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Non-convex optimization
• popular in many real-world tasks
• harder to solve, contrast to convex optimization.

– First order stationary point is global minima in convex 
optimization.

– However, it maybe saddle point in non-convex 
optimization.

How to efficiently escape saddle points and find 
second order stationary point is the key issue in non-

convex optimization.
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Evolutionary Algorithms
• Global convergence
• Low efficiency, 

especially in high 
dimension

Gradient Descent
• Perform well in high 

dimension and large 
scale tasks

• Converge to local 
optima generally

EA and GD each has its advantages and disadvantages.
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A natural question: 
Can we get better algorithm for non-convex optimization 

by combining the merits of  EAs and GD?

Previous work:
• only combine few mechanism of EAs and GD. 
• no theoretical guarantee on the convergence rate.

Our work:
• gradient + mutation + population + selection
• show the superior performance from both 

theoretical and experimental results.



PGD algorithm
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Gradient descent 

Mutation



EGD algorithm
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Gradient descent update or 
wait for mutation

Mutation and selection



EGD algorithm
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Mutation and update for 𝑳𝑳
iterations

Selection



Theoretical analysis
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Theoretical analysis
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Theorem 1 give the iterations and probability of PGD to 
find 𝝐𝝐-second-order stationary point



Theoretical analysis
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Theorem 2 give the 
iterations and probability
of EGD to find 𝝐𝝐-second-

order stationary point
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Experiments
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Experiments 
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Swimmer-v2 Hopper-v2

HalfCheetah-v2 Ant-v2

Swimmer-v2 Hopper-v2



Conclusion and future work
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• We propose a new algorithm EGD for non-convex 
optimization.

– In theory, EGD can converge to a second-order stationary 
point more efficiently than previous algorithms. 

– In experiments, EGD shows the superior performance on 
non-convex optimization tasks, including synthetic 
benchmark functions and RL tasks.

• Future work.
– Incorporate crossover operators into EGD.
– Diversity of EGD.
– Combine with advanced variants of GD.
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