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Black-box Optimization Learning And Mining from DatA

We consider the following problem formulation for black-box optimization (BBO):
may f (x)
X

where only the evaluation f(x) is available and no additional information is known

The methods based on first or second order information
(e.g., gradient descent) can not be used

Traditional BBO algorithms: Application:
e Evolutionary algorithms

* Evolutionary strategies

* Bayesian optimization




Evolutionary Algorithms
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Learning And Mining from DatA

Evolutionary algorithms (EAs) are a kind of randomized heuristic optimization algorithms,
inspired by nature evolution (reproduction with variation + nature selection)
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* Population-based and easy to be parallelized

* Discrete inputs
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Evolutionary Strategies Learning And Mining from DatA

Evolutionary strategies (ES) are a popular variant of EAs for continuous problems
CMA-ES is one of the most popular algorithms in ES

CMA-ES samples offspring from N (m, X) and uses the adaptive covariance matrix to
balance exploration and exploitation Generation 1 Generation 2 Generation 3

 Hundreds of continuous parameters

Generation 4 Generation 5 Generation 6
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Bayesian optimization (BO) uses surrogate model to approximate f and obtains the next
guery point via acquisition function (=2
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Algorithm 1 BO Framework B« [ S S oojective fn (/()

Input: iteration budget 7’ cprereton

Process:
1: let DO = O); [ acquisition function (u(-))

:fori=1:Tdo ‘=3

x, = arg maxe.cy acq(z); Obtain next point

evaluate f at x; to obtain y;; . =

augment the data D; = D;_; U {(xs,y:)} andupdate [ 0 T new observation (x,)

the GP model update model
6: end for

¥ acquisition max

b 9

* Less than 30 parameters

* Expensive evaluation - R TR G

posterior uncertainty




Black-box Optimization

There are still many challenges for BBO in

Algorithms Runtime Problem scale Type of variables
EAs short large discrete
ES short large continuous
BO long small continuous

Multi-objective problems
High-dimensional problems

Complex constraints

real-world problems, e.g.,
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High-dimensional Bayesian Optimization Learning And Mining from DatA

Scaling BO to high-dimensional problems is a challenge:
* Search space increases exponentially

 Computation cost of fitting GP and optimizing the acquisition function is time-
consuming

Current approaches usually solve high-dimensional BO in a low-dimensional subspace:
1. Obtain a low-dimensional subspace
2. Optimize in the low-dimensional subspace

3. Project the low-dimensional solution back to the high-dimensional space
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High-dimensional Bayesian Optimization Learning And Mining from DatA

Different approaches are based on different assumptions to obtain the low-dimensional
subspace:

* Decomposition: f can be decomposed into the sum of low-dimensional functions

* Embedding: only a few dimensions affect f significantly

* Variable selection: only a few axis-aligned dimensions affect f significantly
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Add-GP-UCB assumes that f can be decomposed into the sum of disjoint low-
dimensional functions

 Maximize the likelihood to learn a low-dimensional decomposition
* Optimize the low-dimensional functions separately

* Concatenate variables of low-dimensional functions

f(x)

= f(l) (%1, X3, %4)
+ £ (x,)

+ f(g)( X5, x6)



Decomposition

Learning And Mining from DatA

Overlapping generalizes Add-GP-UCB to overlapping conditions
fx) = f1(a®) 4o 4 fl(x0)

Maximize the likelihood to learn a low-dimensional decomposition

Optimize the low-dimensional functions on the graph similar to message passing

* Concatenate variables of low-dimensional functions

= f(l) (%1, X2, x3)
+ f(z) (%1, X3, X4) <:> ’° 0
+ £ @ (g, x5) 0‘6

6
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Assuming low effective dimensionality, REMBO uses a random embedding matrix to
obtain the low-dimensional subspace:

M € RP**, M;; ~ N(0,1)

Then, the optimization problem is:

max f(Mz)

zeR4A

Kol

”
*
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ALEBO improves several misconceptions in previous embedding methods, e.g.,
 The box bounds result in a nonlinear distortion of the search space

 Many points map to the facets

-
REMBO embedding, 23
Hartmann6 function, d=6 D=100, d.=6 ISl=
2 2 0.4 -
e
B8 .,
Ch
=
= 8 0.0 1
Methods: A,
* A Mahalanobis kernel Embedding dimension d.

* A constrained acquisition function optimization
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Dropout: select d variables randomly and optimize the selected variables
e Select d variables randomly
* Optimize the selected variables

* Use “fill-in” strategy to obtain the unselected variables

Advantage:

* Variable selection is much simper than embedding and can reduce the runtime

How can we do better
than random selection®
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The importance of different variables are different

Thus, randomly select variables is inefficient

We should pay more attention to the important variables!

— A metric for the
importance of variables

Select important
variables

An algorithm to
— select variables
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L]

Monte Carlo Tree Search based Variable Selection (MCTS-VS) uses MCTS to iteratively
select and optimize a subset of important variables, and uses “fill-in” strategy to obtain
the unselected variables

* Variable score s is the metric of the importance of variables

« MCTS is employed to partition the variables into important and unimportant ones,
select and optimize the important variables

* “Fill-in” strategy for unselected variables
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Variable score s € R? is a D-dimensional vector, where the i-th element represents the
importance of the i-th variable

s=< N yi-g(M)>/< > |D|-g<M>>

(M, D)eD (xi,yi)ED (M, D)eD

The sum of query evaluations The number of queries using
optimizing the variables indexed by Ml each variable

(M, D) represents the indices of selected variables and the corresponding samples

 E.g., M ={2,5,7}and D is obtained by optimizing {([Xz; xs»x7]i»yi)}::

« g:2IP1 5 {0,1}P, and the i-th element is 1 if i € M, and O otherwise
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A Brief Introduction to MCTS Learning And Mining from DatA

Tree node X represents the state, and stores vy representing its goodness and the
number ny of visits

UCB is used to select node, balancing the exploitation and exploration:

Uy + ZCpJZ(lognp)/nX

Selection Expansion Simulation Back-propagation
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Example Illustration of MCTS-VS Learning And Mining from DatA
Current state of MCTS-VS A, =1{1,2,..,9)

AB — {1, 2, 4‘, 7, 8} AC — {3, 5, 6, 9}
Tree node X represents a subset of variables, denoted by index set Ay € [D]
* The root node represents all variables

* vy is defined as the average score (i.e., importance) of variables contained by X, which
is calculated by s - g(Ay)/|Ayx]

* ny is the number of visits
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Example Illustration of MCTS-VS Learning And Mining from DatA
Select node B based on UCB value A, =1(1,2,..,9)

AB — {1, 2, 4‘, 7, 8} AC — {3, 5, 6, 9}
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Variable score s

X1 x2 x3 x4 x5 x6 x7 x8 x9

A, =1{1,2,..,9}

=
N

=
o

o N B~ O

AB — {1, 2, 4‘, 7, 8} AC — {3, 5, 6, 9}
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Variable score s

II I II AB={1,2,4,7,8}a

X1 x2 x3 x4 x5 x6 x7 x8 x9

=1{1,2,..,9}

=
N

=
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o N B~ O

A; ={3,5,6,9}
optlmlze
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Example Illustration of MCTS-VS Learning And Mining from DatA

Variable score s

II I II AB={1,2,4,7,8}a
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“Fi”_in" Strategy Learning And Mining from DatA
x] x] k .
The best k samples: {(x J,y 1)}j=1, for unselected variable x;:

~k
* The best-k strategy: x; is uniformly selected from {xi]} at random
j=1

~k
* The average best-k strategy: x; is the average of {x:]}
j=1

* The random strategy: x; is sampled from the domain randomly
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* Cumulative regret Ry = Zzl(f(x*) — f(xt))

* Assumption: The function f is a GP sample path. For some a,b > 0, given L > 0, the
partial derivatives of f satisfy that Vi € [D],3a; = 0,

0
P (sup f
XEX

0x;
* Theorem: Vo € (0,1), let 5; = 210g( ) + 2d; log(d,;t 2br\/log(—)) and L =

2

L
< aiL> > 1 — ae_(F)

b\/logw—a and {1, };>, satisfies Yyo; ;1 = 1and m; > 0. Let 7 = 1r£1a<>%,8t At

iteration T,

T
R < \/ClT,B;yT + 200y T 22 z a;Lr

t=1 lE[D]\Mt
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T
RT < \/C]_Tﬁ;:]/'[' + Zamax +H 2 z (Z;:kLT'
t=1 lE[D]\Mt

* The regret from optimization

* The regret from unselected variables

Insight:

* The variable selection can reduce the computational complexity while increasing the
regret

* A good variable selection algorithm should select as important variables as possible,
i.e., variables with as larger a; as possible
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We want to know the following research questions (RQs):

* RQ1: Can BO benefit from variable selection?

* RQ2: How does MCTS-VS perform compared with state-of-the-art methods?
* RQ3: How about the runtime of MCTS-VS?

 RQ4: Can MCTS-VS select more important variables than Dropout? (why)
 RQ5: Is MCTS-VS sensitive to the hyper-parameters?
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Effectiveness of variable selection:
= VanillaBO = Dropout-BO = MCTS-VS-BO TuRBO = Dropout-TuURBO = MCTS-VS-TuRBO
Hartmann6_300 Hartmann6_500 Hartmann6_300 Hartmanné 500
o — I — 3.0 L=
30 : 3.0 - 3.0 e f g JL:*
25 ‘ ' ¥ 25 ; A 25 A= ' 2.3 J A LieTr
il [ i 20 [ A
g2of g g2 % g2 7 8l
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0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Number of evaluations Number of evaluations Number of evaluations Number of evaluations

* Dropout is better than BO without variable selection

e MCTS-VS is better than Dropout



EXperimentS - RQZ Learning And Mining from DatA

Synthetic functions:

= MCTS-VS-BO = MCTS-VS-TuRBO TuRBO *= LA-MCTS-TuRBO
«  SAASBO = HeSBO = ALEBO = CMA-ES VAE-BO
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Real-world problems: MCTS-VS is comparable with sota methods
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Experiments — RQ3

Runtime comparison:

METHOD LEVYIO 100 LeEvY10_300 HARTMANNG6 300 HARTMANNG6_ 500
VANILLA BO 3.190 4.140 4.844 5.540
DROPOUT-BO 2.707 3.225 3.237 3.685
MCTS-VS-BO 2.683 3,753 3 111 4.590
TuRBO 8.621 9.206 9.201 9.754
LA-MCTS-TuRBO 14.431 22.165 25.853 34.381
MCTS-VS-TuRBO 4.912 5.616 5.613 5.893
SAASBO / / 2185.678 4163.121
HESBO 220.459 185.092 51.678 55.699
ALEBO / / 470.714 512.641
CMA-ES 0.030 0.043 0.043 0.045

Variable selection can reduce the runtime

LAVIDA

Learning And Mining from DatA
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Ex p e Fim ents - RQ4 Learning And Mining from DatA

Recall comparison:

METHOD LEvVYIO 100 LEvY10 300 HARTMANNG6 300 HARTMANNG 500

DROPOUT 0.100 0.030 0.020 0.012
MCTS-VS 0.429 0.433 0.352 0.350

*

d; . . . : . .
Recall Et is used to compare the quality of variable selection, where d; is the number of
valid variables selected at iteration t and d is the number of valid variables

d. .
* Dropout: B In expectation

e MCTS-VS: run for 600 evaluations on five different random seeds and calculate the

average recall
The recall of MCTS-VS is much larger than Dropout



Experiments — RQ5

Hartmanné 300

3.0
2.51
W 2.0
=
815/
1.0 —— best-k
05 —— average bhest-k
' random

0 100 200 300 400 500
Number of evaluations

(a) “Fill-in” strategy

Hartmann6é 300

— k=1
— k=5
— k=10

k=15
— k=20

100 200 300 400 500
Number of evaluations

(b) Hyper-parameter & of the best-k strategy
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The best-k strategy is good, and MCTS-VS is not sensitive to the selection of k
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Hartmanné 300 Hartmanné 300 Hartmanné 300
3.01 T ' 3.0/ 3.01 =
2.5 , 2.5 2.5
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MCTS-VS is not sensitive to other hyper-parameters
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MCTS-VS uses MCTS to recursively partition the variables into important and
unimportant ones, and only optimizes those important variables

Feature work:

A more well-designed metric for importance

* A specific theoretical analysis for MCTS-VS

Thank you!



