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Contributions

® Use intrinsic reward to capture long-term knowledge about both exploration and
expoitation

® Distinguish the roles of policy and reward function in RL problems:

Policy decribes "How should the agent behave”, while the reward function decribes "What the
agent should strive to do”

Knowledge about "what” is indirect and slower to take effect on agent’s behavior (through palnning
and learning), but it can generalize to difference algorithms better.
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Related Work

® Reward Shaping: aims to handcraft reward towards known optimal rewards
Two main mathods: task dependent / task independent

® Reward learned from experience
Optimal Reward Framework: introduced by Singh et al.,2009
Compared to LIRPG and AGILE, this agent is able to generalize to new agent-environment
interfaces and algorithms.

e Cognitive study
Humans use both a random exploration strategy and an information seeking strategy when facing
uncertainty, however the latter one hasn’t been fully discussed in prior articles and essays.
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Terminology: MDP Part

® MDP = System Dynamic + Extrinsic Reward
Agent: A learning system interacting with an environment. Each time step the agent selects an
action at, receives an extrinsic reward r; defined by a task 7, and transits from state s; to spy1.
Policy: A mapping (mg(als)) from the environment state to the agent’s behavior, which is
parameterized by 6.

e Episode: A finite sequence of agent-environment interactions until the end.

- Tep—1
episodic return: G = 37,0 " ~'ry
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Terminology: Intrinsic Part

e Lifetime: A finite sequence of agent-environment interactions until the end of the
training defined by an agent designer. In this paper, lifetime consists of a fixed
number of episodes.

Lifetime return: Gfe = S~ 1atryy
® Intrinsic Reward: A reward function r,(7;) parameterised by 7, where
Tt = (S0, @0, 1, d1, S1..., ft, d, St) is a lifetime history experienced by the agent.

¢ Lifetime Value Function: A value function Vj(s) which is used to approximate
the accumulate lifetime return of the states.
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Terminology: The Optimal Reward Problem?

® Objective
maximize J(n) = E90~®,7'~p(7') [ETNPn(Tlé'o)[the]]

© and p(7) are an initial policy distribution and a distribution over tasks, 7 is agent’s history and
Pn(7|60) = p(s0) Ht—o 7o, (atlst)p(dey1s rev1, Ser1lst, at)-

Lifetime with task 7 ~ p(7)

--------

Episode 1 Episode 2
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Algorithm: Overview

Parameters:
® 0y
°n—n
*p— Vy
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Algorithm 1 Learning intrinsic rewards
Input: p(7): Task distribution
Input: ©: Randomly-initialised policy distribution
Initialise intrinsic reward 7 and lifetime value ¢
repeat
Initialise task 7 ~ p(7") and policy 6 ~ ©
while lifetime not ended do
6() «— 0
fork=1,2,...,Ndo
Generate a trajectory using mg, _,
Update policy 6 + 6r—1 + aVg,_, J;(0k—1)
using intrinsic rewards r,, (Eq. 3)
end for
Update intrinsic reward function 7 using Eq. 4
Update lifetime value function ¢ using Eq. 6
6+ 0 N
end while
until 7 converges
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Algorithm: Policy Update

® maximizing the episodic cumulated intrinsic reward

Tep—1

In(0) = Z V(1)

VoJy(0) = Eg G Vg logmg(als)]  (for each t)

Tep—1 — —
where nypt =Dkt o trp(Tht1)-

® similar to REINFORCE

CEEES Al
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Algorithm: Intrinsic Reward Update

® maximizing the lifetime reward
Jn) = Egyno,7~p(T) [ETan(Two)[GI ife]]

an(n) = EQt,T |:G|l“ifev9t |Og WHt(at‘st)vnef]

Computing the meta-gradient requires backpropagation through the entire lifetime. In
practice we truncate the meta-gradient after N steps and use Glt'fe’¢ to approximate

if
Gife.

N—-1

G’ = Z Vereskr1 +7"Vo(Tern)
k=0
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Algorithm: Intrinsic Reward Update (cont'd)

similar to the drivation of policy gradient theorem.

Vil ()
= Vyu(7oln)

=V, [Z 7o, (ao|70)a(70, aol)
ag

=" [Vyma, (a0l 70)a(70, aoln) + 70, (a0l 7o) Vya(7o, aoln)]

ag

= z [ 270, (a0|70)q(10, aoln) + e, (aolT0)Vy p(n,m\m,ao)(m + U(ﬁ\”))}

1o

= Z [VMU"(%\TO)(I(TO- aoln) + 7o, (ao| o) ZP(TI‘TILaO)Vr)v<Tl‘”>:|

ag T

=E, Z Voyry(adm)a(r. ain)
ar

= B, [Vylogmy(ac|)a(7e, arlm)]
=Er, [G:Vylog my(ar| 71)]

=E, [Gtv«% log g, (ut‘st)vngt] )

where Gy = Ef;tl 7y is the lifetime return given the history 7%, and we assume the discount factor v = 1 for brevity. Thus,
the derivative of the overall objective is:

Vil (1) = Bogne, 7rp(T) [Brimp(riingo) (Gt Vo, log T, (ar|5) Vo] - ©
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Algorithm: Lifetime Value Update

® using a temporal difference from n-step trajectory
L i
) = 5(G'? = Vy(m))?

Vod(0) = (G — V(7)) Vs V(1)
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Empty Room: Exploring Uncertainty

® blue squares: the hidden goal — yellow squares: the agent

Empty Rooms

0 100 200
Num episodes

(a) Room (b) Intrinsic (c) Count (d) ICM

® When the goal is not found, the intrinsic reward encourages the agent to visit
unknown locations; after the goal is found, it makes the agent to exploit the
knowledge.
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ABC: Exploring Uncertain Objects

o f(A) ~ U-1,1],(B) ~ U[—0.5,0], (c) ~ U[0,0.5]

4
— i Random ABC
— Visit C
s{»| [— s
1
Episode 2 0
-1
Episode 1 [ _»Visil A e
A=0.2 B=0.5 C=0.1 g
T
\ » 0 20 40
Episode 2 Episode 3

® These results show that avoidance and curiosity about uncertain objects can
emerge in the intrinsic reward.
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Key-Box: Exploring and Exploiting Casual Relationship

® Based Random ABC, but the agent need first to collect the key.

Key-Box
0.4
[
I
0.2
L] |
! v
0.0 1
0 2500 5000
(c) Key-Box

® Algorithms except Intrinsic Reward all failed to capture that the key is necessary to
open any box,which demonstrates that intrinsic reward can learn the relationships
between objects when the domain has this kind of invariant dynamics.

bQikd LAVIDA

" NANJING UNIVERSITY Learning;And;Mining,from Dat




Non-stationary ABC: Dealing with Non-stationary

® based on Random ABC, but the rewards of A and C are swapped every 250
episodes.

. i
Non-stationary ABC z “IIIIIIIl""IIIIl .|||| |||I|||I“"I|I|II“"I
I |
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Episodes

® This experiment shows that the intrinsic reward can capture the regularly repeated
non-stationary pattern of the tasks.
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Ablation

Two ablation studies

ife

® replace the lifetime return objective G'f¢ with episodic return GEP

® restrict the input of the reward network to current state instead of the lifetime

history
Empty Rooms Random ABC Key-Box Non-stationary ABC
c 100 0] 1.0 —— LSTM-Lifetime
E X
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§ 0.50 4 0.0
& 0.25 4 001 0.01 10.5
0 100 200 0 20 40 0 2500 5000 0 250 500 750 1000
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Back to The Title

What can intrinsic reward capture?
o useful exploring strategy

® characteristics of the task: stochastic reward, casual relationship and
non-stationary patterns

and Why?
® it tells agent "what to do”, rather than "do what”

® |ifetime return utilizes cross-episode knowledge in a more explicit way, such as the
comparison between the goal states(Random ABC)
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Intrinsic Reward for Meta RL

e Knowledge captured by intrinsic is useful for training randomly-initialised policies,
while other Meta-RL algorithms like MAML and RL2 are designed for fast
adaptation to new tasks.

Empty Rooms Random ABC Key-Box Non-stationary ABC
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Intrinsic Reward for Meta RL

® __.but it can provide more robustness because it is model-agnostic and
agent-agnostic.

Random ABC Random ABC Permuted Random ABC
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Thanks for listening!
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