

Evolutionary Gradient Descent for Non-convex Optimization

Ke Xue¹,Chao Qian^{1*}, Ling Xu², Xudong Fei² Email: {xuek, qianc}@lamda.nju.edu.cn

¹LAMDA Group, Nanjing University, China ²Huawei Technologies, China

Outline

- Background
- Motivation
- EGD algorithm
- Theoretical analysis
- Experiments
- Conclusion

Background

Non-convex optimization

- popular in many real-world tasks
- harder to solve, contrast to convex optimization.
 - First order stationary point is global minima in convex optimization.
 - However, it maybe saddle point in non-convex optimization.

How to efficiently escape saddle points and find second order stationary point is the key issue in nonconvex optimization.

Background

Evolutionary Algorithms

- Global convergence
- Low efficiency, especially in high dimension

Gradient Descent

- Perform well in high dimension and large scale tasks
- Converge to local optima generally

EA and GD each has its advantages and disadvantages.

Motivation

A natural question:

Can we get better algorithm for non-convex optimization by combining the merits of EAs and GD?

Previous work:

- only combine few mechanism of EAs and GD.
- no theoretical guarantee on the convergence rate.

Our work:

- gradient + mutation + population + selection
- show the superior performance from both theoretical and experimental results.

PGD algorithm

Algorithm 1 PGD algorithm

Parameter: learning rate η , mutation strength r, time interval L for mutation, tolerance ϵ , number T of iterations **Process**:

EGD algorithm

Algorithm 2 EGD algorithm

Parameter: learning rate η , population size N, mutation strength $\{r^{(p)}\}_{p=1}^{N}$, time interval L for mutation, tolerance ϵ, ϵ' , number T of iterations **Process**: 1: Initialize the population $\{\boldsymbol{x}_{0}^{(p)}\}_{p=1}^{N}$, set $i = i_{\text{mutate}} = 0$, $update^{(p)} = 1$ for $p \in [N]$; 2: while $i \leq T$ do for p = 1 : N do 3: if $update^{(p)} = 1$ then 4: if $\|\nabla f(\boldsymbol{x}_i^{(p)})\| \leq \epsilon$ and $i - i_{\text{mutate}} > L$ then 5: Gradient descent update or $update^{(p)} = 0$ 6: wait for mutation 7: else $oldsymbol{x}_{i+1}^{(p)} \leftarrow oldsymbol{x}_{i}^{(p)} - \eta
abla f(oldsymbol{x}_{i}^{(p)})$ 8: 9: end if end if 10: end for 11: if $\forall p \in [N] : update^{(p)} = 0$ then 12: Apply Algorithm 3 for mutation and selection; 13: Set $update^{(p)} = 1$ for $p \in [N]$; 14: **Mutation and selection** 15: $i \leftarrow i + L$ end if 16: 17: $i \leftarrow i + 1$ 18: end while

EGD algorithm

Algorithm 3 Mutation and Selection

1: for p = 1 : N do $\boldsymbol{x}_{i+1}^{(p)} \leftarrow \boldsymbol{x}_{i}^{(p)} + \boldsymbol{\xi}_{i}^{(p)}, \boldsymbol{\xi}_{i}^{(p)} \sim \text{Uniform}(B(\boldsymbol{0}, r^{(p)}));$ 2: 3: 4: $i_{\text{mutate}} \leftarrow i;$ for j = (i + 1) : (i + L) do Mutation and update for *L* $oldsymbol{x}_{i+1}^{(p)} \leftarrow oldsymbol{x}_i^{(p)} - \eta
abla f(oldsymbol{x}_i^{(p)})$ 5: iterations 6: end for if $f(\boldsymbol{x}_{i+1+L}^{(p)}) + \epsilon' < f(\boldsymbol{x}_{i}^{(p)})$ then 7: $escape^{(p)} = 1$ 8: 9: else $escape^{(p)} = 0, \boldsymbol{x}_{i+1+L}^{(p)} \leftarrow \boldsymbol{x}_{i}^{(p)}$ 10: end if 11: 12: **end for** 13: $f_{\text{mean}} = \frac{1}{N} \sum_{p=1}^{N} f(\boldsymbol{x}_{i+1+L}^{(p)});$ 14: $\boldsymbol{x}_{\text{best}} = \arg\min_{\boldsymbol{x} \in \{\boldsymbol{x}^{(p)}_{m}, \dots, \}^{N}_{m}} f(\boldsymbol{x});$ 15: for p = 1 : N do if $escape^{(p)} = 0$ and $f(\boldsymbol{x}_{i+1+L}^{(p)}) \ge f_{\text{mean}}$ then 16: Selection 17: $x_{i+1+L}^{(p)} \leftarrow x_{\text{best}}$ end i 18: 19: end for

Theoretical analysis

Assumption 1. The function f is ℓ -gradient Lipschitz and ρ -Hessian Lipschitz.

Definition 1. A differentiable function f is ℓ -gradient Lipschitz if

 $\forall \boldsymbol{x}, \boldsymbol{y} : \|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le \ell \cdot \|\boldsymbol{x} - \boldsymbol{y}\|.$

A twice-differentiable function f is ρ -Hessian Lipschitz if

 $\forall \boldsymbol{x}, \boldsymbol{y} : \| \nabla^2 f(\boldsymbol{x}) - \nabla^2 f(\boldsymbol{y}) \| \le \rho \cdot \| \boldsymbol{x} - \boldsymbol{y} \|.$

Definition 3. For a twice-differentiable function f, x is a second-order stationary point if

 $\|\nabla f(\boldsymbol{x})\| = 0$, and $\lambda_{\min}(\nabla^2 f(\boldsymbol{x})) \ge 0$.

For a ρ -Hessian Lipschitz function f, x is an ϵ -second-order stationary point if

 $\|\nabla f(\boldsymbol{x})\| \leq \epsilon, and \lambda_{\min}(\nabla^2 f(\boldsymbol{x})) \geq -\sqrt{\rho\epsilon},$ where $\epsilon \geq 0.$

Theoretical analysis

Theorem 1. [Jin et al., 2019] Let f satisfy Assumption 1. Let the parameters of PGD satisfy that $\eta = \frac{1}{\ell}$, $r = \frac{\epsilon}{400\iota^3}$ and $L = \frac{\ell}{\sqrt{\rho\epsilon}} \cdot \iota$, where $\iota = c \log(\frac{d\ell(f(\boldsymbol{x}_0) - f^*)}{\rho\epsilon\delta})$, and c is an absolute constant. Then for any $\epsilon, \delta > 0$, after running $\tilde{O}(\ell(f(\boldsymbol{x}_0) - f^*)/\epsilon^2)$

iterations, PGD will find an ϵ *-second-order stationary point with probability at least* $1 - \delta_{pgd}$ *, where*

$$\delta_{pgd} = \frac{T^*}{4L} \cdot \frac{\ell\sqrt{d\epsilon}}{r\sqrt{\rho}} \frac{1}{\sqrt{\pi}2^{\iota}\iota} \leq \delta,$$

and $T^* = 8 \max\{50\ell(f(\boldsymbol{x}_0) - f^*) \cdot \iota^4, \ell(f(\boldsymbol{x}_0) - f^*)\}/\epsilon^2.$

Theorem 1 give the iterations and probability of PGD to find ϵ -second-order stationary point

Theoretical analysis

Theorem 2. Let f satisfies Assumption 1. Let the parameters of EGD satisfy that $\eta = \frac{1}{\ell}$, $L = \frac{\ell}{\sqrt{\rho\epsilon}} \cdot \iota$ and $\epsilon' = \frac{1}{100\iota^3} \sqrt{\frac{\epsilon^3}{\rho}}$, where $\iota = c \log(\frac{d\ell(f(\boldsymbol{x}_0) - f^*)}{\rho\epsilon\delta})$, and c is an absolute constant. Then for any $\epsilon, \delta > 0$, after running $\tilde{O}(\ell(f(\boldsymbol{x}_0) - f^*)/\epsilon^2)$ Theorem 2 give the iterations and probability iterations. EGD will find an ϵ -second-order stationary point of EGD to find ϵ -second-

iterations, EGD will find an ϵ -second-order stationary point of EGD to find ϵ -secondwith probability at least $1 - \delta_{egd}$, where order stationary point

$$\delta_{egd} = \frac{T^*}{4L} \cdot \prod_{p=1}^N \frac{\ell \sqrt{d\epsilon}}{r^{(p)} \sqrt{\rho}} \frac{1}{\sqrt{\pi} 2^{\iota} \iota},$$

and $T^* = 8 \max\{50\ell(f(\boldsymbol{x}_0) - f^*) \cdot \iota^4, \ell(f(\boldsymbol{x}_0) - f^*)\}/\epsilon^2$.

Remark 1. EGD will have more advantage over Multi-PGD,

- (1) when the problem dimension d, the Lipschitz parameters ℓ and ρ are larger, implying that the problem is more challenging;
- (2) when the population size N is larger.

Experiments

Experiments

Dimension d	200	400	600	800	1000
$f(\boldsymbol{x}) < 2$	1.79	2.05	2.71	2.78	2.88
$f(oldsymbol{x}) < 1$	1.70	2.04	2.24	2.30	2.34
$f(oldsymbol{x}) < 0.1$	1.51	1.88	2.10	2.20	2.24

Experiments

14

Conclusion and future work

- We propose a new algorithm EGD for non-convex optimization.
 - In theory, EGD can converge to a second-order stationary point more efficiently than previous algorithms.
 - In experiments, EGD shows the superior performance on non-convex optimization tasks, including synthetic benchmark functions and RL tasks.
- Future work.
 - Incorporate crossover operators into EGD.
 - Diversity of EGD.
 - Combine with advanced variants of GD.

Thank you!

Ke Xue¹, Chao Qian^{1*}, Ling Xu², Xudong Fei² Email: {xuek, qianc}@lamda.nju.edu.cn

¹LAMDA Group, Nanjing University, China ²Huawei Technologies, China