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Fenchel Conjugate

The Fenchel conjugate f∗ of a function f : Ω→ R is defined as

f∗(y) := max
x∈Ω

< x, y > −f(x)

The function is also referred to as the convex conjugate or
Legendre-Fenchel transformation of f .
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Fenchel Conjugate

For a proper, convex, lower semi-continuous f , its conjugate function
f∗ is also proper, convex, and lower semi-continuous. Moreover, one
has the duality f∗∗ = f . i.e.,

f(x) = max
y∈Ω∗

< x, y > −f∗(y)

where Ω∗ denotes the domain of f∗.
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Fenchel Conjugate
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f -Divergence and its Fenchel Conjugate

For a convex function f and a distribution p, the f -divergence is
defined as,

Df (x||p) = Ez∼p[f
(x(z)

p(z)

)
].

The conjugate of Df (x||p) at y is, under mild conditions1,

g(y) = max
x

∑
z

x(z)y(z)− Ez∼p[f(x(z)/p(z))]

= Ez∼p[max
x

x(z)y(z)/p(z)− f(x(z)/p(z))]

= Ez∼p[f∗(y(z))]

1Conditions of the interchangeability principle must be satisfied, and p must have
sufficient support
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Fenchel-Rockafellar Duality

Consider a primal problem given by

min
x∈Ω

JP (x) := f(x) + g(Ax) (1)

f, g : Ω→ R are convex, lower semi-continuous.

A is a linear operator.
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Fenchel-Eockafellar Duality

The dual of this probelm is given by

max
y∈Ω∗

JD := −f∗(−A∗y)− g∗(y) (2)

A∗ to denote the adjoint linear operator of A; i.e., A∗ is the linear
operator for which < y,Ax >=< A∗y, x > , for all x, y.

In the common case of A simply being a real-valued matrix, A∗ is
the transpose of A.
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Fenchel-Rockafellar Duality

Under mild conditions, the dual problem may be derived from the
primal via

Thus, we have the duality,

min
x∈Ω

JP (x) = max
y∈Ω∗

JD(y)
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Fenchel-Rockafellar Duality

The solution to the dual y∗ := arg maxy JD(y) can be used to find
a solution to the primal.

If (f∗)′ is well-definded, then x∗ = (f∗)′(−A∗y∗) is a solution to
the primal.

More generally, one can recover x∗ ∈ ∂f∗(−A∗y∗) ∩A−1∂g∗(y∗) as
the set of all primal solutions.
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The Lagrangian
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Notation

Markov Decision Process M =< S,A, P,R, γ, µ0 >.

Policy π : S → ∆(A).

Value function V π(s) = E[
∑∞

h=0 γ
hrh] and Q-function Qπ(s, a).

ρ(π) is the expectation of V π(s) under initial state distribution.

P π is the policy transition operator,

P πQ(s, a) := Es′∼T (s,a),a′∼π(s′)[Q(s′, a′)].

dπ(s, a) is the state-action distribution of policy π.

Xuhui Liu (Nanjing University) RL Theory January 22, 2021 14 / 37



The Linear Programming Form of Q

Q-LP:

The optimal Q∗ of this LP satisfies Q∗(s, a) = Qπ(s, a) for all s, a
reachable by π.
The dual of this LP provides us with the visitation perspective on
policy evaluation:
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Policy Evaluation via the Lagrangian

Using the Lagrangian of the Q-LP:

In an offline setting, where we only have access to a distribution
dD, we may make a chage-of-variables via importance sampling,
i.e., ζ(s, a) = d(s,a)

dD(s,a)
.
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Policy Evaluation via the Lagrangian

Doubly robust property

L(Q∗, ζ) = L(Q, ζ∗) = L(Q∗, ζ∗) = ρ(π).

Thus, this estimator is robust to errors in at most one of Q and ζ.

Learning Qπ values using rewards turns out to be difficult in
practice.

The bilinear nature of the Lagrangian can lead to instability or
poor convergence in optimization2.

2Boosting the actor with dual critic
Faster saddle-point optimization for solving large-scale markov decision processes
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Change the Probelm Before Applying Duality

The dual of Q-LP:

The problem is over-constrained: The |S| × |A| constraints
uniquely determine dπ.

One may replace the objective function without addecting the
optimal solution.
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Constant Function

If objective function h is taken to be the constant function h(d) := 0.

The optimization doesn’t involve learning Q-values with repect to
environment rewards.

The Lagrangian is linear in both Q and ζ.
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f -Divergence

Let h(d) := Df (d||dD):
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f -Divergence

Lagrange Duality:

Make the change-of-variables:
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f -Divergence

We write the problem as

max
d
−g(−Ad)− h(d)

where g(−Ad) corresponds to the linear constraints with repect to the
adjoint Bellman operator:

g := δ{(1−γ)µ0×π} and A := γP π∗ − I.

The dual problem is therefore given by:
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f -Divergence

If we set f = 1
2x

2,
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Summary

Q-LP with Lagrangian is MQL.

The dual of Q-LP with constant function is MWL.

The dual of Q-LP with f -Divergence and using Lagrange Duality
is dual form of DualDICE.

The dual of Q-LP with f -Divergence and using
Fenchel-Rockafellar Duality is primal form of DualDICE.
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The policy Gradient Theorem

1 By Danskin’s theorem:

∂

∂π
ρ(π) =

∂

∂π
min
Q

max
d≥0

L(Q, d;π) =
∂

∂π
L (Q∗, d∗;π)

2 We may compute the gradient of L(Q∗, d∗, π) w.r.t. π
term-by-term.
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The Policy Gradient Theorem

1 For the first term

∂

∂π
(1− γ) · Ea0∼π(s0),s0∼µ0 [Q∗ (s0, a0)]

= (1− γ) · Ea0∼π(s0),s0∼µ0 [Q∗ (s0, a0)∇ log π (a0 | s0)]

2 For the second term
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The Policy Gradient Theorem

1 Bellman equation

dπ(s, a) = (1− γ)µ0(s)π(a | s) + γπ(a | s)
∑
s̃,ã

T
(
s′ | s̃, ã

)
dπ(s̃, ã)

2

∂

∂π
L (Q∗, d∗;π) = E(s,a)∼dπ [Qπ(s, a)∇ log π(a | s)]
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Fenchel-Rockafellar Duality for Regularized
Optimization

Consider regularizing the max-reward policy objective with the
f -divergence:

Fenchel-Rockafellar duality yeilds the following dual formulation:
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Regularization with the KL-Divergence

The optimization objective can be formulated as

For a specific Q, the gradient of this objective with respect to π is

· Bears simiarities to max-likelihood policy learning.
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Imitation Learning

If one ignores rewards, the optimization corresponds to finding a
policy π which minimizes the f -divergence in terms of the
state-action occupancies from dD.

With the same techniques as we applied for offline policy
evaluation and offline policy optimization, one can derive offline
imitation learning algorithms.

Xuhui Liu (Nanjing University) RL Theory January 22, 2021 31 / 37



Table of Contents

1 Convex Duality
Fenchel Conjugate
f -Divergence
Fenchel-Rockafellar Duality

2 Policy Evaluation

3 Policy Optimization
The Policy Gradient Theorem
Dual Optimization

4 RL with the Linear Programming Form of V

Xuhui Liu (Nanjing University) RL Theory January 22, 2021 32 / 37



V-LP

V-LP

The dual of V-LP
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V-LP

The probelm is not over-constraint.

Cannot ignore constraints d ≥ 0.

This lead to a dual objective over two functions: V : S → R and
K : S ×A→ R+:

This objective only involves a single optimization over V and K s
opposed to a max-min optimization over pi and Q.

The solution will give us V ∗ rather than the policy itself.
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V-LP

To derive the optimal policy,

Using Bayes’s rule,
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Max-Likelihood Policy Learning

Regularization with DKL(d||dD) for the dual of V-LP yeilds

Aviod the numerical instability and ensure the positiveness of d.

The visitations of the optimal policy are now given by the softmax
function:

The optimal policy thus has a similar form:
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Policy Evaluation with the V-LP

We deconpose d(s, a) = µ(s)π(a|s) for a fixed policy π(a|s):

The LP is over-constrained.

We can replace the objective function as Q-LP.

This require the knowledge of dD(a|s).
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