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Reinforcement Learning (RL)
• Most RL methods aim to obtain a single optimal policy
• Some complex scenarios need a set of diverse policies

– Exploration
– Policy ensemble
– Model/environment generation
– Few-shot adaption

How to efficiently obtain a set of high-quality policies with diverse 
behaviors is a challenging problem in RL



• Evolutionary Algorithm

• Key properties
– Population-based search
– Only evaluation is required

• Application:  complex optimization problems
– Black-box optimization problems
– Multi-objective problems

Background
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• Quality-diversity
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Background - QD
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Update archive



• Policy gradient assisted MAP-Elites (PGA-ME) [GECCO’21 Best paper]

– Using PG to update the solutions  
• Differentiable Quality-diversity (DQD) [NeurIPS’21 Oral, < 2.4%]

– Using differentiable behavior descriptor 𝑏𝑏

Background - QD

6

Reproduction
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The inefficient selection
• Uniform selection 
• Biased selection
• Pareto-based selection
• …
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The inefficient selection
• Uniform selection 
• Biased selection
• Pareto-based selection

😄😄



Method - motivation

9

The inefficient selection
• Uniform selection 
• Biased selection
• Pareto-based selection

😄😄 😰😰

How to achieve efficient selection?



Method
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Clustering-based selection
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• Multi-modal

• Single-modal
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• Adaptive 𝜆𝜆
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• Adaptive 𝜆𝜆
• Compared with direct optimization



Experiment – ablation studies
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• Adaptive 𝜆𝜆
• Compared with direct optimization
• Clustering algorithm
• Number 𝑇𝑇 ′ of updating iterations 
• Population size 𝐾𝐾
• Archive size 𝑙𝑙

More results are shown in the Appendix
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Conclusion
• QD is an interesting and attractive research area
• We proposed a “Simple but efficient” selection method for QD
Future work
• Application of QD

– Human-AI coordination
– Environment generation

Thanks you!

xuek@lamda.nju.edu.cn

AI agent Unseen human

Our code can be found at:
www.lamda.nju.edu.cn/qianc/code-EDOCS.html

http://www.lamda.nju.edu.cn/qianc/code-EDOCS.html

	Evolutionary Diversity Optimization with Clustering-based Selection for Reinforcement Learning
	Introduction
	Background
	Background
	Background - QD
	Background - QD
	Method - motivation
	Method - motivation
	Method - motivation
	Method
	Method
	Experiment
	Experiment
	Experiment – ablation studies
	Experiment – ablation studies
	Experiment – ablation studies
	Discussion

