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Background and Contribution

m Although several algorithms for risk-sensitive RL exist, none of them addresses the
offline setting.

m On the other hand, existing offline RL algorithms consider the average
performance criterion and are risk-neutral.

m Present the first approach towards learning a risk-averse RL policy for high-stakes

applications using only offline data: the Offline Risk-Averse Actor-Critic
(O-RAAC).
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Background and Contribution

Three components: a distributional critic that learns the full value distribution, a
risk-averse actor that optimizes a risk averse criteria and an imitation learner
implemented with a variational auto-encoder (VAE) that reduces the bootstrapping
error due to the offline nature of the algorithm.
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Risk-averse RL

In risk-neutral RL, the goal is to find a policy that maximizes the expected discounted

sum of returns Eg_[> 72 7' R(:s, a)].
In risk-averse settings, the goal is to find the policy 7 that maximizes

DX 207 R([s, a)].

Conditional Value-at-Risk (CVaR): Using the distributional of value, recent work
used a Gaussian distribution.

m Cumulative Prospect Theory or Exponential Utility.
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Offline RL

The biggest challenge in offline RL is the Bootstrapping Error: a Q-function is
evaluated at state-action pairs where there is little or no data and these get propagated
through the Bellman equation. In turn, a policy optimized with offline data induces a
state-action distribution that is shifted from the original data.

m Model-free: express the actor as the sum between an imitation learning
component and a perturbation model, regularizing the policies with the behavior
policy using the MMD distance or f-divergences.

m Model-based methods with pessimistic MDP.
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Distributional RL

Considering the distribution of value instead of mean of value.
m Categorical representation: C51.
m Quantile representation: QR-DQN.
m Implicit Quantile Network (IQN).
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Distributional Critic
To learn the distributional critic, exploit the distributional Bellman equation of returns
Z™(s,a) =p R(s,a) +~vZ7(S’, A"), the random variable S’, A" are distributed
according to s’ ~ p(+|s,a) and &’ ~ m(:|s').
Use a target network w' and compute the temporal difference (TD) error at a sample
(s,a,s,r) as

by =7 .FA,Z;’;, (s',a'; %’) — Zy(s,a;7)

with 7, 7" independently sampled from the uniform distribution.
The 7-huber loss:

: 52 if |0] < &,
Li(d37) = ‘T l{5<0)‘ {\6\—*}@ otherwise.
Quantile loss Huber loss
and the critic loss:
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Risk-averse Actor

prefer deterministic policies over stochastic ones because introducing extra randomness

is against a risk-averse behavior.
Consider parameterized deterministic policies mg(s). Define the actor loss as:

Lactor(0) = —Egnpo () [D (23 (5,70 ()3 7))]

there exists a quantile sampling distribution Pp

K

D(Z3 (s, ma(s);7)) = /Z;*’(snrg(s) Pp(r)dr =~ Z o (s, m(8); k), Tk ~ Pp
Kz

and the CVaR:

1 (07
CVaR (27 (s, 0;7)) = — / 77 (s,a;7) dr
a Jo
)

P4
hikd LaVipA
Learning And Mining from DatA

” NANJING UNIVERSITY




Off-policy to Offline

Like BCQ, express the actor as the sum between an imitation learning component and
a perturbation model:

71—9(3) =b+ Afg('|8, b)a s.t., b~ 7TIL('l""’ﬁ)

and the VAE loss:
.U’sz:Eqﬁl(Sva'); ZNN(/J:E): b:D¢2(S,2)

LvAB(8) = Baamp(y | (2= Dy (,2))” + 5 KL (1, ), N (0,)

reconstruction loss regularization
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O-RAAC

Algorithm 1: Offline Risk-Averse Actor Critic (O-RAAC).

input Data set, Critic Z,, and critic-target Z,,,, VAEg = {Ey,, Dy, }, Perturbation model &y and
target £»-, modulation parameter A, Distortion operator D or distortion sampling distribution Pp,
critic-loss parameters N, N, «, mini-batch size B, learning rate 7, soft update parameter L.
fort=1,...do
Sample B transitions (s, a, r, s') from data set.
Sample N quantiles T and N' target quantiles 7/ from 2£(0, 1) and compute 3, ;- in (2).
Compute policy g = b+ Ay(s,b), s.t. b ~ VAE,(s, a) as in (9).
Compute critic loss Lritic(w) in (4); actor loss Lactor(8) in (5); VAE loss Lyag (@) in (10).
Gradient step w < w — nv£critic(w); 00— nv£actor(9); ¢ <~ ¢ - WV£VAE(¢)'
Perform soft-update on w’ < pw + (1 — p)w'; 6 < pf + (1 — p)f'.
end for
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RAAC in off-policy

As a toy example, we chose a 1-D car with state s = (z, v), for position and velocity. The agent
controls the car with an acceleration a € [—1, 1]. The car dynamics with a time step At = 0.1 is

Tt41 = Ty + ’UtAt + 0.504(At)2, V41 = Vi + (ltAt.

The control objective is to move the car to x; = 2.5 as fast as possible, starting from rest. To model
the risk of crashing or of getting a speed fine, we introduce a penalization when the car exceeds a
speed limit (v > 1). Hence, we use a random reward function given by

Ri(s,a) = —10+ 370]Iz¢:mg — 250,,>1 - Bo.2,

where I is an indicator function and By 5 is a Bernoulli Random Variable with probability p = 0.2.
The episode terminates after 400 steps or when the agent reaches the goal.

4%k % LaAViDA

> NANJING UNIVERSITY Learning,And Miningfrom DatA




RAAC in off-policy

Table 1: Results of RAAC, WCPG, and D4PG in the car example. RAAC learns a policy that sat-
urates the velocity before the risky region. WCPG and D4PG learn to accelerate as fast as possible,
reaching the goal first with highest average returns but suffer from events with large penalty. We
report mean (standard deviation) of each quantity.

Algorithm CVaRg; Mean Risky Steps  Total Steps

RAAC  48.0(83) 48.0(83) 0 (0) 33 (1)
WCPG  15.8(33) 79.8(L3) 13 (0) 24 (0)
D4PG  15.6(44) 79.8(2.0) 13 (0) 24 (0)
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RAAC in off-policy
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Risk-averse Offline

Half-Cheetah: R:(s,a) = 7¢(s,a) — 70L,~y - Bo.1, where 7¢(s,a) is the original environment
reward, v the forward velocity, and v is a threshold velocity (v = 4 for the (M) variant and v = 10
for the (E) variant). As with the car example, this high-velocity penalization models a penalty to the
rare but catastrophic event of the robot breaking — we want to be risk-averse to it. We evaluate the
Half-Cheetah for 200 time steps.

Walker2D/Hopper: (s, a) = 7i(s,a) — pljg|»g - Bo.1, where 7;(s, a) is the original environment
reward, 6 is the pitch angle, 6 is a threshold angle (8 = 0.5 for the Walker2d-M/E and 6 = 0.1
for the Hopper-M/E) and p = 30 for the Walker2d-M/E and p = 50 for the Hopper-M/E. When
|6] > 26 the robot falls, the episode terminates, and we stop collecting such rewards. To avoid such
situation, we shape the rewards with the stochastic event at @ > #. The maximum duration of the
Walker2D and the Hopper is 500 time steps.
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Risk-averse Offline
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Risk-averse Offline
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Risk-neutral Offline

Algorithm Medium Expert

& CVaRg 1 Mean Duration | CVaRg 1 Mean Duration

O-RAACo; | 214(36) 331(30) 200 (0) | 595(191) 1180 (78)  200(0)

O-RAAC)»; | 252(14)  317(5)  200(0) | 695(34) 1185(7)  200(0)

§ O-RAACw | 253(9)  318(3)  200(0) | 358(67) 97421  200(0)

8 O-WCPG 76(14)  316(23) 200 (0) | 248(232) 905(107) 200 (0)

& O-D4PG 66(34)  341(20) 200 (0) | 556(263) 1010(153) 200 (0)

£ BEAR 15(30) 31200 200(0) | 44(20)  557(15)  200(0)

£ RAAC S5(1)  -52(0) 20000 | 3(13) 30(3)  200(0)

VAE 1023)  354(9) 200(0) | 260(84) 754(18)  200(0)

Behavior 9(6)  344(2) 200(0) | 100(8)  727(4)  200(0)

O-RAACo; | 751(154) 1282(20) 397(18) | 1172(71) 2006 (56) 432 (11)

O-RAACo2; | 497 (71) 1257(27) 479(6) | 670(133) 1758 (48)  436(7)

T . T O-RAACcpw | 500 (71) 1304(16) 477(3) | 819(89) 1874(34)  454(8)
max D [Z (.TJ,(I)] = max min Ed [Z (23, CL)] 8 owcee -15@41) 283 (37) 185(12) | 362(33) 1372(160) 301 (31)
T T deD § O-D4PG 31(29) 308(20) 249(9) | 773(55) 1870(63)  405(12)

™ S BEAR 517(66) 1318(31) 468 (8) | 1017(49) 1783(32)  463(4)

Z  RAAC 552 920 20007 | 4@ 83(6)  196(6)
VAE 84(2l) 425(37) 246(9) |345(302) 1217(180) 350 (130)

Behavior S6(9)  727(16)  500(0) | 1028(34) 1894(7) 500 (0)

O-RAAC); | 1416(28) 1482(4) 499 (1) | 980(28) 1385(33)  494(6)

O-RAACo2; | 1108(14) 1337(21) 419(6) | 730(129) 1304 (21)  434(6)

O-RAACcpw | 969(9) 1188(6) 373(2) | 488(1)  496(0)  160(0)

5 O-WCPG 8725  69(8)  100(0) | 720(34)  898(12)  301(1)

& 0-D4PG 1008 (28) 1098 (11) 359 (3) | 606(31)  783(18)  268(3)

2 BEAR 1252(47) 1575(8) 481(2) | 852(30) 1180(12)  431(4)

RAAC 71(23)  113(5)  M46(4) | 474(0)  475(0)  500(0)

VAE 727(39) 1081(17) 462(4) | 774(36) 1116(13)  498(1)

Behavior 674(5 1068(4) S00(0) | 827(12) 1211(3)  500(0)
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Conclusion

DPG+BCQ+IQN...

4
>~/ NANJING UNIVERSITY Learning And Mining from DatA



Reference

aq>



	Introduction
	Contribution
	Risk-averse RL
	Offline RL
	Distributional RL

	Algorithm
	Distributional Critic
	Risk-averse Actor
	Off-policy to Offline
	Algorithm

	Experiment
	RAAC in off-policy
	Risk-averse Offline
	Risk-neutral Offline

	Conclusion
	References

