learnwares) with very little performance degradation.

M35 PES PPG-DaLiA Covtype

RMSE  Imp. Time | RMSE  Imp. Time | MSE Imp. Time | Error  Imp. Time

From-scratch 4.142  1.85% - 3.081 13.79% - 19.83 45.43% - 0.334 50.60% -

Random 4.085  0.00% - 3.297  0.00% - 36.62 0.00% - 0.683 0.00% -
RKME-task 3.380 18.27%  1.71 27798 2542%  2.35 | 2453 33.64% 0.73 | 0.380 44.05% 0.30
RKME-instance | 3.586 13.72% 137.57 | 2.931 14.56% 277.10 | 22.40 38.51% 201.42 | 0.240 65.00% 21.33
Validate 3.266 21.12%  4.09 2671 29.46%  3.34 | 14770 59.87% 10.07 | 0.245 64.01% 2.43
Ours-traversal | 3.154 23.80% 10.61 | 2.609 32.48% 827 |13.29 63.71% 11.35 | 0.222 67.67% 4.94
Ours—anchor 3.148 23.80% 1.13 2.616 32.07% 137 | 14.03 61.71% 2.57 |0.244 64.45% 1.12
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