

Evolutionary Gradient Descent for Non-convex Optimization

Ke Xue¹, Chao Qian^{1*}, Ling Xu², Xudong Fei². {xuek, qianc}@lamda.nju.edu.cn ¹LAMDA Group, Nanjing University, China ²Huawei Technologies, China

Background and Motivation

Non-convex optimization

- Popular in many real-world tasks
- Hard to solve
- First order stationary point is global minima in convex optimization.
- However, it maybe saddle point in non-convex optimization.

How to efficiently escape saddle points and find second order stationary point is the key issue in non-convex optimization.

Theoretical Analysis

Evolutionary Algorithms

- Global convergence
- Low efficiency, especially in high dimension

Gradient Descent

- Perform well in high dimension and large scale tasks
- Converge to local optima generally

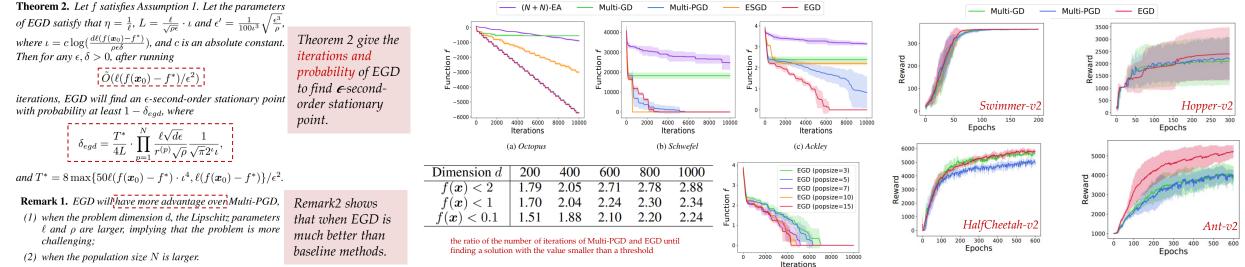
EAs and GD each has their advantages and disadvantages. Can we get better algorithm for non-convex optimization by combining the merits of EAs and GD?

Algorithm 2 EGD algorithm	Algorithm 3 Mutation and Selection
Parameter: learning rate η , population size N , mutation strength $\{r^{(p)}\}_{p=1}^{N}$, time interval L for mutation, tolerance ϵ, ϵ' , number T of iterations Process: 1: Initialize the population $\{x_0^{(p)}\}_{p=1}^{N}$, set $i = i_{mutate} = 0$, $update^{(p)} = 1$ for $p \in [N]$; 2: $\mathbf{vhile} i \leq T \mathbf{do}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3: for $p = 1 : N$ do 4: if $update^{(p)} = 1$ then 5: if $\ \nabla f(\boldsymbol{x}_i^{(p)})\ \le \epsilon$ and $i - i_{mutate} > L$ then 6: $update^{(p)} = 0$ Gradient descent update or 7: else wait for mutation 8: $\boldsymbol{x}_{i+1}^{(p)} \leftarrow \boldsymbol{x}_i^{(p)} - \eta \nabla f(\boldsymbol{x}_i^{(p)})$ 9: end if	8:1 $escape^{(p)} = 1$ Mutation and update for L 9:1 $else$ iterations 10:1 $escape^{(p)} = 0, x_{i+1+L}^{(p)} \leftarrow x_i^{(p)}$ 11:1 end if 12:2 end for 13: $f_{mean} = \frac{1}{N} \sum_{p=1}^{N} f(x_{i+1+L}^{(p)});$ 14: $x_{best} = \arg \min_{x \in \{x_{i+1+L}^{(p)}\}_{p=1}^{N}} f(x);$
10: i end if 11: end for 12: if $\forall p \in [N]$: $update^{(p)} = 0$ then 13: Apply Algorithm 3 for mutation and selection; 14: Set $update^{(p)} = 1$ for $p \in [N]$; 15: $i \leftarrow i + L$ 16: end if	15: for $p = 1$: N do 16: if $escape^{(p)} = 0$ and $f(\boldsymbol{x}_{i+1+L}^{(p)}) \ge f_{\text{mean}}$ then 17: $\boldsymbol{x}_{i+1+L}^{(p)} \leftarrow \boldsymbol{x}_{\text{best}}$ Selection 18: end if 19: end for

----- (N + N)-EA — Multi-GD — Multi-PGD ESGD — EGD Multi-PGD EGD Multi-GD 350 40000 -3000 -1000✤ 30000 2500 -2000 -3000 2000 0000 Ction unction Reward ag 1500 بر –4000 100 10000 500 -5000 Swimmer-v2 -6000 100 150 2000 4000 6000 8000 1000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 Epochs Iterations Iterations Iterations (b) Schwefel (a) Octopus (c) Ackley 6000-5000 5000 Dimension d200 400 600 800 1000 EGD (popsize=3) Q 4000 t 86ward 3000 EGD (popsize=5) f(x) < 21.79 2.05 2.71 2.78 2.88 EGD (popsize=7) 3000 · 2000 Be EGD (popsize=10) $f(\boldsymbol{x}) < 1$ 1.70 2.24 2.30 2.34 2.04 EGD (popsize=15) $f(\boldsymbol{x}) < 0.1$ 1.51 2.20 2.24 200 1.88 2.10HalfCheetah-v2 300 400 the ratio of the number of iterations of Multi-PGD and EGD until 500 200 300 finding a solution with the value smaller than a threshold Epochs

Experiment

17: $i \leftarrow i + 1$ 18: end while



EGD Algorithm