
Monte Carlo Tree Search based Variable Selection

for High Dimensional Bayesian Optimization

Lei Song*, Ke Xue*, Xiaobin Huang, Chao Qian†

Email: qianc@lamda.nju.edu.cn

School of Artificial Intelligence

Nanjing University, China

Black-box Optimization

We consider the following problem formulation for black-box optimization (BBO):
max
𝒙∈𝒳

𝑓(𝒙)

where only the evaluation 𝑓 𝒙 is available and no additional information is known

Traditional BBO algorithms:

• Evolutionary algorithms

• Evolutionary strategies

• Bayesian optimization

Application:

The methods based on first or second order information
(e.g., gradient descent) can not be used

Evolutionary algorithms (EAs) are a kind of randomized heuristic optimization algorithms,
inspired by nature evolution (reproduction with variation + nature selection)

• Population-based and easy to be parallelized

• Discrete inputs

Evolutionary Algorithms

Mutation and
recombination

Parent
selection

Initial
population

Stop
criterion

Fitness
evaluations

Survivor
selection

End

Parent
solutions

New
population

Offspring
solutions

Yes

No

Evolutionary Strategies

Evolutionary strategies (ES) are a popular variant of EAs for continuous problems

CMA-ES is one of the most popular algorithms in ES

CMA-ES samples offspring from 𝑁(𝑚, Σ) and uses the adaptive covariance matrix to
balance exploration and exploitation

• Hundreds of continuous parameters

Bayesian Optimization

Bayesian optimization (BO) uses surrogate model to approximate 𝑓 and obtains the next
query point via acquisition function

• Less than 30 parameters

• Expensive evaluation

obtain next point

update model

Black-box Optimization

There are still many challenges for BBO in real-world problems, e.g.,

• Multi-objective problems

• High-dimensional problems

• Complex constraints

Algorithms Runtime Problem scale Type of variables

EAs short large discrete

ES short large continuous

BO long small continuous

High-dimensional Bayesian Optimization

Scaling BO to high-dimensional problems is a challenge:

• Search space increases exponentially

• Computation cost of fitting GP and optimizing the acquisition function is time-
consuming

Current approaches usually solve high-dimensional BO in a low-dimensional subspace:

1. Obtain a low-dimensional subspace

2. Optimize in the low-dimensional subspace

3. Project the low-dimensional solution back to the high-dimensional space

High-dimensional Bayesian Optimization

Different approaches are based on different assumptions to obtain the low-dimensional
subspace:

• Decomposition: 𝑓 can be decomposed into the sum of low-dimensional functions

• Embedding: only a few dimensions affect 𝑓 significantly

• Variable selection: only a few axis-aligned dimensions affect 𝑓 significantly

Decomposition

Add-GP-UCB assumes that 𝑓 can be decomposed into the sum of disjoint low-
dimensional functions

𝑓 𝒙 = 𝑓1 𝒙 1 +⋯+ 𝑓𝑘 𝒙 𝑘 , ∀𝑖, 𝑗, 𝒙 𝑖 ∩ 𝒙 𝑗 = ∅

• Maximize the likelihood to learn a low-dimensional decomposition

• Optimize the low-dimensional functions separately

• Concatenate variables of low-dimensional functions

𝑓 𝑥
= 𝑓 1 𝑥1, 𝑥3, 𝑥4
+ 𝑓 2 𝑥2
+ 𝑓 3 𝑥5, 𝑥6

Decomposition

Overlapping generalizes Add-GP-UCB to overlapping conditions

𝑓 𝒙 = 𝑓1 𝒙 1 +⋯+ 𝑓𝑘 𝒙 𝑘

• Maximize the likelihood to learn a low-dimensional decomposition

• Optimize the low-dimensional functions on the graph similar to message passing

• Concatenate variables of low-dimensional functions

𝑓 𝑥
= 𝑓 1 𝑥1, 𝑥2, 𝑥3
+ 𝑓 2 𝑥1, 𝑥3, 𝑥4
+ 𝑓 3 𝑥4, 𝑥5
+ 𝑓 4 (𝑥6)

Embedding

Assuming low effective dimensionality, REMBO uses a random embedding matrix to
obtain the low-dimensional subspace:

𝐌 ∈ ℝ𝐷∗𝑑 , 𝐌𝑖𝑗 ∼ 𝑁(0, 1)

Then, the optimization problem is:
max
𝑧∈ℝ𝑑

𝑓(𝐌𝑧)

Embedding

ALEBO improves several misconceptions in previous embedding methods, e.g.,

• The box bounds result in a nonlinear distortion of the search space

• Many points map to the facets

Methods:

• A Mahalanobis kernel

• A constrained acquisition function optimization

Variable Selection

Dropout: select 𝑑 variables randomly and optimize the selected variables

• Select 𝑑 variables randomly

• Optimize the selected variables

• Use “fill-in” strategy to obtain the unselected variables

Advantage:

• Variable selection is much simper than embedding and can reduce the runtime

How can we do better
than random selection?

Motivation

The importance of different variables are different

Thus, randomly select variables is inefficient

We should pay more attention to the important variables!

Select 𝑑 variables
randomly

A metric for the
importance of variables

An algorithm to
select variables

Select important
variables

MCTS-VS

Monte Carlo Tree Search based Variable Selection (MCTS-VS) uses MCTS to iteratively
select and optimize a subset of important variables, and uses “fill-in” strategy to obtain
the unselected variables

• Variable score 𝒔 is the metric of the importance of variables

• MCTS is employed to partition the variables into important and unimportant ones,
select and optimize the important variables

• “Fill-in” strategy for unselected variables

Variable Score

Variable score 𝒔 ∈ ℝ𝐷 is a 𝐷-dimensional vector, where the 𝑖-th element represents the
importance of the 𝑖-th variable

𝒔 = ෍

𝕄,𝓓 ∈𝔻

෍

𝒙𝑖,𝑦𝑖 ∈𝓓

𝑦𝑖 ⋅ 𝑔(𝕄) / ෍

𝕄,𝓓 ∈𝔻

𝓓 ⋅ 𝑔(𝕄)

• (𝕄,𝓓) represents the indices of selected variables and the corresponding samples

• E.g., 𝕄 = {2, 5, 7} and 𝓓 is obtained by optimizing 𝑥2, 𝑥5, 𝑥7
𝑖 , 𝑦𝑖

𝑖=1

𝑡−1

• 𝑔: 2[𝐷] → 0, 1 𝐷, and the 𝑖-th element is 1 if 𝑖 ∈ 𝕄, and 0 otherwise

The sum of query evaluations
optimizing the variables indexed by 𝕄

The number of queries using
each variable

A Brief Introduction to MCTS

Tree node 𝑋 represents the state, and stores 𝑣𝑋 representing its goodness and the
number 𝑛𝑋 of visits

UCB is used to select node, balancing the exploitation and exploration:

𝑣𝑋 + 2𝐶𝑝 2 log 𝑛𝑝 /𝑛𝑋

A

B C

A

B C

D

A

B C

D
Selection Expansion Simulation

A

B C

D

Back-propagation

Example Illustration of MCTS-VS

Current state of MCTS-VS

A

B C

𝔸𝐴 = {1, 2, … , 9}

𝔸𝐶 = {3, 5, 6, 9}𝔸𝐵 = {1, 2, 4, 7, 8}

Tree node 𝑋 represents a subset of variables, denoted by index set 𝔸𝑋 ⊆ [𝐷]

• The root node represents all variables

• 𝑣𝑋 is defined as the average score (i.e., importance) of variables contained by 𝑋, which
is calculated by 𝒔 ⋅ 𝑔(𝔸𝑋)/|𝔸𝑋|

• 𝑛𝑋 is the number of visits

Example Illustration of MCTS-VS

Select node 𝐵 based on UCB value
A

B C

𝔸𝐴 = {1, 2, … , 9}

𝔸𝐶 = {3, 5, 6, 9}𝔸𝐵 = {1, 2, 4, 7, 8}

Example Illustration of MCTS-VS

0

2

4

6

8

10

12

x1 x2 x3 x4 x5 x6 x7 x8 x9

Variable score 𝒔

A

B C

𝔸𝐴 = {1, 2, … , 9}

𝔸𝐶 = {3, 5, 6, 9}𝔸𝐵 = {1, 2, 4, 7, 8}

Example Illustration of MCTS-VS

0

2

4

6

8

10

12

x1 x2 x3 x4 x5 x6 x7 x8 x9

Variable score 𝒔

0

2

4

6

8

10

12

x1 x2 x3 x4 x5 x6 x7 x8 x9

optimize

A

B C

𝔸𝐴 = {1, 2, … , 9}

𝔸𝐶 = {3, 5, 6, 9}
𝔸𝐵 = {1, 2, 4, 7, 8}

D E

𝔸𝐷 = {4, 7, 8} 𝔸𝐸 = {1, 2}

Example Illustration of MCTS-VS

0

2

4

6

8

10

12

x1 x2 x3 x4 x5 x6 x7 x8 x9

0

2

4

6

8

10

12

x1 x2 x3 x4 x5 x6 x7 x8 x9

optimize

Variable score 𝒔

A

B C

𝔸𝐴 = {1, 2, … , 9}

𝔸𝐶 = {3, 5, 6, 9}
𝔸𝐵 = {1, 2, 4, 7, 8}

D E

𝔸𝐷 = {4, 7, 8} 𝔸𝐸 = {1, 2}

“Fill-in” Strategy

The best 𝑘 samples: 𝒙∗𝑗 , 𝑦∗𝑗
𝑗=1

𝑘
, for unselected variable 𝑥𝑖:

• The best-𝑘 strategy: 𝑥𝑖 is uniformly selected from 𝑥𝑖
∗𝑗

𝑗=1

𝑘
at random

• The average best-𝑘 strategy: 𝑥𝑖 is the average of 𝑥𝑖
∗𝑗

𝑗=1

𝑘

• The random strategy: 𝑥𝑖 is sampled from the domain randomly

Theoretical Analysis

• Cumulative regret 𝑅𝑇 = σ𝑡=1
𝑇 (𝑓 𝑥∗ − 𝑓(𝑥𝑡))

• Assumption: The function 𝑓 is a GP sample path. For some 𝑎, 𝑏 > 0, given 𝐿 > 0, the
partial derivatives of 𝑓 satisfy that ∀𝑖 ∈ 𝐷 , ∃𝛼𝑖 ≥ 0,

𝑃 sup
𝒙∈𝒳

𝜕𝑓

𝜕𝑥𝑖
< 𝛼𝑖𝐿 ≥ 1 − 𝑎𝑒

−
𝐿
𝑏

2

• Theorem: ∀𝛿 ∈ (0, 1), let 𝛽𝑡 = 2 log
4𝜋𝑡

𝛿
+ 2𝑑𝑡 log(𝑑𝑡𝑡

2𝑏𝑟 log(
4𝐷𝑎

𝛿
)) and 𝐿 =

𝑏 log
4𝐷𝑎

𝛿
, and 𝜋𝑡 𝑡≥1 satisfies σ𝑡≥1𝜋𝑡

−1 = 1 and 𝜋𝑡 > 0. Let 𝛽𝑇
∗ = max

1≤𝑖≤𝑇
𝛽𝑡. At

iteration 𝑇,

𝑅𝑇 ≤ 𝐶1𝑇𝛽𝑇
∗𝛾𝑇 + 2𝛼𝑚𝑎𝑥 + 2෍

𝑡=1

𝑇

෍

𝑖∈ 𝐷 ∖𝕄𝑡

𝛼𝑖
∗𝐿𝑟

Theoretical Analysis

𝑅𝑇 ≤ 𝐶1𝑇𝛽𝑇
∗𝛾𝑇 + 2𝛼𝑚𝑎𝑥 + 2෍

𝑡=1

𝑇

෍

𝑖∈ 𝐷 ∖𝕄𝑡

𝛼𝑖
∗𝐿𝑟

• The regret from optimization

• The regret from unselected variables

Insight:

• The variable selection can reduce the computational complexity while increasing the
regret

• A good variable selection algorithm should select as important variables as possible,
i.e., variables with as larger 𝛼𝑖

∗ as possible

Experiments

We want to know the following research questions (RQs):

• RQ1: Can BO benefit from variable selection?

• RQ2: How does MCTS-VS perform compared with state-of-the-art methods?

• RQ3: How about the runtime of MCTS-VS?

• RQ4: Can MCTS-VS select more important variables than Dropout? (why)

• RQ5: Is MCTS-VS sensitive to the hyper-parameters?

Experiments – RQ1

Effectiveness of variable selection:

• Dropout is better than BO without variable selection

• MCTS-VS is better than Dropout

Experiments – RQ2

Synthetic functions:

Real-world problems: MCTS-VS is comparable with sota methods

Experiments – RQ3

Runtime comparison:

Variable selection can reduce the runtime

Experiments – RQ4

Recall comparison:

Recall
𝑑𝑡
∗

𝑑
is used to compare the quality of variable selection, where 𝑑𝑡

∗ is the number of

valid variables selected at iteration 𝑡 and 𝑑 is the number of valid variables

• Dropout:
𝑑

𝐷
in expectation

• MCTS-VS: run for 600 evaluations on five different random seeds and calculate the
average recall

The recall of MCTS-VS is much larger than Dropout

Experiments – RQ5

The best-𝑘 strategy is good, and MCTS-VS is not sensitive to the selection of 𝑘

Experiments – RQ5

MCTS-VS is not sensitive to other hyper-parameters

Conclusion

MCTS-VS uses MCTS to recursively partition the variables into important and
unimportant ones, and only optimizes those important variables

Feature work:

• A more well-designed metric for importance

• A specific theoretical analysis for MCTS-VS

Thank you!

