

Multi-agent Dynamic Algorithm Configuration

<u>Ke Xue¹</u>*, Jiacheng Xu¹*, Lei Yuan¹, Miqing Li², Chao Qian¹⁺, Zongzhang Zhang¹, Yang Yu¹ *NeurIPS'22* Email: {xuek, qianc}@lamda.nju.edu.cn Nanjing University¹ University of Birmingham²

Deep learning

engineering features

SIFT (Lowe et. al. 1999) HOG (Dalal et. al. 2005)

learning features

LeNet (LeCun et. al. 1998) AlexNet (Krizhevsky et. al. 2012)

Meta learning

engineering to learn

SGD (Robbins et. al. 1951, Bottou 2010) Autoencoders (Hinton et. al. 2006)

learning to learn

Learning To Learn (Hochreiter et. al. 2001) Learned Optimizers (Andrychowicz et. al. 2016, Li et. al. 2016, Wichrowska et. al. 2017, Metz et. al. 2018, 2019)

Learned Learning Algorithms a talk by Luke Metz

Dynamic algorithm configuration (DAC) is a new trend in Auto-ML.

Algorithm Configuration (AC)

Dynamic Algorithm Configuration (DAC)

https://www.automl.org/automated-algorithm-design/dac/

DAC has been found to outperform static methods on many tasks

- learning rate tuning of deep neural networks
- step-size adaptation of evolution strategies
- heuristic selection of AI planning

These tasks typically focus on a single type of hyperparameter

However, due to the increasing complexity of real-world problem modeling, there are many algorithms whose performance rests on *multiple types of hyperparameters*.

Multi-objective optimization problems (MOPs)

Neural architecture search

- Max: accuracy
- Min: computation cost

Algorithm 1: MOEA/D

Parameters: Population size N, number T of iterations 1 Initialize a population $\{x^{(i)}\}_{i=1}^N$ of solutions, and a corresponding set $W = \{w^{(i)}\}_{i=1}^N$ of weight vectors ; **2** t = 0; 3 while t < T do for i = 1 : N do Randomly select parent solutions from the neighborhood of $w^{(i)}$, denoted as $\Theta^{w^{(i)}}$; 5 Use crossover and mutation operators to generate an offspring solution $x^{\prime(i)}$; Evaluate the offspring solution to obtain $F(x'^{(i)})$; 7 Update the ideal point z^* . That is, for any $j \in \{1, 2, ..., m\}$, if $f_j(x'^{(i)}) < z_j^*$, then 8 $z_{i}^{*} = f_{i}(x^{\prime(i)});$ Update the corresponding solution of each sub-problem within $\Theta^{w^{(i)}}$ by $x'^{(i)}$. That is, 9 for each $w^{(j)} \in \Theta^{w^{(i)}}$, if $g(x'^{(i)} \mid w^{(j)}, z^*) < g(x^{(j)} \mid w^{(j)}, z^*)$, then $x^{(j)} = x'^{(i)}$ end 10 Complex and hard to tune t = t + 111 12 end

The limitations and further research in a recent paper [Adriaensen et al., JAIR'23]

Automated Dynamic Algorithm Configuration

Steven Adriaensen André Biedenkapp Gresa Shala Noor Awad University of Freiburg, Machine Learning Lab

ADRIAENS@CS,UNI-FREIBURG.DE BIEDENKA@CS,UNI-FREIBURG.DE SHALAG@CS,UNI-FREIBURG.DE AWAD@CS,UNI-FREIBURG.DE

Theresa Eimer EIMER@TNT.U Marius Lindauer LINDAUER@TNT.U Leibniz University Hannover, Institute for Information Processing

EIMER@TNT.UNI-HANNOVER.DE LINDAUER@TNT.UNI-HANNOVER.DE

Frank Hutter

FH@CS.UNI-FREIBURG.DE

University of Freiburg, Machine Learning Lab & Bosch Center for Artificial Intelligence

Frank Hutter	Following	Cited by		VIEWAL
Professor of Computer Science, <u>University of Freiburg</u> , Germany Verified email at cs.uni-freiburg.de - Homepage			AI	Srice 201
AutoML Neural Architecture Search Meta-Learning Deep Learning	Machine Learning	Citations In-index (10-index	38773 75 154	3407 6 15
TITLE	CITED BY YEAR			1100
Decoupled weight decay regularization	5552 2017		-	025
addiw proprint. adXiv: 1713.05101				-550
Sgdr: Stochastic gradient descent with warm restarts Lostichios F Hutter arXiv preprint arXiv 1008.03803	3815 2016			275
Sequential model-based optimization for general algorithm configuration E traffic: Hit Hole, K Lepton Brown International conference on learning and intelligent optimization, 507-523.	2472 2011	2016 2016 2017 2	1997 AUA 4604 AUA	1 2022

7.2 Limitations and Further Research

While these case studies and other previous applications provide a "proof of concept" for automated DAC, we point out that much remains to be done to unlock its full potential, and we hope that this work may serve as a stepping stone for further exploring this promising line of research. In what remains, we will discuss some of the limitations of contemporary work and provide specific directions for future research.

Jointly configuring many parameters: While static approaches are capable of jointly configuring hundreds of parameters, the configuration space in contemporary DAC is typically much smaller, often considering only a single parameter. While the configuration space is smaller, the candidate solution space (i.e., the dynamic configuration policy space) grows exponentially with the number of reconfiguration points, in the worst case, and is thus typically drastically larger than static configuration policy spaces. Although modern techniques from reinforcement learning scale much better than ever before, we still know too little about the internal structure of DAC problems to handle this exploding space of possible policies. For example, not much is known regarding interaction effects of parameters as in static AC (Hutter et al., 2014; Wang et al., 2016), learning several independent policies might be a way forward.

Solution How to dynamically adjust a complex algorithm with many hyperparameters?

MA-DAC

The configuration of a complex algorithm

Cooperative multi-agent problem

one agent works to handle one type of hyperparameter

MA-DAC

State

- *Accessibility*. The state should be accessible in each step.
- *Representability*. The state should reflect the information in the optimization process.
- *Generalizability*. The learned policy is expected to generalize to inner and even outer classes of instances.

Index	Parts of state	Feature	Notes
0	1	1/m	<i>m</i> : Number of objectives
1	1	1/D	D: Number of variables
2	2	t/T	Computational budget that has been used
3	2	$N_{ m stag}/T$	Stagnant count ratio
4	3	HV_t	Hypervolume value
5	3	$NDRatio_t$	Ratio of non-dominated solutions
6	3	Dist_t	Average distance
7	3	$HV_t - HV_{t-1}$	Change of HV between steps t and $t - 1$
8	3	$NDRatio_t - NDRatio_{t-1}$	Change of NDRatio between steps t and $t - 1$
9	3	$\operatorname{Dist}_t - \operatorname{Dist}_{t-1}$	Change of Dist between steps t and $t - 1$
10	3	Mean(List(HV, t, 5))	Mean of HV in the last 5 steps
11	3	Mean(List(NDRatio, t, 5))	Mean of NDRatio in the last 5 steps
12	3	Mean(List(Dist, t, 5))	Mean of Dist in the last 5 steps
13	3	Std(List(HV, t, 5))	Standard deviation of HV in the last 5 steps
14	3	Std(List(NDRatio, t, 5))	Standard deviation of NDRatio in the last 5 steps
15	3	$\operatorname{Std}(\operatorname{List}(\operatorname{Dist},t,5))$	Standard deviation of Dist in the last 5 steps
16	3	Mean(List(HV, t, t))	Mean of HV in all the steps so far
17	3	Mean(List(NDRatio, t, t))	Mean of NDRatio in all the steps so far
18	3	Mean(List(Dist, t, t))	Mean of Dist in all the steps so far
19	3	Std(List(HV, t, t))	Standard deviation of HV in all the steps so far
20	3	Std(List(NDRatio, t, t))	Standard deviation of NDRatio in all the steps so far
21	3	Std(List(Dist, t, t))	Standard deviation of Dist in all the steps so far

MA-DAC

Action: the value of the hyperparameter

Reward:

Transition: one step in RL is one generation in MOEA/D

MA-DAC – benchmark

We obtain the Multi-agent RL for Multi-objective optimization (MaMo) benchmark

Benchmark	Heterogeneous	# of agents	Stochastic	Application scenarios
Matrix Games [5]	×	2	Low	Game
MPE [20]	×	2-3	Low	Game
MAgent [42]	×	2-1000	Low	Game
SMAC [28]	\checkmark	2-30	Low	Game
Active Voltage Control [38]	×	3-38	Low	Control
MaMo (Ours)	\checkmark	2-4	High	Optimization

Table 1: Overview of MARL benchmarks and their properties.

We hope it can benefit the MARL community

Experiment

We investigate the following three research questions (RQs):

- RQ1: How does MA-DAC *perform* compared with the baseline and other tuning algorithms?
- RQ2: How is the *generalization ability* of MA-DAC?
- RQ3: How do the *different parts* of MA-DAC affect the performance?

Problem	M	MOEA/D	DQN	MA-UCB	MA-DAC
DTI 72	3	4.605E-02(3.54E-04) - 2.006E-01(1.55E-02)	4.628E-02(2.96E-04) - 2.016E-01(1.24E-02)	4.671E-02 (3.70E-04) -	3.807E-02 (5.05E-04)
DILL2	7	4.455E-01 (1.41E-02) -	4.671E-01 (1.15E-02) –	4.826E-01 (9.59E-03) -	3.944E-01 (1.17E-02)
	3	5.761E-02 (5.41E-04) -	6.920E-02 (1.20E-03) -	7.165E-02 (1.83E-03) -	5.200E-02 (1.19E-03)
WFG4	5 7	3.442E-01 (1.21E-02) - 4.529E-01 (1.79E-02) -	2.810E-01 (6.86E-03) - 3.725E-01 (1.14E-02) -	2.859E-01 (6.77E-03) - 3.868E-01 (1.54E-02) -	1.868E-01 (2.81E-03) 3.033E-01 (3.66E-03)
	3	6.938E-02 (5.50E-03) -	6.834E-02 (1.78E-02) -	6.601E-02 (1.00E-02) -	4.831E-02 (8.95E-03)
WFG6	5	3.518E-01 (2.82E-03) -	$3.160E-01(2.40E-02) - 4.322E_01(2.05E_02)$	3.359E-01 (1.47E-02) -	1.942E-01 (6.90E-03)
<u>v</u>	1	4.809E-01 (5.05E-02) -	4.522E-01 (2.95E-02) -	4.389E-01 (3.41E-02) -	5.112E-01 (4.95E-05)
Train: +/	–/≈	0/9/0	0/9/0	0/9/0	
	3	6.231E-02 (8.85E-02) ≈	5.590E-02 (5.77E-03) -	6.011E-02 (5.08E-03) -	6.700E-02 (6.14E-02)
DTLZ4	5	$3.133E-01 (4.45E-02) \approx$	3.457E-01 (1.61E-02) -	3.492E-01 (1.69E-02) -	2.995E-01 (2.10E-02)
	7	4.374E-01 (2.57E-02) -	4.552E-01 (1.47E-02) -	4.756E-01 (2.01E-02) -	4.182E-01 (1.21E-02)
	3	6.327E-02 (1.10E-03) -	6.212E-02 (5.54E-04) -	6.118E-02 (7.03E-04) -	4.730E-02 (7.89E-04)
WFG5	5	3.350E-01 (9.77E-03) -	3.077E-01 (6.36E-03) -	3.036E-01 (8.83E-03) -	1.811E-01 (3.02E-03)
	7	4.101E-01 (2.08E-02) -	4.996E-01 (1.32E-02) -	5.024E-01 (1.38E-02) -	3.206E-01 (8.04E-03)
	3	5.811E-02 (6.31E-04) -	5.930E-02 (7.32E-04) -	6.014E-02 (7.11E-04) -	4.066E-02 (5.31E-04)
WFG7	5	3.572E-01 (5.47E-03) -	2.993E-01 (1.43E-02) -	3.207E-01 (1.71E-02) -	1.858E-01 (2.12E-03)
	7	5.236E-01 (2.19E-02) -	4.576E-01 (2.38E-02) -	4.879E-01 (2.75E-02) -	3.258E-01 (1.25E-02)
	3	8.646E-02 (3.44E-03) -	9.280E-02 (1.06E-03) -	9.612E-02 (1.48E-03) -	7.901E-02 (1.19E-03)
WFG8	5	4.258E-01 (8.42E-03) -	3.969E-01 (1.26E-02) -	3.956E-01 (1.32E-02) -	2.479E-01 (7.20E-03)
	7	5.816E-01 (1.30E-02) -	5.575E-01 (1.39E-02) -	5.642E-01 (1.38E-02) -	4.127E-01 (5.93E-03)
17.	3	5.817E-02 (1.24E-03) -	5.628E-02 (7.29E-04) -	7.953E-02 (2.45E-02) -	4.159E-02 (6.10E-04)
WFG9	5	3.633E-01 (1.20E-02) -	3.258E-01 (1.61E-02) -	3.396E-01 (1.55E-02) -	1.832E-01 (7.10E-03)
	7	5.538E-01 (2.63E-02) -	5.115E-01 (2.15E-02) -	5.227E-01 (1.79E-02) -	3.278E-01 (7.21E-03)
Test: +/-	-/≈	0/13/2	0/15/0	0/15/0	

Significantly better on almost all the 24 problems

Good generalization ability

Statistic Learning based

Heuristic

Problem	M	MOEA/D	MOEA/D-OP2	MOEA/D-FRRMAB	MA-DAC	MOEA/D-AWA	MOEA/D-OP2-AWA	
DTLZ2	3 5 7	4.605E-02 (3.54E-04) - 3.006E-01 (1.55E-03) - 4.455E-01 (1.41E-02) -	4.691E-02 (3.97E-04) - 3.012E-01 (1.51E-03) - 4.551E-01 (4.43E-03) -	4.668E-02 (2.50E-04) - 3.031E-01 (1.29E-03) - 4.724E-01 (7.80E-03) -	3.807E-02 (5.05E-04) 2.442E-01 (1.26E-02) 3.944E-01 (1.17E-02)	4.596E-02 (3.54E-04) - 2.900E-01 (2.73E-03) - 4.167E-01 (2.37E-02) -	4.670E-02 (3.30E-04) - 2.764E-01 (3.40E-03) - 4.436E-01 (8.67E-03) -	-
WFG4	3 5 7	5.761E-02 (5.41E-04) - 3.442E-01 (1.21E-02) - 4.529E-01 (1.79E-02) -	7.293E-02 (1.43E-03) - 2.761E-01 (6.39E-03) - 3.711E-01 (9.79E-03) -	7.097E-02 (1.63E-03) - 2.799E-01 (9.44E-03) - 3.778E-01 (1.01E-02) -	5.200E-02 (1.19E-03) 1.868E-01 (2.81E-03) 3.033E-01 (3.66E-03)	5.748E-02 (7.11E-04) - 3.168E-01 (5.37E-03) - 4.285E-01 (1.55E-02) -	7.280E-02 (1.33E-03) - 2.648E-01 (8.15E-03) - 3.676E-01 (1.06E-02) -	-
WFG6	3 5 7	6.938E-02 (5.50E-03) - 3.518E-01 (2.82E-03) - 4.869E-01 (3.03E-02) -	6.714E-02 (1.59E-02) - 3.285E-01 (2.33E-02) - 4.797E-01 (3.04E-02) -	6.266E-02 (8.47E-03) - 3.272E-01 (1.61E-02) - 4.417E-01 (3.29E-02) -	4.831E-02 (8.95E-03) 1.942E-01 (6.90E-03) 3.112E-01 (4.93E-03)	6.846E-02 (4.70E-03) - 3.190E-01 (3.93E-03) - 4.727E-01 (3.05E-02) -	6.078E-02 (1.16E-03) - 3.143E-01 (2.52E-02) - 4.770E-01 (3.24E-02) -	-
Train: aver	rage rank	3.11	3.00	2.89	1.00	2.56	2.67	-
Train: +	-/−/≈	0/9/0	0/9/0	0/9/0		0/9/0	0/9/0	-
DTLZ4	3 5 7		6.226E-02 (4.05E-03) - 3.413E-01 (1.48E-02) - 4.519E-01 (1.15E-02) -	5.782E-02 (3.48E-03) - 3.373E-01 (1.70E-02) - 4.681E-01 (1.87E-02) -	6.700E-02 (6.14E-02) 2.995E-01 (2.10E-02) 4.182E-01 (1.21E-02)	4.597E-02 (3.66E-04) ≈ 2.816E-01 (3.24E-03) + 3.696E-01 (1.32E-02) +	6.219E-02 (3.90E-03) - 3.283E-01 (1.08E-02) - 4.437E-01 (9.46E-03) -	-
WFG5	3 5 7	6.327E-02 (1.10E-03) – 3.350E-01 (9.77E-03) – 4.101E-01 (2.08E-02) –	6.177E-02 (8.01E-04) - 3.052E-01 (7.19E-03) - 4.988E-01 (1.04E-02) -	6.120E-02 (7.38E-04) - 3.033E-01 (8.69E-03) - 5.045E-01 (9.70E-03) -	4.730E-02 (7.89E-04) 1.811E-01 (3.02E-03) 3.206E-01 (8.04E-03)	6.376E-02 (9.85E-04) - 3.173E-01 (5.33E-03) - 4.095E-01 (1.94E-02) -	6.168E-02 (4.61E-04) - 3.024E-01 (6.02E-03) - 4.865E-01 (1.28E-02) -	-
WFG7	3 5 7	5.811E-02 (6.31E-04) - 3.572E-01 (5.47E-03) - 5.236E-01 (2.19E-02) -	6.033E-02 (8.84E-04) - 2.941E-01 (9.66E-03) - 4.739E-01 (2.51E-02) -	5.976E-02 (7.44E-04) - 3.042E-01 (1.52E-02) - 4.762E-01 (2.74E-02) -	4.066E-02 (5.31E-04) 1.858E-01 (2.12E-03) 3.258E-01 (1.25E-02)	5.837E-02 (6.25E-04) - 3.227E-01 (4.19E-03) - 5.004E-01 (3.80E-02) -	6.017E-02 (6.74E-04) - 2.885E-01 (1.25E-02) - 4.560E-01 (2.56E-02) -	-
WFG8	3 5 7	8.646E-02 (3.44E-03) - 4.258E-01 (8.42E-03) - 5.816E-01 (1.30E-02) -	9.598E-02 (1.22E-03) - 3.884E-01 (1.19E-02) - 5.587E-01 (1.56E-02) -	9.536E-02 (1.14E-03) - 3.917E-01 (9.00E-03) - 5.570E-01 (1.60E-02) -	7.901E-02 (1.19E-03) 2.479E-01 (7.20E-03) 4.127E-01 (5.93E-03)	8.742E-02 (6.36E-04) - 4.216E-01 (1.18E-02) - 5.790E-01 (1.06E-02) -	9.572E-02 (8.39E-04) - 3.824E-01 (9.74E-03) - 5.632E-01 (1.27E-02) -	-
WFG9	3 5 7	5.817E-02 (1.24E-03) – 3.633E-01 (1.20E-02) – 5.538E-01 (2.63E-02) –	8.122E-02 (2.54E-02) - 3.300E-01 (1.47E-02) - 5.001E-01 (2.59E-02) -	6.445E-02 (1.72E-02) - 3.312E-01 (1.70E-02) - 5.145E-01 (2.82E-02) -	4.159E-02 (6.10E-04) 1.832E-01 (7.10E-03) 3.278E-01 (7.21E-03)	5.809E-02 (1.45E-03) - 3.517E-01 (2.19E-02) - 5.108E-01 (2.65E-02) -	6.470E-02 (1.75E-02) - 3.024E-01 (1.36E-02) - 4.861E-01 (2.78E-02) -	-
Test: avera	age rank	3.13	2.87	2.80	1.20	2.53	2.80	-
Test: +	/–/≈	0/13/2	0/15/0	0/15/0		2/12/1	0/15/0	-
					<u> </u>			-

Comparison with specific tuning approaches for MOEA/D

Problem	M	MA-DAC (M)	MA-DAC (3)	MA-DAC (5)	MA-DAC (7)	
DTLZ2	3 5 7	3.839E-02 (5.35E-04) + 2.468E-01 (7.55E-03) + 3.921E-01 (8.84E-03) +	3.807E-02 (5.05E-04) + 2.472E-01 (1.56E-02) + 3.880E-01 (1.02E-02) +	3.830E-02 (7.24E-04) + 2.442E-01 (1.26E-02) + 4.081E-01 (1.52E-02) +	3.837E-02 (5.69E-04) + 2.569E-01 (1.39E-02) + 3.944E-01 (1.17E-02) +	
WFG4	3 5 7	5.220E-02 (9.83E-04) + 1.850E-01 (3.14E-03) + 3.091E-01 (5.80E-03) +	5.200E-02 (1.19E-03) + 1.867E-01 (3.01E-03) + 3.104E-01 (7.14E-03) +	5.236E-02 (1.10E-03) + 1.868E-01 (2.81E-03) + 3.100E-01 (5.89E-03) +	5.302E-02 (9.78E-04) + 1.853E-01 (2.67E-03) + 3.033E-01 (3.66E-03) +	
WFG6	3 5 7	5.078E-02 (1.20E-02) + 1.971E-01 (6.40E-03) + 3.114E-01 (5.08E-03) +	4.831E-02 (8.95E-03) + 2.003E-01 (6.26E-03) + 3.242E-01 (9.24E-03) +	4.599E-02 (9.48E-03) + 1.942E-01 (6.90E-03) + 3.129E-01 (5.71E-03) +	5.206E-02 (1.64E-02) + 1.957E-01 (6.67E-03) + 3.112E-01 (4.93E-03) +	Train on problems with
DTLZ4	3 5 7	6.171E-02 (3.67E-02) + 3.044E-01 (1.66E-02) ≈ 4.271E-01 (1.45E-02) +	6.700E-02 (6.14E-02) + 2.974E-01 (1.94E-02) + 4.313E-01 (1.39E-02) ≈	6.618E-02 (4.62E-02) + 2.995E-01 (2.10E-02) ≈ 4.327E-01 (2.15E-02) ≈	8.088E-02 (7.12E-02) + 3.036E-01 (1.69E-02) ≈ 4.182E-01 (1.21E-02) +	three objectives,
WFG5	3 5 7	4.721E-02 (7.15E-04) + 1.811E-01 (2.59E-03) + 3.256E-01 (5.49E-03) +	4.730E-02 (7.89E-04) + 1.817E-01 (2.96E-03) + 3.266E-01 (8.98E-03) +	4.733E-02 (8.10E-04) + 1.811E-01 (3.02E-03) + 3.263E-01 (9.73E-03) +	4.746E-02 (5.90E-04) + 1.808E-01 (2.83E-03) + 3.206E-01 (8.04E-03) +	but test on all problems
WFG7	3 5 7	4.076E-02 (5.33E-04) + 1.839E-01 (2.38E-03) + 3.368E-01 (1.54E-02) +	4.066E-02 (5.31E-04) + 1.881E-01 (3.70E-03) + 3.461E-01 (1.97E-02) +	4.077E-02 (5.12E-04) + 1.858E-01 (2.12E-03) + 3.390E-01 (1.38E-02) +	4.124E-02 (4.98E-04) + 1.836E-01 (2.21E-03) + 3.258E-01 (1.25E-02) +	
WFG8	3 5 7	7.828E-02 (1.46E-03) + 2.506E-01 (1.11E-02) + 4.303E-01 (1.49E-02) +	7.901E-02 (1.19E-03) + 2.653E-01 (1.51E-02) + 4.364E-01 (1.38E-02) +	7.921E-02 (1.36E-03) + 2.479E-01 (7.20E-03) + 4.242E-01 (9.08E-03) +	7.944E-02 (1.30E-03) + 2.532E-01 (9.28E-03) + 4.127E-01 (5.93E-03) +	-2
WFG9	3 5 7	4.324E-02 (7.07E-04) + 1.858E-01 (7.63E-03) + 3.328E-01 (1.02E-02) +	4.159E-02 (6.10E-04) + 1.814E-01 (4.59E-03) + 3.298E-01 (1.03E-02) +	4.359E-02 (1.00E-02) + 1.832E-01 (7.10E-03) + 3.307E-01 (1.37E-02) +	6.415E-02 (2.64E-02) + 1.918E-01 (1.13E-02) + 3.278E-01 (7.21E-03) +	
Test: average rank	3 5 7	1.4 2.6 2.6	1.8 2.8 3.4	2.8 2.2 3.0	4.0 2.4 1.0	 MA-DAC (M) is robust
Test: +/−/≈	3 5 7	5/0/0 4/0/1 5/0/0	5/0/0 5/0/0 4/0/1	5/0/0 4/0/1 4/0/1	5/0/0 4/0/1 5/0/0	Good generalization ability

Problem	M	MA-DAC (M) w/o 1	MA-DAC (M) w/o 2	MA-DAC (M) w/o 3	MA-DAC (M) w/o 4	MA-DAC (M)
	3	4.656E-02 (3.80E-04) -	3.914E-02 (8.43E-04) -	3.935E-02 (6.72E-04) -	3.919E-02 (5.91E-04) -	3.839E-02 (5.35E-04)
DTLZ2	5	3.086E-01 (7.24E-03) -	2.619E-01 (8.99E-03) -	2.503E-01 (1.30E-02) -	2.433E-01 (1.59E-02) ≈	2.468E-01 (7.55E-03)
	7	4.970E-01 (1.26E-02) -	4.067E-01 (1.20E-02) -	4.003E-01 (1.19E-02) -	4.228E-01 (1.25E-02) -	3.921E-01 (8.84E-03)
	3	7.222E-02 (1.93E-03) -	5.484E-02 (1.01E-03) -	5.410E-02 (8.85E-04) -	5.410E-02 (8.85E-04) -	5.220E-02 (9.83E-04)
WFG4	5	2.868E-01 (1.01E-02) -	1.879E-01 (3.76E-03) ≈	1.845E-01 (2.17E-03) +	1.846E-01 (2.39E-03) +	1.850E-01 (3.14E-03)
	7	3.758E-01 (1.33E-02) -	3.102E-01 (6.34E-03) -	3.020E-01 (3.99E-03) ≈	3.032E-01 (4.32E-03) ≈	3.091E-01 (5.80E-03)
	3	6.864E-02 (8.14E-03) -	5.338E-02 (1.37E-02) -	6.543E-02 (1.69E-02) -	6.067E-02 (2.11E-02) ≈	5.078E-02 (1.20E-02)
WFG6	5	3.480E-01 (1.34E-02) -	2.005E-01 (5.21E-03) -	1.996E-01 (6.51E-03) -	1.979E-01 (6.76E-03) -	1.971E-01 (6.40E-03)
	7	4.784E-01 (3.37E-02) -	3.147E-01 (5.85E-03) -	3.162E-01 (6.15E-03) -	3.147E-01 (5.73E-03) -	3.114E-01 (5.08E-03)
Train: +/	–/≈	0/9/0	0/8/1	1/7/1	1/5/3	
	3	6.463E-02 (3.85E-02) -	6.242E-02 (4.07E-02) -	4.496E-02 (2.45E-03) +	4.496E-02 (2.45E-03) +	6.171E-02 (3.67E-02)
DTLZ4	5	3.497E-01 (1.41E-02) -	3.061E-01 (2.12E-02) ≈	3.054E-01 (1.55E-02) ≈	3.130E-01 (1.81E-02) -	3.044E-01 (1.66E-02)
	7	4.853E-01 (1.82E-02) -	4.275E-01 (1.90E-02) -	4.208E-01 (1.52E-02) ≈	4.289E-01 (2.07E-02) -	4.271E-01 (1.45E-02)
	3	6.189E-02 (7.40E-04) -	4.827E-02 (6.31E-04) -	4.766E-02 (5.72E-04) ≈	4.766E-02 (5.72E-04) ≈	4.721E-02 (7.15E-04)
WFG5	5	3.202E-01 (9.77E-03) -	1.821E-01 (2.73E-03) ≈	1.835E-01 (2.90E-03) -	1.822E-01 (2.31E-03) -	1.811E-01 (2.59E-03)
	7	4.948E-01 (1.47E-02) -	3.290E-01 (8.87E-03) -	3.310E-01 (7.70E-03) -	3.261E-01 (9.26E-03) -	3.256E-01 (5.49E-03)
	3	6.004E-02 (9.45E-04) -	4.250E-02 (5.82E-04) -	4.150E-02 (6.60E-04) -	4.150E-02 (6.60E-04) -	4.076E-02 (5.33E-04)
WFG7	5	3.402E-01 (2.49E-02) -	1.873E-01 (3.67E-03) ≈	1.826E-01 (2.60E-03) +	1.847E-01 (2.80E-03) ≈	1.839E-01 (2.38E-03)
	7	4.877E-01 (5.70E-02) -	3.393E-01 (1.23E-02) -	3.373E-01 (1.16E-02) -	3.377E-01 (1.59E-02) -	3.368E-01 (1.54E-02)
	3	9.661E-02 (1.87E-03) -	8.374E-02 (1.70E-03) -	8.029E-02 (1.29E-03) -	8.029E-02 (1.29E-03) -	7.828E-02 (1.46E-03)
WFG8	5	4.119E-01 (1.30E-02) -	2.695E-01 (1.49E-02) -	2.571E-01 (1.09E-02) -	2.632E-01 (9.96E-03) -	2.506E-01 (1.11E-02)
	7	5.830E-01 (1.59E-02) -	4.345E-01 (9.27E-03) -	4.260E-01 (8.71E-03) -	4.322E-01 (1.12E-02) -	4.303E-01 (1.49E-02)
	3	5.894E-02 (9.24E-04) -	4.321E-02 (7.50E-04) -	4.650E-02 (1.40E-02) -	4.650E-02 (1.40E-02) -	4.324E-02 (7.07E-04)
WFG9	5	3.148E-01 (2.06E-02) -	1.875E-01 (5.14E-03) -	1.941E-01 (6.45E-03) -	1.865E-01 (9.02E-03) -	1.858E-01 (7.63E-03)
	7	5.069E-01 (2.53E-02) -	3.433E-01 (1.35E-02) -	3.402E-01 (1.00E-02) -	3.368E-01 (1.05E-02) -	3.328E-01 (1.02E-02)
Test: +/-	–/≈	0/15/0	0/12/3	2/10/3	1/12/2	

Necessary to tune each hyperparameter

$$r_{t}^{1} = \max\{f(s_{t}) - f(s_{t+1}), 0\}$$

$$r_{t}^{2} = \begin{cases} 10 & \text{if } f(s_{t+1}) < f_{t}^{*} \\ 1 & \text{else if } f(s_{t+1}) < f(s_{t}) \\ 0 & \text{otherwise} \end{cases}$$

$$r_{t}^{3} = \max\left\{\frac{f(s_{t}) - f(s_{t+1})}{f(s_{t+1}) - f_{\text{opt}}}, 0\right\}$$

$$r_{t} = \begin{cases} (1/2) \cdot (p_{t}^{2} - p_{t-1}^{2}) & \text{if } f(s_{t+1}) < 0 \\ 0 & \text{otherwise} \end{cases}$$

DAC	MA-D/	MA-DAC-R3	MA-DAC-R2	MA-DAC-R1	M	Problem
(5.05E-04)	3.807E-02 (5	3.809E-02 (4.64E-04) ≈	3.853E-02 (5.58E-04) -	4.223E-02 (2.50E-03) -	3	
(1.26E-02)	2.442E-01 (1	2.364E-01 (1.04E-02) +	2.726E-01 (1.51E-02) ≈	2.401E-01 (8.27E-03) -	5	DTLZ2
(1.17E-02)	3.944E-01 (1	4.215E-01 (9.03E-03) -	4.248E-01 (1.30E-02) -	4.142E-01 (1.12E-02) -	7	
(1.19E-03)	5.200E-02 (1	5.309E-02 (8.02E-04) -	5.255E-02 (1.14E-03) -	5.989E-02 (5.60E-03) ≈	3	
(2.81E-03)	1.868E-01 (2	1.846E-01 (2.20E-03) +	1.851E-01 (2.43E-03) +	1.848E-01 (2.61E-03) +	5	WFG4
(3.66E-03)	3.033E-01 (3	$3.029E-01 (3.36E-03) \approx$	3.008E-01 (3.51E-03) ≈	3.028E-01 (3.19E-03) +	7	
(8.95E-03)	4.831E-02 (8	4.814E-02 (1.22E-02) ≈	4.909E-02 (1.50E-02) -	7.920E-02 (1.81E-02) +	3	
(6.90E-03)	1.942E-01 (6	1.975E-01 (5.78E-03) -	2.037E-01 (4.49E-03) -	1.977E-01 (6.17E-03) -	5	WFG6
(4.93E-03)	3.112E-01 (4	3.148E-01 (4.05E-03) -	$3.151\text{E-}01~(5.01\text{E-}03) \approx$	3.110E-01 (4.86E-03) -	7	
1	2.11	2.11	3.11	2.67	ige rank	Train: avera
		2/4/3	1/5/3	3/5/1	′−/≈	Train: +/
(6.14E-02)	6.700E-02 (6	6.144E-02 (5.10E-02) ≈	7.236E-02 (6.19E-02) -	5.567E-02 (7.33E-03) -	3	THE CONTRACTOR
(2.10E-02)	2.995E-01 (2	3.119E-01 (1.58E-02) -	3.221E-01 (2.12E-02) -	3.119E-01 (1.91E-02) -	5	DTLZ4
(1.21E-02)	4.182E-01 (1	4.275E-01 (1.60E-02) -	4.385E-01 (1.23E-02) -	4.354E-01 (1.29E-02) -	7	
(7.89E-04)	4.730E-02 (7	4.773E-02 (6.58E-04) -	4.763E-02 (7.73E-04) -	4.841E-02 (7.78E-04) -	3	
(3.02E-03)	1.811E-01 (3	1.812E-01 (3.06E-03) ≈	1.818E-01 (2.90E-03) -	1.823E-01 (2.49E-03) ≈	5	WFG5
(8.04E-03)	3.206E-01 (8	3.196E-01 (5.99E-03) ≈	3.174E-01 (6.43E-03) ≈	$3.212\text{E-}01~(6.60\text{E-}03) \approx$	7	
(5.31E-04)	4.066E-02 (5	4.168E-02 (6.40E-04) -	4.076E-02 (5.41E-04) -	4.555E-02 (1.26E-03) ≈	3	
(2.12E-03)	1.858E-01 (2	1.841E-01 (3.95E-03) +	1.865E-01 (2.93E-03) +	1.842E-01 (3.28E-03) ≈	5	WFG7
(1.25E-02)	3.258E-01 (1	$3.271E-01 (9.65E-03) \approx$	3.199E-01 (9.86E-03) -	3.335E-01 (1.09E-02) +	7	W86118
(1.19E-03)	7.901E-02 (1	8.199E-02 (1.96E-03) -	7.911E-02 (1.06E-03) -	8.914E-02 (2.96E-03) ≈	3	
(7.20E-03)	2.479E-01 (7	2.541E-01 (9.08E-03) -	2.628E-01 (1.22E-02) -	2.551E-01 (1.02E-02) -	5	WFG8
(5.93E-03)	4.127E-01 (5	4.197E-01 (7.52E-03) -	4.115E-01 (9.80E-03) ≈	$4.163\text{E-}01~(9.54\text{E-}03) \approx$	7	nus-Actorean.
(6.10E-04)	4.159E-02 (6	4.428E-02 (9.97E-03) -	4.208E-02 (6.56E-04) -	5.003E-02 (9.00E-03) -	3	
(7.10E-03)	1.832E-01 (7	1.951E-01 (9.83E-03) -	1.819E-01 (5.73E-03) -	1.929E-01 (8.84E-03) ≈	5	WFG9
(7.21E-03)	3.278E-01 (7	3.327E-01 (8.02E-03) -	3.322E-01 (8.89E-03) -	3.342E-01 (8.56E-03) -	7	100124-0-1-0-1
0	1.60	2.67	2.47	3.27	ge rank	Test: avera
		1/10/4	1/12/2	1/7/7	_/≈	Test: +/
		1710/4	1/12/2	47.07	-/~ [test. T/

Experiment – IGD curve

1.2

1.0

0.8 <u>0</u>

0.6

0.4

0.7

0.6

0.4

0.3

0

0 0 0.5 0

(a) DTLZ2_7

(e) WFG6_7

400

Iterations

200

400 Iterations

(b) DTLZ4_7

600

600

200

(g) WFG8_7

(d) WFG5_7

(h) WFG9_7

Experiment – Single DQN

Problem	M	DQN-1	DQN-2	DQN-3	DQN-4
DTLZ2	3	4.100E-02 (7.64E-04) +	4.283E-02 (5.50E-04) +	4.284E-02 (3.47E-04) +	4.244E-02 (5.46E-04) +
	5	2.408E-01 (1.03E-02) +	2.469E-01 (3.31E-03) +	2.531E-01 (3.43E-03) +	2.530E-01 (4.35E-03) +
	7	4.064E-01 (1.14E-02) +	4.164E-01 (8.81E-03) +	4.149E-01 (8.92E-03) +	4.132E-01 (8.89E-03) +
WFG4	3	6.136E-02 (1.80E-03) +	6.383E-02 (1.92E-03) +	5.885E-02 (1.50E-03) +	6.031E-02 (1.24E-03) +
	5	1.887E-01 (2.15E-03) +	2.264E-01 (4.37E-03) +	2.351E-01 (5.49E-03) +	2.274E-01 (3.69E-03) +
	7	3.018E-01 (3.14E-03) +	3.421E-01 (9.24E-03) +	3.427E-01 (9.67E-03) +	3.419E-01 (9.62E-03) +
WFG6	3 5 7	5.149E-02 (1.17E-02) + 1.991E-01 (9.10E-03) + 3.204E-01 (7.11E-03) +	5.104E-02 (8.75E-03) + 2.642E-01 (2.21E-02) + 3.992E-01 (2.64E-02) +	6.538E-02 (2.37E-02) + 2.665E-01 (1.73E-02) + 3.967E-01 (2.29E-02) +	6.120E-02 (2.10E-02) + 2.712E-01 (2.29E-02) + 3.824E-01 (1.88E-02) +
Train: $+/-\approx$		9/0/0	9/0/0	9/0/0	9/0/0
DTLZ4	3	4.697E-02 (3.78E-03) +	5.249E-02 (1.14E-02) +	6.116E-02 (5.10E-02) +	5.469E-02 (3.65E-02) +
	5	3.074E-01 (1.24E-02) +	3.136E-01 (1.19E-02) +	3.207E-01 (1.26E-02) +	3.243E-01 (1.75E-02) +
	7	4.263E-01 (1.28E-02) +	4.179E-01 (1.44E-02) +	4.330E-01 (2.83E-02) +	4.211E-01 (1.21E-02) +
WFG5	3	4.815E-02 (6.96E-04) +	5.173E-02 (7.46E-04) +	5.188E-02 (5.99E-04) +	5.175E-02 (7.38E-04) +
	5	1.833E-01 (3.37E-03) +	2.532E-01 (5.66E-03) +	2.537E-01 (5.17E-03) +	2.560E-01 (6.80E-03) +
	7	3.294E-01 (8.51E-03) +	4.053E-01 (1.80E-02) +	4.090E-01 (1.11E-02) +	4.088E-01 (1.34E-02) +
WFG7	3	4.624E-02 (6.74E-04) +	4.841E-02 (1.20E-03) +	4.638E-02 (8.69E-04) +	4.690E-02 (8.85E-04) +
	5	1.835E-01 (3.02E-03) +	2.476E-01 (7.11E-03) +	2.492E-01 (5.16E-03) +	2.445E-01 (9.30E-03) +
	7	3.274E-01 (1.15E-02) +	3.956E-01 (1.96E-02) +	3.951E-01 (1.88E-02) +	3.843E-01 (1.81E-02) +
WFG8	3	8.658E-02 (1.30E-03) +	8.850E-02 (1.40E-03) +	8.490E-02 (2.33E-03) +	8.555E-02 (1.59E-03) +
	5	2.519E-01 (8.57E-03) +	3.216E-01 (1.01E-02) +	3.485E-01 (1.65E-02) +	3.328E-01 (1.29E-02) +
	7	4.163E-01 (7.50E-03) +	5.153E-01 (1.61E-02) +	5.172E-01 (1.73E-02) +	4.970E-01 (1.12E-02) +
WFG9	3 5 7	7.747E-02 (2.46E-02) - 2.041E-01 (5.21E-03) + 3.418E-01 (1.18E-02) +	$7.320E-02 (2.62E-02) \approx 2.542E-01 (1.03E-02) + 4.088E-01 (1.71E-02) +$	4.969E-02 (1.34E-02) + 2.493E-01 (9.82E-03) + 4.179E-01 (1.89E-02) +	6.138E-02 (2.42E-02) + 2.486E-01 (1.18E-02) + 4.069E-01 (1.73E-02) +
Test: $+/-/\approx$		14/1/0	14/0/1	15/0/0	15/0/0

Single DQN is better than DQN

Experiment – MARL algorithms

Problem	M	DQN-1	VDN	IQL	QMIX
	3	4.100E-02 (7.64E-04)	3.807E-02 (5.05E-04) +	3.933E-02 (4.29E-04) +	3.916E-02 (7.21E-04) +
DTLZ2	5	2.408E-01 (1.03E-02)	2.442E-01 (1.26E-02) ≈	2.310E-01 (9.29E-03) +	2.419E-01 (1.37E-02) ≈
	7	4.064E-01 (1.14E-02)	3.944E-01 (1.17E-02) +	4.138E-01 (9.79E-03) -	4.162E-01 (1.59E-02) -
-	3	6.136E-02 (1.80E-03)	5.200E-02 (1.19E-03) +	5.438E-02 (8.83E-04) +	5.206E-02 (1.16E-03) +
WFG4	5	1.887E-01 (2.15E-03)	1.868E-01 (2.81E-03) +	1.879E-01 (2.78E-03) ≈	1.859E-01 (2.25E-03) +
	7	3.018E-01 (3.14E-03)	3.033E-01 (3.66E-03) ≈	3.046E-01 (3.55E-03) -	2.998E-01 (4.21E-03) +
	3	5.149E-02 (1.17E-02)	4.831E-02 (8.95E-03) +	5.592E-02 (1.57E-02) ≈	4.542E-02 (3.02E-03) +
WFG6	5	1.991E-01 (9.10E-03)	1.942E-01 (6.90E-03) +	1.981E-01 (6.76E-03) ≈	1.975E-01 (6.98E-03) ≈
	7	3.204E-01 (7.11E-03)	3.112E-01 (4.93E-03) +	3.148E-01 (3.34E-03) +	3.128E-01 (7.39E-03) +
Train: $+/-/\approx$		Ĺ	7/0/2	4/2/3	6/1/2
	3	4.697E-02 (3.78E-03)	6.700E-02 (6.14E-02) ≈	6.328E-02 (4.48E-02) -	5.094E-02 (2.38E-03) -
DTLZ4	5	3.074E-01 (1.24E-02)	2.995E-01 (2.10E-02) +	3.021E-01 (1.62E-02) ≈	3.013E-01 (1.80E-02) +
	7	4.263E-01 (1.28E-02)	4.182E-01 (1.21E-02) +	4.323E-01 (1.43E-02) ≈	4.303E-01 (1.95E-02) ≈
	3	4.815E-02 (6.96E-04)	4.730E-02 (7.89E-04) +	4.818E-02 (6.24E-04) ≈	4.736E-02 (7.49E-04) +
WFG5	5	1.833E-01 (3.37E-03)	1.811E-01 (3.02E-03) +	1.812E-01 (2.21E-03) +	1.813E-01 (2.54E-03) +
	7	3.294E-01 (8.51E-03)	3.206E-01 (8.04E-03) +	3.173E-01 (6.91E-03) +	3.175E-01 (7.19E-03) +
	3	4.624E-02 (6.74E-04)	4.066E-02 (5.31E-04) +	4.313E-02 (7.79E-04) +	4.077E-02 (4.94E-04) +
WFG7	5	1.835E-01 (3.02E-03)	1.858E-01 (2.12E-03) -	1.832E-01 (2.34E-03) ≈	1.825E-01 (3.16E-03) ≈
	7	3.274E-01 (1.15E-02)	3.258E-01 (1.25E-02) ≈	3.219E-01 (1.09E-02) +	3.226E-01 (1.12E-02) +
	3	8.658E-02 (1.30E-03)	7.901E-02 (1.19E-03) +	8.652E-02 (2.75E-03) ≈	7.909E-02 (1.60E-03) +
WFG8	5	2.519E-01 (8.57E-03)	2.479E-01 (7.20E-03) +	2.544E-01 (8.10E-03) ≈	2.496E-01 (9.83E-03) ≈
	7	4.163E-01 (7.50E-03)	4.127E-01 (5.93E-03) +	4.175E-01 (7.32E-03) ≈	4.006E-01 (9.42E-03) +
	3	7.747E-02 (2.46E-02)	4.159E-02 (6.10E-04) +	4.423E-02 (7.08E-04) +	4.167E-02 (5.92E-04) +
WFG9	5	2.041E-01 (5.21E-03)	1.832E-01 (7.10E-03) +	1.915E-01 (8.87E-03) +	1.921E-01 (6.43E-03) +
	7	3.418E-01 (1.18E-02)	3.278E-01 (7.21E-03) +	3.322E-01 (8.41E-03) +	3.298E-01 (8.46E-03) +
Test: $+/-/\approx$			12/1/2	7/1/7	11/1/3

Equipped with different MARL algorithms, all the MA-DAC variants are better than DQN-1

Experiment – Other environments

Experiment on the DACBench [Eimer et al., IJCAI'21]

MA-DAC variants (VDN, QMIX, IQL) are better than DQN and static policy

Contribution

- 1) To the best of our knowledge, MA-DAC is the **first one** to address dynamic configuration of algorithms with multiple types of hyperparameters.
- 2) The contextual MMDP formulation of MA-DAC is analyzed, and experimental results show that the presented formulation works well and has good **generalization** ability.
- 3) The instantiation of configuring MOEA/D in this work can be used as a benchmark problem for MARL.
 - 1) The **heterogeneity** of MOEA/D's hyperparameters and the **stochasticity** of its search can promote the research of the MARL algorithms.
 - 2) Besides, the learned policies are **useful** for multi-objective optimization, which will facilitate the application of MARL.

Coauthors

22

Miqing Li², Chao Qian^{1†}, Zongzhang Zhang¹, Yang Yu¹ Nanjing University¹ University of Birmingham²

Our code is available at https://github.com/lamda-bbo/madac

Thank you! 🖂 xuek@lamda.nju.edu.cn