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Dynamic Algorithm Configuration

Dynamic algorithm configuration (DAC) aims at DAC has been successfully used to adjust:
dynamically adjusting the contfiguration of an 1) Learning rate of DNN optimizer
algorithm during its optimization process 2) Step-size control of CMA-ES

o ,, — i 3) Heuristic selection in Al planning
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However, due to the increasing complexity of
The objective of DAC is to find policy real-world problem modeling (e.g., from single
maximizing the total return: to multi-objective), there are many algorithms
whose performance rests on multiple types of
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Multi-objective optimization

2 £ worse MOEA/D is a representative and popular multi-
Sz better objective evolutionary algorithm, converting a
AN £ bettor multi-objective optimization problem into several
o o loca optimum R, single-objective optimization sub-problems
. — x >fi
Single-objective Multi-objective It has four different types of hyperparameters

How to dynamically adjust a complex algorithm such as MOEA/D?
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optimization (MaMo) benchmark

Benchmark Heterogeneous # of agents  Stochastic ~ Application scenarios We inve Stl g ate the f OH OWin g resear Ch qu e Stl ONS
Matrix Games [5] X 2 Low Game R . . .
MPE [71] S 2-3 Low Game (RQs) in our experiment:
MA A7) 2-1000 L G .
SMieSt[[,.x]] § 530 Co G RQ1: How does MA-DAC perform compared with
Active Voltage Control [B¥] X 3-38 Low Control .
MaMo (Ours) v 2-4 High Optimization the baS ehne?

RQ2: How is the generalization ability of MA-DAC?

We hope our new MaMo benchmark can offer a good = RQ3: How do the different parts of MA-DAC affect
supplement that could benefit the MARL community  the performance?

Our code is available at Experimental results show the
https://github.com/lamda-bbo/madac superior performance of MA-DAC
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