Error Bounds of Imitating Polices and Environments

Background

» Reinforcement learning (RL) learns from delayed feedback and may

be not sample-efficient.
 Imitation learning (IL) learns from expert demonstrations and

enjoys a good sample efficiency.
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In IL, there are two famous methods: behavioral cloning (BC) [1] and
generative adversarial imitation learning (GAIL) [2].

 BC reduces IL to supervised learning and suffers from the issue
of compounding errors.

« GAIL achieves better empirical performance than BC, but its
theoretical understanding needs further studies.

Setup and IL Algorithms:

« Infinite-horizon discounted MDP M — (87 A, M*, R, v, d())

» Policy m:S — A(4), policy value: Vi = E[> " v'r(st, at)|do, m, M*]
« Effective planning horizon: ﬁ

« State distribution d,, and state-action distribution p

 The focus of IL: policy value gap V;, — I},

BC: minimize the divergence between policy distributions
mingern Esva,  |DkL(me(:]s), 7(:|s))]
GAIL: minimize the divergence between state-action distributions

min, e Djgs (/07TE ; IOW)

Error Bounds of Imitating Polices

Behavioral Cloning:

Theorem 1: Given an expert policy mz and an imitated policy mg, with
EswdﬂE [DkL(mEe(:]|s), TBc(+|5))] < €(which can be achieved BC), we have

that VT(‘E . Vﬂ‘BC S 2\/§Rmax\/g

(I—7)2

« The error bound of BC has a quadratic dependency on the effective horizon,
verifying the issue of compounding errors from theoretical view.
« The proof is based on the following coherent error-propagation analysis:
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Corollary 1: Suppose that 7 and 7z are deterministic and the provided
function class II satisfies realizability. V6 € (0,1), w.p. =1 -6 , we have
that

VT('E R V7TBC = 2245—5612% (% log(lﬂl) T % 10g(%))

The following example shows that the quadratic dependency of BC is
unavoidable in the worst case.
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A “"hard” deterministic MDP for BC. Digits on arrows are corresponding
rewards. Initial state is sy while s; and s, are two absorbing states.

Generative Adversarial Imitation Learning:
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Theorem 2: Given an expert policy mz and an imitated policy w4 with
dp(Prg, Pras) — i0fren dp(Prg, Pr) < € (Which can be achieved GAIL), w.p.
> 1 — 4, we have that

Irllo (. . . .
Vig=Viga < 17— | inf dp(prg, ir) +2R5™ (D) +2R5™ (D) +12A
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Appr(II) Estm(D,m,d)

« Compared to BC, GAIL enjoys a linear dependency on the effective horizon.
« Moreover, theorem 2 suggests seeking a trade-off on the complexity of
discriminator class D

Experiments:
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As y — 1, the effective planning horizon increases, BC is worse than GAIL, and other
adversarial-based methods.

Error Bounds of Imitating Environments

By treating environment transition model a

as dual agent, learning the transition
function can also be treated by imitation

-
|earning_ Agent Expert dataset
W(Q‘S) (570'7 Sl) NM*(|S7a)

Imitate Environments via BC:
ming E(&a)r\,pyg [DKL (M*(-|5, a), My(-|s, a))}

Lemma 3: Given a learned transition model M, by BC with
(s a)~pir | Dkr (M*(-|s,a), Mp(-|s,a))] < em, for an arbitrary bounded
divergence policy m with maxs Dk, (W(-!S), WD(-\S)) < €r , we have

* \/§Rmax 2\/§Rmax
[V — V| < Yaimsst e + T Jex

Imitate Environments via GAIL:
ming Djs(p™e, p'')

Collect samples using Ty in Mg and
update My with reward r(s,a,s’) =
—InD(s,a,s")

Update the discriminator D:

mgXEMM* log(1 — D(s,a,s"))]+

E 1, [log(D(s,a,s"))]

Lemma 4: Given a learned transition model My by GAIL with
Djs(,LLMe : ,uM*) < €,,, under the same assumption of lemma 3, we have

* max Rmax
VMo — VM| < 22 Mmas e 4 2y2fmgs e

Learning the environment transition with GAIL-style learner can
mitigate the model-bias when evaluating policies.

Experiments:
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