Optimization Methods

Fall 2025

Homework 1

Instructor: Lijun Zhang Name: Your name, StudentId: Your student id

Notice

- The submission email is: optfall25@163.com.
- Please use the provided LATEX file as a template.
- If you are not familiar with LATEX, you can also use Word to generate a PDF file.
- In this homework, we use boldface letters (e.g., $\mathbf{x} \in \mathbb{R}^n$) to denote vectors, while non-bold letters (e.g., $x \in \mathbb{R}$) denote scalars.

Problem 1: Norms (30 points)

A function $f: \mathbb{R}^n \to \mathbb{R}$ with dom $f = \mathbb{R}^n$ is called a norm if

- f is nonnegative: $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- f is definite: $f(\mathbf{x}) = 0$ only if $\mathbf{x} = \mathbf{0}$
- f is homogeneous: $f(t\mathbf{x}) = |t| f(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{R}^n$ and $t \in \mathbb{R}$
- f satisfies the triangle inequality: $f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

We use the notation $f(\mathbf{x}) = \|\mathbf{x}\|$. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $\|\cdot\|_*$, is defined as

$$\|\mathbf{z}\|_* = \sup\left\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\| \leq 1\right\}.$$

- a) Prove that $\|\cdot\|_*$ is a valid norm.
- b) Prove that the dual of the Euclidean norm (ℓ_2 -norm) is the Euclidean norm, i.e., prove that

$$\|\mathbf{z}\|_{2*} = \sup \{\mathbf{z}^T \mathbf{x} \mid \|\mathbf{x}\|_2 \le 1\} = \|\mathbf{z}\|_2.$$

(*Hint*: Use Cauchy-Schwarz inequality.)

- c) Prove that the dual of the ℓ_1 -norm is ℓ_{∞} -norm.
- d) Next, let's move to the matrix norm. The ℓ_2 -norm for a matrix $A \in \mathbb{R}^{n \times n}$ is defined as

$$\left\|A\right\|_2 = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\left\|A\mathbf{x}\right\|}{\left\|\mathbf{x}\right\|}.$$

We define $\rho(A) = \max_i \{|\lambda_i(A)|\}$, where $\lambda_i(A)$ is the eigenvalue of A. Prove that

$$\rho(A) \leq ||A||_2$$
.

Problem 2: Inequalities (10 points)

Let $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^n$, where n is a positive integer. Let $\|\cdot\|$ denote the Euclidean norm.

- a) Prove $\|\mathbf{x} + \mathbf{y}\|^2 \le (1 + \epsilon) \|\mathbf{x}\|^2 + (1 + \frac{1}{\epsilon}) \|\mathbf{y}\|^2$ for any $\epsilon > 0$.
- b) Prove $\sum_{i=1}^{m} \left\| \mathbf{x}_{i} \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j} \right\|^{2} = \frac{1}{2m} \sum_{i=1}^{m} \sum_{j=1}^{m} \left\| \mathbf{x}_{i} \mathbf{x}_{j} \right\|^{2}$, where $\mathbf{x}_{1}, \dots, \mathbf{x}_{m} \in \mathbb{R}^{n}$.

(*Hint*: You may need the Young's inequality for products, i.e. if a and b are nonnegative real numbers and p and q are real numbers greater than 1 such that 1/p + 1/q = 1, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.)

1

Problem 3: Definition of Convexity (20 points)

Which of the following sets are convex? Please provide explanations for your choices.

- a) a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid \alpha \leq \mathbf{a}^T \mathbf{x} \leq \beta\}$.
- b) a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_1^T \mathbf{x}_1 \leq b_1, \mathbf{a}_2^T \mathbf{x} \leq b_2\}.$
- c) The set of points closer to a given point than a given set, i.e.,

$$\{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_0\| \le \|\mathbf{x} - \mathbf{y}\| \text{ for all } \mathbf{y} \in S\}$$

where $S \subseteq \mathbb{R}^n$.

d) The set of points closer to one set than another, i.e.,

$$\{\mathbf{x} \mid \mathbf{dist}(\mathbf{x}, S) \leq \mathbf{dist}(\mathbf{x}, T)\},\$$

where $S, T \subseteq \mathbb{R}^n$, and

$$\mathbf{dist}(\mathbf{x}, S) = \inf \{ \|\mathbf{x} - \mathbf{z}\| \mid \mathbf{z} \in S \}.$$

e) The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, *i.e.*, the set $\{\mathbf{x} \mid \|\mathbf{x} - \mathbf{a}\| \le \theta \|\mathbf{x} - \mathbf{b}\|\}$. You can assume $a \ne b$ and $0 \le \theta \le 1$.

Problem 4: Convex Functions (25 points)

Which of the following functions are convex? Please provide explanations for your choices.

- a) $f(x) = e^{ax}, a \in \mathbb{R}$
- b) $f(x) = x^a, a \ge 1 \text{ or } a \le 0$
- c) $f(x) = x \log x$
- d) $f(x_1, ..., x_k) = \ln(\sum_{i=1}^k e^{x_i})$

Then prove that, for a convex function f(x) and $\sum_{i=1}^k \theta_k = 1$ with $\theta_i \in [0,1], \forall i,k \geq 2$, the following inequality holds

$$f\left(\sum_{i=1}^{k} \theta_{i} x_{i}\right) \leq \sum_{i=1}^{k} \theta_{i} f\left(x_{i}\right).$$

Problem 5: Generalized Inequalities (15 points)

Let K^* be the dual cone of a convex cone K. Prove the following,

- a) K^* is indeed a convex cone.
- b) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.