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Abstract—Splitting criteria have played an important role
in the construction of decision trees, and various trees have
been developed based on different criteria. This work presents
a unified framework on various splitting criteria from the
perspective of loss functions, and most classical splitting criteria
can be viewed essentially as the optimizations of loss functions in
this framework. We further introduce a new splitting criterion,
named pairwise gain, which is motivated from a lower bound on
the mutual coupling of pairwise loss. Theoretically, we prove that
this new criterion is robust to symmetric and asymmetric label
noises simultaneously. Based on this new criterion, we develop
another variant of random forests, and extensive experiments are
provided to verify its robustness.

Index Terms—decision tree, splitting criterion, random forest,
label noise, robustness

I. INTRODUCTION

Decision trees have been a standard algorithm in machine
learning, computer vision, information retrieval, etc. From the
pioneer works of CART [1] and C4.5 [2], various decision
trees have been developed [3]–[6] during the past decades,
and the advantages of decision trees include good predictive
performance, computational efficiency, interpretability, etc.
Recent years have also witnessed the increasing popularity on
decision trees as the base learners for ensemble algorithms [4],
[6], [7]. For example, Microsoft Kinect makes real-time human
pose estimation from single depth images by trees trained on
millions of examples [8].

The construction of decision trees can be viewed as a top-
down greedy procedure [9]. Given a data set, we begin with a
root node, and each split partitions the training set into left and
right subsets by some test on each instance, and the highest-
scoring split is selected based on some certain criterion. We
then partition the data set accordingly and grow the tree with
the two newly created child nodes. This procedure is applied
recursively until some stopping conditions are reached, such
as a maximum tree depth or minimum sample size [1]. In
such a procedure, splitting criteria play an important role in
generalization error and structure of the learned tree.

Different decision trees have been developed based on
various splitting criteria. For example, Breiman et al. [1]
introduced the classical tree CART based on gini impurity,
which measures how often a random example would be
misclassified according to the class distribution. Quinlan [10]
proposed information gain as another criterion for decision
trees from an information-theoretic view, which considers the
mutual information between local node decision (left or right
nodes) and predictive output. More splitting criteria have been
introduced along this line, such as sum minority [11], DKM

[12], etc., whereas there is a lack of understanding on different
splitting criteria from the perspective of loss functions.

This work introduces a unified framework for previous
splitting criteria and proposes a new criterion. The main
contributions can be summarized as follows:

• We exploit the relationship between splitting criteria and
loss functions in the unified framework, and find that
many classical splitting criteria are essentially equivalent
to the optimizations of loss functions.

• A new splitting criterion is proposed in our framework,
called pairwise gain, motivated from the optimization of
pairwise loss. We prove that the pairwise gain criterion
is robust to symmetric and symmetric label noises.

• We develop new decision trees and random forests based
on the proposed pairwise gain. Extensive experiments
show its robustness in comparison with classical criteria,
also with more compact trees and less running-time cost.

II. RELATED WORK

Splitting criteria have played an important role in the
structure and generalization error of the learned decision
trees, as shown empirically in [13]–[15], and there also have
been some theoretical studies that analyzed the properties of
splitting criteria [16]–[19]. However, they focused on impurity
measures like Shannon entropy and gini index to unify the
view on splitting criteria since splitting criteria were regarded
as weighted sums of two impurity measures. In this paper, we
analyze splitting criteria from the perspective of loss functions.

In the work [7] and [20], the authors derived splitting criteria
from the second-order approximation of the additive training
loss for gradient tree boosting, whereas their work cannot
derive the classical splitting criteria. In contrast, our unified
framework includes previous common splitting criteria and is
suitable for a single tree and tree ensemble.

Not many studies are known about the robustness of de-
cision tree learning under label noises. It was observed that
label noises in the training data increase the size of the
learned tree and that detecting and removing noisy examples
improves the learned tree [21]. Ghosh et al. [22] presented
some theoretical analysis to show that many popular decision
tree algorithms are robust to symmetric label noises under
large sample size. In this paper, we propose a new splitting
criterion whose robustness is proved theoretically under both
symmetric and asymmetric label noises. We also empirically
study our criterion for random forests, since bagging and
random split selection are immune to label noises [4].



The rest of the paper is organized as follows: Section III
introduces some preliminaries. In Section IV we present the
unified framework, where previous splitting criteria essentially
optimize different (pointwise) loss functions. In Section V we
propose a new splitting criterion from pairwise loss and prove
its robustness to label noises. Section V shows the empirical
studies for our proposed criterion. We finally conclude with
future work in Section VII.

III. PRELIMINARIES

Let X ⊂ Rd be the instance/input space. Let Y ⊆ R and
Y = {1, 2, ...,K} denote the output space for regression and
classification, respectively. Suppose that D is an underlying
distribution over the product space X × Y . We can observe
training data Sm = {(x1, y1), (x2, y2), ..., (xm, ym)}, where
each example is drawn i.i.d. from the distribution D.

Given a decision tree, an instance x ∈ X is directed from
the tree root to a leaf node via internal nodes. Each internal
node performs a binary test by evaluating a split function
s(x) : Rd → {0, 1}, i.e., the instance x is directed to left child
node for s(x) = 0; and right child otherwise. Finally, one leaf
node presents the output for the instance x.

Let S be the set of training examples in one given node.
Without loss of generality, we assume

S = {(x1, y1), (x2, y2), ..., (xn, yn)} for n ≤ m.

Later in the paper, I[·] denotes the indicator function, which
returns 1 if the argument is true and 0 otherwise.

IV. THE FRAMEWORK BASED ON LOSS FUNCTIONS

Most supervised learning tasks can be formulated to learn
a function f by optimization of objective function as follows:

R(f) =

m∑
i=1

l(f(xi), yi),

where l(·) is a loss function such as square loss, etc.
Generally, it is difficult to directly optimize the objective

function R(f) for decision trees, due to the discrete and
sequential nature of the decisions in a tree. In practice, a
feasible solution is to use the greedy algorithm from the root,
and then add the branches iteratively, as most algorithms of
decision tree induction adopted.

Given some node, the objective function after splitting on
this node can be written as

L(s, fL, fR) =
∑

i:s(xi)=0

l(fL(xi), yi) +
∑

i:s(xi)=1

l(fR(xi), yi),

where s(·) denotes a binary split function which decides
whether an input instance that reaches this node should
progress through the left or right branch emanating from the
node; and fL(·), fR(·) denote the output function w.r.t the left
and right child, respectively.

Table I
THE RELATIONSHIP BETWEEN LOSS FUNCTIONS AND SPLITTING

CRITERIONS

Task Splitting criterion Loss function

Classification

Gini Impurity Square Loss
Information Gain Softmax Loss

Sum Minority 0-1 Loss
DKM Exponential Loss

Regression Variance Reduction Square loss
Mean Absolute Error Absolute loss

Given a specific split function s(·), we have the reduction
of objective function

t(s) = min
w

n∑
i=1

l(w, yi)−min
wL

∑
i:s(xi)=0

l(wL, yi)

−min
wR

∑
i:s(xi)=1

l(wR, yi), (1)

where w,wL, wR denote the output values of the node and
left and right child node, since instances in one node have the
same output values.

Based on this equation, we can directly prove that the
essence of various splitting criteria is to optimize some loss
functions greedily. For instance, the frequently-used criteria
gini impurity and information gain are essentially equivalent to
optimizing the square loss and softmax loss [23], respectively.
More relationships can be found in Table I.

V. A ROBUST CRITERION FROM PAIRWISE LOSS

Since traditional criteria are related to various pointwise
loss, we attempt to derive a new splitting criterion from a
pairwise loss, i.e., ranking loss, which has been an important
criterion for class-imbalanced learning, cost-sensitive learning,
learning to rank, etc. It is defined as

l(f ;x+, x−) =
1

2
I[f(x+) = f(x−)] + I[f(x+) < f(x−)],

where x+, x− denotes the positive and negative example.
The total ranking loss of all examples is

L(f) =
∑

x+∈S+
m

∑
x−∈S−

m

l(f ;x+, x−)

=
∑

x+∈S+

( ∑
x−∈S−

l(f ;x+, x−) +
∑

x−∈S−
m\S−

l(f ;x+, x−)
)

+
∑

x+∈S+
m\S+

( ∑
x−∈S−

l(f ;x+, x−)+
∑

x−∈S−
m\S−

l(f ;x+, x−)
)
,

where S+
m, S

−
m denote the sets of all positive and negative

examples respectively, S+, S− denote the sets of positive and
negative examples in the current node.

Owing to mutual coupling of pairwise loss, we introduce a
lower bound to simplify calculation as follows:

L(f) ≥ L̂(f) =
∑

x+∈S+

∑
x−∈S−

l(f ;x+, x−).



Before splitting, we have

L̂(f) =
1

2
N−N+,

since all examples have the same output values.
After splitting, we denote the output values of left and

right child by wL, wR ∈ R. Let N+
L , N

−
L , N

+
R , N

−
R denote

the numbers of positive and negative examples in the left and
right child, respectively. For wL < wR, we have

L̂(f) = L̂(wL, wR) =
1

2
N+

LN
−
L +

1

2
N+

RN
−
R +N+

LN
−
R .

This follows that

t(s) =
1

2
N−N+ − L̂(wL, wR) =

1

2
N+

LN
−
R −

1

2
N−LN

+
R .

Similarly, we have, for wL > wR,

t(s) =
1

2
N−N+ − L̂(wL, wR) =

1

2
N−LN

+
R −

1

2
N+

LN
−
R .

For wL = wR, we have

t(s) =
1

2
N−N+ − L̂(wL, wR) = 0.

Hence, our new splitting criterion, called pairwise gain, is
defined as

t(s) =
1

2
N−N+ − min

wL,wR

L̂(wL, wR)

= max
wL,wR

1

2
N−N+ − L̂(wL, wR)

=
1

2
|N−LN

+
R −N

+
LN

−
R |.

We now present a theoretical analysis on the robustness of
our proposed criterion pairwise gain under label noises.

Theorem 1: Suppose that there are the same label noise
proportions τ+, τ− in left and right child nodes, noises do not
influence the split selection based on pairwise gain.
Proof: Let Ñ+

L , Ñ−L , Ñ+
R and Ñ−R denote the sizes of positive

and negative examples under label noises in left and right child
nodes, respectively. We have

Ñ+
L = N+

L (1− τ+) +N−L τ−,

Ñ−L = N−L (1− τ−) +N+
L τ+,

Ñ+
R = N+

R (1− τ+) +N−R τ−,

Ñ−R = N−R (1− τ−) +N+
R τ+.

Then we have

Ñ+
L Ñ

−
R − Ñ

−
L Ñ

+
R

=
(
N+

L (1− τ+) +N−L τ−
) (
N−R (1− τ−) +N+

R τ+
)

−
(
N−L (1− τ−) +N+

L τ+
) (
N+

R (1− τ+) +N−R τ−
)

=N+
LN

−
R (1− τ+)(1− τ−) +N+

LN
+
R τ+(1− τ+)

+N−LN
−
R τ−(1− τ−) +N−LN

+
R τ+τ−

−N−LN
+
R (1− τ+)(1− τ−)−N+

LN
+
R τ+(1− τ+)

−N−LN
−
R τ−(1− τ−)−N

+
LN

−
R τ+τ−

=(1− τ+ − τ−)(N+
LN

−
R −N

−
LN

+
R ).

Table II
BENCHMARK DATASETS

dataset #instance #feature dataset #instance #feature
sonar 208 60 pendigits 10992 16
heart 270 13 phishing 11055 68

ionosphere 351 34 letter 20000 16
breast 683 10 protein 24387 357

australian 690 14 a9a 48842 123
diabetes 768 8 shuttle 58000 9
vehicle 846 18 w8a 64700 300

fourclass 862 2 connect4 67557 126
german 1000 24 mnist 70000 780
segment 2310 19 sensit 98528 50

splice 3175 60 ijcnn1 141691 22
dna 3186 180 skin-non 245057 3

satimage 6435 36 webspam 350000 254
gisette 7000 5000 cod-rna 488565 8

mushrooms 8124 112 covtype 581012 54
usps 9298 256 poker 1025010 10

This follows that

t̃(s) =
1

2
|Ñ+

L Ñ
−
R − Ñ

−
L Ñ

+
R |

=
1

2
|1− τ+ − τ−| · |N+

LN
−
R −N

−
LN

+
R |

= |1− τ+ − τ−| · t(s).

Hence, we can get

argmax
s
t̃(s) = argmax

s
t(s).

Label noises do not influence the split selection based on the
pairwise gain criterion. This theorem holds.

As can be seen, our proposed splitting criterion is robust
to both symmetric and asymmetric label noises. Most of
the traditional criteria are weighted sums of two impurity
measures so that the statistics in left and right nodes are
independent. However, they are coupled in our criterion, so
the robustness still holds for asymmetric noises.

VI. EXPERIMENTS

The goal is to empirically validate that decision trees and
random forests based on our proposed criterion pairwise gain
can achieve better accuracy under label noises, than ones based
on the most frequently used criteria, i.e., gini impurity and
information gain, as well as with more compact tree structure
and less training time cost.

Parameter Settings. In all experiments, 5-fold cross valida-
tion is executed to select stopping parameter, i.e., the minimum
number of samples required to split an internal node, denoted
by k ∈ [2, 10, 40, 80, 150, 500]. And we set the maximal depth
of each tree to be 50 so that a node is forced to be leaf after
reaching the maximal tree depth. As for random forests, we
randomly choose sqrt(#features) features when looking for
the best split. For each forest, it consists of 100 trees.

Datasets. Thirty-two benchmark datasets1 are summarized
in Table II. Multi-class datasets have been transformed
into binary ones by partitioning classes into two groups,

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/



Figure 1. Comparison of test accuracy, leaf number and tree depth under different symmetric noises
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Figure 2. Comparison of the running time (in seconds) on benchmark datasets under noises (τ−, τ+) = (0.4, 0.4). Notice that the y-axis is in log-scale.

where each group contains the similar sample size. We
consider six groups of noise proportions (τ−, τ+) ∈
{(0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.1, 0.3), (0.2, 0.4)},
and labels in the training set are flipped accordingly with
different random seeds.

Evaluation metrics. We adopt the test accuracy as the
classification performance measurement which is suitable for
these balanced datasets. And for decision trees, we further
analyze tree structure using leaf number and tree depth. Since
a random forest fits many decision trees, we only need to
evaluate the efficiency of single decision trees.

All measures of the compared methods are evaluated by 10
trials of 5-fold cross validation with different random seeds,
where the performances are obtained by averaging over 50

runs. Experiments are performed using Python on nodes of a
computational cluster with 16 CPUs (Intel Xeon Core 3.0GHz)
running RedHat with 48GB main memory.

The experimental results are divided into two categories:
decision trees under symmetric noises and random forests
under asymmetric noises.

A. Experimental Results for Decision Trees

Figure 1 show the comparisons of test accuracy, tree struc-
ture between our criterion and traditional splitting criteria for
decision trees under different symmetric noises (τ−, τ+) ∈
{(0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4)}, respectively. We
only present the performances on four datasets, while the
trends are similar on the other datasets. As can be seen,



Table III
COMPARISON OF TEST ACCURACIES (MEAN±STD.) UNDER LABEL NOISES. •/◦ INDICATES THAT OUR METHOD IS SIGNIFICANTLY BETTER/WORSE THAN

THE CORRESPONDING METHODS (PAIRWISE t-TESTS AT 95% SIGNIFICANCE LEVEL).

dataset (τ−, τ+) our criterion gini impurity information gain

sonar (0.1, 0.3) 0.7456±0.0828 0.7214±0.0822 0.7187±0.0770
(0.2, 0.4) 0.6856±0.0897 0.6583±0.0889 0.6539±0.0920

heart (0.1, 0.3) 0.7619±0.0945 0.7352±0.0597 0.7400±0.0661
(0.2, 0.4) 0.6926±0.0715 0.6626±0.0717• 0.6659±0.0674

ionosphere (0.1, 0.3) 0.8501±0.0479 0.8452±0.0791 0.8570±0.0755
(0.2, 0.4) 0.7479±0.0744 0.7400±0.0670 0.7536±0.0641

breast (0.1, 0.3) 0.9662±0.0127 0.9451±0.0247• 0.9442±0.0249•
(0.2, 0.4) 0.9633±0.0134 0.9004±0.0502• 0.9009±0.0488•

australian (0.1, 0.3) 0.8323±0.0368 0.8216±0.0364 0.8246±0.0383
(0.2, 0.4) 0.7583±0.0527 0.7401±0.0641 0.7361±0.0624

diabetes (0.1, 0.3) 0.7116±0.0380 0.7070±0.0396 0.7068±0.0413
(0.2, 0.4) 0.6345±0.0457 0.6294±0.0480 0.6293±0.0547

vehicle (0.1, 0.3) 0.8929±0.0299 0.8781±0.0348• 0.8805±0.0338
(0.2, 0.4) 0.8181±0.0383 0.7965±0.0451• 0.7962±0.0422•

fourclass (0.1, 0.3) 0.9316±0.0325 0.9104±0.0327• 0.9133±0.0305•
(0.2, 0.4) 0.8211±0.0544 0.7957±0.0568• 0.7920±0.0587•

german (0.1, 0.3) 0.7140±0.0330 0.7091±0.0413 0.7082±0.0395
(0.2, 0.4) 0.6205±0.0371 0.5914±0.0510• 0.5895±0.0549•

segment (0.1, 0.3) 0.9553±0.0128 0.9473±0.0152• 0.9513±0.0165
(0.2, 0.4) 0.8873±0.0285 0.8774±0.0280 0.8771±0.0284

splice (0.1, 0.3) 0.9111±0.0165 0.9033±0.0207• 0.8999±0.0201•
(0.2, 0.4) 0.8184±0.0337 0.7855±0.0442• 0.7788±0.0443•

dna (0.1, 0.3) 0.8985±0.0136 0.8930±0.0153 0.8883±0.0161•
(0.2, 0.4) 0.8141±0.0317 0.7809±0.0391• 0.7726±0.0388•

satimage (0.1, 0.3) 0.9151±0.0084 0.9045±0.0090• 0.9069±0.0094•
(0.2, 0.4) 0.8674±0.0150 0.8616±0.0156 0.8618±0.0164

gisette (0.1, 0.3) 0.9308±0.0059 0.9441±0.0051◦ 0.9464±0.0038◦
(0.2, 0.4) 0.8621±0.0186 0.8794±0.0206 0.8749±0.0226

mushrooms (0.1, 0.3) 0.9997±0.0005 0.9994±0.0009• 0.9994±0.0008•
(0.2, 0.4) 0.9901±0.0055 0.9871±0.0069• 0.9870±0.0068•

usps (0.1, 0.3) 0.9401±0.0047 0.9270±0.0059• 0.9299±0.0068•
(0.2, 0.4) 0.8746±0.0132 0.8624±0.0140 0.8595±0.0131•

pendigits (0.1, 0.3) 0.9723±0.0049 0.9696±0.0050• 0.9689±0.0052•
(0.2, 0.4) 0.9222±0.0116 0.9196±0.0127 0.9154±0.0133•

phishing (0.1, 0.3) 0.9377±0.0057 0.9341±0.0058• 0.9350±0.0054•
(0.2, 0.4) 0.9000±0.0112 0.8980±0.0106 0.8977±0.0110

letter (0.1, 0.3) 0.9091±0.0056 0.8997±0.0062• 0.9006±0.0064•
(0.2, 0.4) 0.8348±0.0098 0.8272±0.0101• 0.8265±0.0106•

protein (0.1, 0.3) 0.6407±0.0091 0.6490±0.0102 0.6526±0.0109◦
(0.2, 0.4) 0.5821±0.0117 0.5861±0.0137 0.5842±0.0118

a9a (0.1, 0.3) 0.8249±0.0037 0.8231±0.0045 0.8233±0.0042
(0.2, 0.4) 0.7842±0.0049 0.7815±0.0059 0.7804±0.0049

shuttle (0.1, 0.3) 0.9985±0.0003 0.9986±0.0006 0.9987±0.0005◦
(0.2, 0.4) 0.9976±0.0011 0.9965±0.0013• 0.9966±0.0014•

w8a (0.1, 0.3) 0.9808±0.0017 0.9848±0.0015◦ 0.9849±0.0017◦
(0.2, 0.4) 0.9767±0.0011 0.9777±0.0021 0.9773±0.0023

connect4 (0.1, 0.3) 0.8177±0.0026 0.8044±0.0044• 0.8041±0.0040•
(0.2, 0.4) 0.7348±0.0040 0.7008±0.0083• 0.7022±0.0080•

mnist (0.1, 0.3) 0.9334±0.0028 0.9269±0.0034• 0.9283±0.0028•
(0.2, 0.4) 0.8765±0.0055 0.8528±0.0055• 0.8537±0.0066•

sensit (0.1, 0.3) 0.8041±0.0022 0.8006±0.0025• 0.8033±0.0018
(0.2, 0.4) 0.7747±0.0031 0.7674±0.0028• 0.7673±0.0033•

ijcnn1 (0.1, 0.3) 0.9815±0.0011 0.9813±0.0007 0.9812±0.0009
(0.2, 0.4) 0.9612±0.0031 0.9583±0.0028 0.9579±0.0025•

skin-non (0.1, 0.3) 0.9984±0.0002 0.9982±0.0002• 0.9982±0.0002•
(0.2, 0.4) 0.9963±0.0006 0.9942±0.0008• 0.9940±0.0009•

webspam (0.1, 0.3) 0.9689±0.0008 0.9644±0.0011• 0.9662±0.0010•
(0.2, 0.4) 0.9399±0.0020 0.9358±0.0023• 0.9358±0.0022•

cod-rna (0.1, 0.3) 0.9589±0.0005 0.9580±0.0004• 0.9585±0.0004
(0.2, 0.4) 0.9368±0.0006 0.9372±0.0007 0.9375±0.0009

covtype (0.1, 0.3) 0.8998±0.0023 0.8960±0.0010• 0.8971±0.0009•
(0.2, 0.4) 0.8333±0.0031 0.8298±0.0018• 0.8293±0.0023•

poker (0.1, 0.3) 0.7104±0.0059 0.7059±0.0035 0.7055±0.0031•
(0.2, 0.4) 0.6573±0.0013 0.6462±0.0012• 0.6451±0.0012•
win/tie/loss 35/27/2 35/25/4



the test accuracy decreases with increasing of symmetric
noise proportions, and trees based on our criterion achieve
better accuracy than trees based on the gini impurity and
information gain. Besides, our criterion leads to more compact
tree structure, and the tree depth is significantly smaller than
the others. Hence, trees learned using our criterion have less
memory cost and more inference efficiency. We can find that
the bigger label noises are, the superior our proposed criterion
is. And it is natural for decision trees to prefer compact
structure in the case of large noise proportions, since the
outputs of big trees, whose leaves contain a small number
of noisy examples, are probably wrong.

We also compare the training time, and the average CPU
time (in seconds) is shown in Figure 2. Our method takes
less or comparable running time with the method based on
gini impurity. In particular, decision tree induction based
on our criterion is about 10 times faster than the method
based on information gain, since logarithms are computed in
information gain and trees learned by this criterion have much
more nodes which need more times of computing splitting
criteria during tree induction. As for random forests that fit a
few trees, the comparison of time is similar.

B. Experimental Results for Random Forests

Table III show the comparisons of test accuracy between our
criterion and traditional splitting criteria for random forests
under asymmetric noises (τ−, τ+) ∈ {(0.1, 0.3), (0.2, 0.4)},
respectively. We can observe that random forests based on our
criterion achieve better test accuracy than the gini impurity
and information gain criteria, even if bagging and random
split selection in random forests can improve the robustness
to label noises. We think the superiority benefits from the
property that our criterion is robust to arbitrary noises, while
traditional splitting criteria, like gini impurity and information
gain, are not theoretically robust to asymmetric noises. As
for symmetric noises, we observe that these criteria get so
comparable performances that we do not present the results
due to page limitation. We think random forests are inherently
robust to symmetric noises no matter which splitting criterion.

VII. CONCLUSION AND FUTURE WORK

Splitting criteria have been an important issue on the
construction of decision trees. This work presents a unified
framework on the splitting criteria from the optimization
of loss functions. We point out that decision tree induction
based on some classical criteria essentially optimizes different
pointwise loss functions, e.g., gini impurity and information
gain correspond to the optimization of square loss and softmax
loss, respectively. We further derive a new splitting criterion
pairwise gain from pairwise loss, which is theoretically robust
to label noises, including both symmetric and asymmetric
noises. Extensive experiments show that decision trees and
random forests based on our pairwise gain criterion are more
robust to label noises, in contrast to the most frequently used
criteria, information gain and gini impurity. In the future, an

interesting attempt is to exploit more new splitting criteria
from other loss functions based on our framework.
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