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Introduction

MetaGAN: An Adversarial Approach to Few-Shot Learning. [1]

Ruixiang Zhang et al. (Yoshua Bengio)
Motivation:How to form generalizable decision boundaries from a small number of

tranining samples in few shot learning?
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Contribution

® Propose MetaGAN that unify supervised /semi-supervised few-shot learning
naturally
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Formalization

Distribution of Tasks P(T)

Training tasks (T;),, where T = (S1, QT)

ST=S55USY Qr = Q3 U Q% S/Q denote support/query set, s/u denote
superversied /unsupervised

5L7l— = {Xl,XQ, ...Xlw}, Qs-,— = {(xl,yl), ...(Xo,yo)}

Objective: Minimize prediction loss on a query set given support set
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Trouble of GANs
® GAN have trouble generating realistic samples in complex datasets

® Easy to run into mode collapsing
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Algorithm

Assume a few-shot classifier pp(x; T) = (p1(x), p2(x), ...pn(x)), augmented with an
additional output pp+1(x) to model the probability that input data is fake. The
objectives are

Discriminator:

Lp = Leuperversied + Lunsupervised
Lsupervised = Ex y~qslogpp(y1x, y < N)
Lunsupervised = Ex @ulogpa(y < N|x) + E, _,7(N 4 1|x)
Generator:
LE(D) = —E,_prllog(po(y < N}x))]
Overall:
Lp = maxpEtp(mL)

: T
fl ,‘% J'\% L= m/ngETNP(nLG |
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Practical implementation of meta Discriminator

* MAML:0, = 04— aVy,I}
Ip = —Exyslogpp(ylx, y < N) — Exsylogpp(y < N|x) — E,_,rlogpp(N + 1|x)
® Relation Network [2]: do classification via a deep distance metric
Let rij = gy (C(fs(xi), f5(x))), xi € S5, x; € Q% be the relevance score between
query x; and support x;, where gy is the relation module, f4 is the embedding
network, C is the concatenation operator. r;; is computed computed via softmax

classification
exp(rk,))

1+ Y1, exp(riy)

po(y = kx;) =
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Practical implementation of Generator

A conditional generative mode: compress support dataset to a vector ht and
concatenate it with random noise z as input

1. Instance-Encoder Module:
xj ~ S% — e; = Instance — Encoder(x;)

2. Feature-Aggregation Module: element wise operators such as average pooling,
max pooling.

To make it harder for the generator to simply reconstricut its inputs
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An insight

Figure 1: Left: decision boundary without metaGAN. Right: decision boundary with metaGAN. We
use red curves to denote the decision boundary. Blue area in figure represents class A, green area
represents class B, and gray area represents fake class. We use + to denote real samples and — to
denote fake samples generated.

(a) MetaGAN
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Performance

5-way Acc.

Model 1-shot 5-shot

Prototypical Nets 49.42 +0.78  68.20 + 0.66
MAML(5 gradient steps) 4870 + 1.84  63.11 £0.92
MAML(S gradient steps, first order) 48.07 £ 1.75 63.15+£0.91
MAML(1 gradient step, first order) 4364 +191 58.72+1.20
Ours: MetaGAN + MAML(1 step, first order) 46.13 +1.78  60.71 £ 0.89
Relation Net 50.44 +£0.82 6532+0.7
Ours: MetaGAN + RN 52.71+ 0.64 68.63 + 0.67

Table 2: Few-shot classification results on Mini-Imagenet.

(b) Supervised Case

Omniglot ~ Mini-Imagenet
Model I-shot S-way  l-shot 5-way

Prototypical Net(Supervised) ~ 93.66 + 0.09 4228 £0.32
Relation Net(Supervised) 93.82 + 0.07 43.87 £ 0.20

Ours: MetaGAN + RN 9712+ 0.08  47.43 +0.27
Table 4: Task-level Semi-Supervised 1-shot classification results on Omniglot and Mini-Imagenet.
. (c) Semi-Supervised Case
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GAN/GAIL Framework

Training set Discriminator
Real
®E4

Random
I'IWISVE‘

Generator

Fake image

(d) GAN framework
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(e) GAIL framework
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each GAN's corresponding GAIL

GAN [3] & GAIL [4]

CGAN [5] & CGAIL (additional label input)

InfoGAN [6] & InfoGAIL (learnt latent variable)

ACGAN & ACGAIL (augment D with an auxiliary classifier)
f-GAN & f-GAIL (minimize f-divergence of data distribution)
GoalGAN & GOALGAIL (Generate goals)

TripleGAN& TripleGAIL
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