

UNIVERSITYOF BIRMINGHAM

Multi-agent Dynamic Algorithm Configuration

Ke Xue*, Jiacheng Xu*, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, and Yang Yu (*Equal contribution, *Corresponding author) Email: {xuek, qianc}@lamda.nju.edu.cn

Dynamic Algorithm Configuration

Dynamic algorithm configuration (DAC) aims at dynamically adjusting the configuration of an algorithm during its optimization process

DAC has been successfully used to adjust: 1) Learning rate of DNN optimizer 2) Step-size control of CMA-ES 3) Heuristic selection in AI planning

The task of DAC typically focuses on a single

	1	
Instance	Space \mathcal{I}	$(s_t, r_t, \lambda_t, s_{t+1})$

[Eimer et al., IJCAI'21]

 $r_i(s_t, \lambda_t)$

The objective of DAC is to find policy maximizing the total return:

$$\pi^* \in \underset{\pi \in \Pi}{\operatorname{arg\,min}} \int_{i \in \mathcal{I}} p(i)c(\pi, i) \mathrm{d}i$$

type of hyperparameter

However, due to the increasing complexity of real-world problem modeling (e.g., from single to multi-objective), there are many algorithms whose performance rests on multiple types of hyperparameters, which are hard to tune

Multi-objective optimization

MOEA/D is a representative and popular multiobjective evolutionary algorithm, converting a multi-objective optimization problem into several single-objective optimization sub-problems

It has four different types of hyperparameters

How to dynamically adjust a complex algorithm such as MOEA/D?

Multi-agent DAC

We propose **MA-DAC**, modeling the configuration of a complex algorithm with multiple types of hyperparameters as a cooperative multi-agent problem, where one agent works to handle one type of hyperparameter

We obtain Multi-agent RL for Multi-objective optimization (MaMo) benchmark

Benchmark	Heterogeneous	# of agents	Stochastic	Application scenarios
Matrix Games [5]	×	2	Low	Game
MPE [20]	×	2-3	Low	Game
MAgent [42]	×	2-1000	Low	Game
SMAC [28]	\checkmark	2-30	Low	Game
Active Voltage Control [38]	×	3-38	Low	Control
MaMo (Ours)	\checkmark	2-4	High	Optimization

We hope our new MaMo benchmark can offer a good supplement that could benefit the MARL community

> Our code is available at https://github.com/lamda-bbo/madac

We investigate the following research questions (RQs) in our experiment: RQ1: How does MA-DAC perform compared with the baseline?

RQ2: How is the generalization ability of MA-DAC? RQ3: How do the different parts of MA-DAC affect the performance?

> Experimental results show the superior performance of MA-DAC