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Problem Setting

We have:
- (near optimal) trajectories from many tasks.
- a new task

We want to:

- help RL agent learn faster in the new task.
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Possible solution of this problem

* Meta-RL

* Agent can only interact with the new task, while meta-RL needs to
Interact with a set of training tasks.

* Meta-IL (meta-imitation learning)
* meta-IL needs expert demonstration in new tasks.



Solution----learn an action prior from the dataset

* Learn a generative model from the dataset

* We have (s, a) pairs from other tasks. We can model the dataset by a
generative model ppior(als) , which could help explore in the new task.

* A distribution can be written as a deterministic function with a noise as
Input:
« a = f3(z8) ~ Pprior (@[$) | where z is a unit Gaussian random variable.

Possible formulation
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Like a conditional GAN Gaussian policy we always use

More impressive, especially in the multi-modal case Easier to optimize; the probability p(als) is tractable
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Solution----How to learn the prior s

* Maximize likelihood estimation (MLE): max log_prob
* Given a pair (s, a), how to calculate p(als)?
* Recall:

* if we know p(x), and y = f(x), what p(y) iS? Transformed MDP

pprior(a|3) =D (f;l(a; S)) |det (8f¢?1(a;s)/3a)| 24 f(Z 8) a
* fshould be invertible, thus, f should be monotonous w.r.t. x
* Adversarial training: introducing a discriminator
* the agent cannot retain full control over the action space S
* action space in such a way will be restricted to the dataset. m(zs) | )
* We want the prior model to: RL Policy -9

* be capable of representing complex, multi-modal distributions
* state-conditioned

. provideka mapping for generating “useful” actions from noise samples when learning a
new tas

* allow easier learning in the reparameterized action space without hindering the RL agent’ s
ability to attempt novel behaviors $¢

Solution: Using non-volume preserving (NVP) to construct invertible networks.



Non-volume Preserving (NVP)

X, y are D-dimensional vectors. s, t are functions from R4 s RP—d
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Method
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Dprior(@|8) = p. (fqb_l(a; s)) |det (8f5 " (ais)/aa) |



Experiments- - --trajectories during exploration

Without Behavioral Prior With Behavioral Prior

Figure 4: We plot trajectories from executing a
random policy, with and without the behavioral
prior. We see that the behavioral prior substan-
tially increases the likelihood of executing an ac-
tion that is likely to lead to a meaningful interac-
tion with an object, while still exploring a diverse
set of actions.



Experiment----Performance
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Figure 5: Results. The lines represent average performance across multiple random seeds, and the shaded
areas represent the standard deviation. PARROT is able to learn much faster than prior methods on a majority
of the tasks, and shows little variance across runs (all experiments were run with three random seeds, compu-
tational constraints of image-based RL make it difficult to run more seeds). Note that some methods that failed
to make any progress on certain tasks (such as “Place Sculpture in Basket”) overlap each other with a success
rate of zero. SAC and VAE-features fail to make progress on any of the tasks.



Experiment----Sensitivity w.r.t. dataset size
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Figure 6: Impact of dataset size on performance. We observe that training on 10K, 25K or 50K trajectories
yields similar performance.



Experiment---- Impact of train/test mismatch on performance
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Figure 7: Impact of train/test mismatch on perfor-
mance. Each plot shows results for four tasks. Note
that for the pick and place tasks, the performance is
close to zero, and the curves mostly overlap each other
on the x-axis.



