
Mixup without Hesitation

Hao Yu, Huanyu Wang, and Jianxin Wu(B)

State Key Laboratory for Novel Software Technology, Nanjing University, China
wujx2001@gmail.com

Abstract. Mixup linearly interpolates pairs of examples to form new
samples, which has been shown to be effective in image classification
tasks. However, there are two drawbacks in mixup: one is that more train-
ing epochs are needed to obtain a well-trained model; the other is that
mixup requires tuning a hyper-parameter to gain appropriate capacity.
In this paper, we find that mixup constantly explores the representation
space, and inspired by the exploration-exploitation dilemma, we pro-
pose mixup Without hesitation (mWh), a concise and effective training
algorithm. We show that mWh strikes a good balance between explo-
ration and exploitation by gradually replacing mixup with basic data
augmentation. It can achieve a strong baseline with less training time
than original mixup and without searching for optimal hyper-parameter,
i.e., mWh acts as mixup without hesitation.

Keywords: Deep Learning ·Mixup · Exploration-Exploitation Dilemma.

1 Introduction

Deep learning has made great breakthroughs in various computer vision prob-
lems such as image classification [4] and object detection [11]. However, requiring
lots of training data is the well-known drawback of deep learning, and data aug-
mentation methods have partially alleviated this difficulty.

In particular, mixup, proposed by Zhang et al. [18], is based on virtual ex-
amples created by linearly interpolating two random samples and their corre-
sponding labels, i.e.,

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(1)

where xi and xj are two data samples, and yi and yj are their labels. The mixing
coefficient λ is sampled from a beta distribution Beta(α, α). Mixup allows deep
learning models to train on a large number of virtual examples resulting from the
random combination, and the standard cross-entropy loss is calculated on the
soft-labels ỹ instead of hard labels. In general, mixup raises the generalization
of deep neural networks significantly, especially on small datasets [13].

However, it is also well-known that mixup suffers from slow convergence and
requires a sophisticated selection of the hyper-parameter α. In detail,



2 Hao Yu, Huanyu Wang, and Jianxin Wu

– Mixup requires more epochs to converge. Since it explores more regions of
the data space, longer training is required, e.g., it takes 200 epochs to train
ResNet-50 on ImageNet with mixup, but a normal training routine of 90
epochs is sufficient [18]. Note that this observation not only exists in mixup,
but can also be found in other data augmentation methods that strongly
increase the complexity of training data [2,17].

– Mixup requires an α value to sample mixing coefficients. Different α values
usually lead to big differences in model accuracy. Zhang et al. [18] mentioned
that mixup improves performance better when α ∈ [0.1, 0.4], and larger α
may cause underfitting. However, α greater than 1 tends to perform better
in some cases [13]. In other words, the generalization ability of mixup is
heavily affected by hyper-parameter selection, but choosing a suitable α is
quite difficult.

In order to solve both difficulties, we propose mWh, which stands for mixup
Without hesitation (mWh). Instead of using mixup to augment data throughout
the entire model training process, mWh accelerates mixup by periodically turn-
ing the mixing operation off, which also makes it robust to the hyper-parameter
α. The contributions of mWh are:

– Through carefully designed experiments and observations, we show that
mixup attains its accuracy improvement through boldly exploring the rep-
resentation space. Basic data augmentation (e.g., flipping and cropping) fo-
cuses more on exploiting the space. Hence, mWh strikes a good exploration-
exploitation trade-off, and achieves both high accuracy and training speed.

– We gain new benchmarks of image classification consistently. Regardless of
whether epochs are doubled or not, mWh performs better than mixup.

– mWh is robust with respect to α. With a default α value, mWh performs
consistently well in a variety of computer vision tasks.

2 Related Work

First, we briefly review data augmentation methods and the related works that
inspired this paper.

One of the important problems in computer vision is training with a small
amount of data, as deep learning models often overfit with small datasets. Data
augmentation is a family of techniques to solve this difficulty, and basic data
augmentation methods, such as horizontal reflection, rotation and rescaling, have
been widely applied to many tasks and often boost the model accuracy. Mixup
can be regarded as a kind of data augmentation method and it often enhances
the generalization performance of CNNs. Mixup can also ease the over-confident
prediction problem for deep neural networks [13]. Similar interpolation can be
applied in semi-supervised learning [1] and model adversarial robustness [10] and
domain adaptation [16]. Manifold mixup [14] shares similarities with mixup.
It trains neural networks on linear combinations of hidden representations of
training examples.



Mixup without Hesitation 3

Apart from mixup, some novel data augmentation methods have recently
been proposed, too. Some data augmentation approaches are based on searching,
like AutoAugment [3] and Fast AutoAugment [9]. AutoAugment designs a search
space to combine various data augmentation strategies to form a policy, but the
whole search algorithm is very computationally demanding. Cutout [5] randomly
masks out square regions of an input image during training. GridMask [2] im-
proves the existing information dropping algorithms. Similar to mixup, CutMix
[17] also involves two training samples: it cuts one image patch and pastes it to
another training image. He et al. [6] analyze the distribution gap between clean
and augmented data. They preserve the standard data augmentation and refine
the model with 50 epochs after training DNNs with mixup.

Note that these elaborate methods change the original images significantly,
and almost always elongate the training process, e.g., in Manifold mixup, Verma
et al. [14] trained PreAct ResNet-18 for 2000 epochs in CIFAR-10 and CIFAR-
100, but 100 epochs of training will be enough without Manifold mixup. CutMix
and GridMask also need careful hyper-parameter selection. Although they often
achieve higher accuracy than basic data augmentation, more training epochs lead
to significantly inflated financial and environmental costs, which is the common
and significant drawback of mixup and these methods. Hence, we propose mWh
to solve this dilemma. Its goal is to achieve higher accuracy even without many
epochs or hyper-parameter selection.

3 mixup Without hesitation (mWh)

We propose mWh in this section. First, we analyze the effect of mixup training
and reveal its property. Then we propose mixup Without hesitation (mWh), a
simple plug-and-play training strategy. Finally, we study the role of every stage
as well as the influence of hyper-parameters in mWh.

3.1 Observations

We investigate the role mixup plays during training, and demonstrate that with
the combination of mixup and basic data augmentation, mWh has the potential
to retain the accuracy improvement brought by mixup, too.

Training neural networks involves finding minima of a high-dimensional non-
convex loss function, which can be visualized as an energy landscape. Since
mixup generates more uncertain data, it enlarges the sample representation space
significantly, and explores more potential energy landscapes, so the optimization
method can find a better locally optimal solution. However, the side effect of
mixup is that it also brings instability during the training process. We trained
PreAct ResNet-18 on CIFAR-10, and as Fig. 1 showed, we have two observations
from the curves. The first one is: with mixup, the loss oscillates constantly on
the original test dataset, but if the model is trained on the clean data, the
curves are smoother. This phenomenon suggests that compared with basic data
augmentation, mixup introduces higher uncertainty in the training process. The



4 Hao Yu, Huanyu Wang, and Jianxin Wu

0

0.5

1

1.5

2

2.5

3

1 7
1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

L
os

s

Epoch

Baseline Mixup

Fig. 1. Cross-entropy loss on the CIFAR-10 test set. We used PreAct ResNet-18 and
α = 0.5.

second one is: in the early training stage, mixup enlarges the test loss, which
indicates it focuses on exploring the energy landscapes and will not fall into local
optima prematurely.

However, in the later training stages, since the model gets closer to con-
vergence, exploration must not be the main goal. Instead, we should switch to
exploiting the current state using basic data augmentation. Results in Table 1
validate our motivations. We train PreAct ResNet-18 on CIFAR-100 with 100
epochs and set α as 1.0. The result demonstrates that using mixup only in the
first 50 epochs is better. Hence, we conjecture that mixup is effective because it
actively explores the search space in the early epochs, while in the later epochs,
mixup might be harmful.

But, if we directly apply basic data augmentation after a model is trained
with mixup [6], this refinement operation may end up with overfitting. We
trained PreAct ResNet-18 with 200 epochs in CIFAR-10 and Tiny-ImageNet-
200 with mixup, and refine the model with 25 epochs without mixup. Learning
rate starts at 0.1 and is divided by 10 after 100 and 150 epochs, and we set the
learning rate to be the same as that in the final epochs of the last stage dur-
ing refinement. The results are shown in Table 2. We can observe that accuracy
decreased after refinement, which indicates the number of refining epochs is diffi-
cult to control, and refining may lead to overfitting. Putting our observations and
conjectures together, we propose to gradually replace mixup with basic data aug-



Mixup without Hesitation 5

Table 1. Accuracy (%) on CIFAR-100. Baseline means we train the model with basic
data augmentation. Mixup means we apply mixup throughout the training process.
First Half Mixup means the first half of epochs apply mixup but the last do not, and
similarly, Second Half Mixup means we only apply mixup in the second half of epochs.

Methods Top1 Top5

Baseline 74.20 92.53
Mixup 75.25 92.40

First Half Mixup 75.87 93.10
Second Half Mixup 72.50 91.04

Table 2. Accuracy (%) on PreAct ResNet-18, α = 0.5.

Datasets Mixup +Refinement

CIFAR-10 95.46 95.30
Tiny-ImageNet-200 60.73 60.21

mentation such that the learning algorithm gradually switches from exploration
to exploitation, which is a good strategy to solve the exploration-exploitation
dilemma [12] in our context.

3.2 Algorithm

The mWh algorithm is in Algorithm 1. We use a mini-batch instead of an epoch
as the unit of execution. We denote the total number of mini-batches as m, and
use two hyper-parameters p and q (0 ≤ p < q ≤ 1) to divide the whole training
process into three stages, i.e.,

– First stage: from 1 to pm mini-batches, we train with mixup. Note that here
we assume pm is an integer.

– Second stage: from pm+ 1 to qm mini-batches, we alternate between mixup
and basic data augmentation. If the last mini-batch does not apply mixup,
the next one will, and vice versa.

– Third stage: from qm+ 1 mini-batches to the end, we run mixup with prob-
ability ε, where ε decreases linearly from 1 to 0.

In the first stage, mWh lets the model explore a large portion of the sample
representation space by consistently applying mixup.

The second stage is an exploration-exploitation trade-off. We periodically
turn mixup on and off to avoid getting trapped in a local optimum prematurely.
When we turn mixup off, the model will exploit the limited and promising region
of the sample representation space with the hope of accelerating convergences.
When we turn mixup on, the model will keep exploring more energy landscapes.

In the third stage, we gradually switch to exploitation, which is inspired by
the ε-greedy algorithm [12]. We define an exploration rate ε that is initially set



6 Hao Yu, Huanyu Wang, and Jianxin Wu

Algorithm 1: The mWh Training Algorithm

Input: Training dataset (X ,Y), number of training mini-batches m, two
parameters p and q satisfying (0 ≤ p < q ≤ 1), Beta distribution
parameter α for mixup.

1 for i = 1 to m do
2 Draw a mini-batch (xb, yb).
3 if i ≤ pm then // First stage

4 (x̃b, ỹb) = mixup(xb, yb, α)
5 else if i ≤ qm then // Second stage

6 if i is even then
7 (x̃b, ỹb) = mixup(xb, yb, α)
8 else
9 (x̃b, ỹb) = basic augmentation(xb, yb)

10 end if

11 else // Third stage

12 ε = m−i
m(1−q)

13 Randomly generate threshold θ ∈ [0, 1].
14 if θ < ε then
15 (x̃b, ỹb) = mixup(xb, yb, α)
16 else
17 (x̃b, ỹb) = basic augmentation(xb, yb)
18 end if

19 end if
20 Train model with mini-batch (x̃b, ỹb).

21 end for

to 1. This rate is the probability that our model will use mixup. As ε decreases
gradually, the model tends to choose exploitation rather than exploration.

Finding suitable values of p and q is essential. Note that we expect mWh to
be robust and insensitive to hyper-parameters. Hence, we want to fix p and q
in all experiments. Here we train ResNet-50 on ImageNet with 100 epochs and
study the effect of different p and q. In these experiments, the default learning
rate is 0.1 with a linear warmup for the first 5 epochs and divided by 10 after
training 30, 60, 90 epochs. We set batch size to 256. In Table 3, we set q as 0.9
and explore the impact of different q. We also fix p as 0.6 and research the effect
of q in Table 4. Especially, when q is equal to 1.0, we remove the third stage in
mWh, and similarly, when q is 0.6, we apply the ε-greedy algorithm after the
mini-batches of 60 percent. Based on our experimental results, although choosing
different p and q does not have a significant effect on the outcome, 0.6 and 0.9
are a reasonable choice, so we always set p = 0.6 and q = 0.9.

Now we validate our framework by an ablation study on ImageNet. We train
ResNet-50 on ImageNet with 100 epochs and set α as 0.5. All experiments apply
mixup in the top 60 percent mini-batches. Table 5 contains several results and
we try different strategies in Stage 2 and Stage 3. Different rows represent using
different strategies to train the model. In particular, none indicates we apply



Mixup without Hesitation 7

Table 3. The influence of p on ImageNet.

p 0.5 0.6 0.7 0.8 0.9

α = 0.2 76.952 76.948 76.814 76.856 76.894
α = 0.5 76.782 76.854 76.964 76.754 76.736

Table 4. The influence of q on ImageNet.

q 0.6 0.7 0.8 0.9 1.0

α = 0.2 76.854 76.814 76.792 76.948 76.742
α = 0.5 76.792 76.942 76.894 76.854 76.716

Table 5. Accuracy (%) of ResNet-50 trained on ImageNet.

Stage 2 Stage 3 Top1 Top5

None None 76.756 93.314
mixup None 76.770 93.478
mixup mixup 76.212 93.246
mixup mWh 76.832 93.504
mWh None 76.772 93.428
mWh mixup 76.388 93.304
mWh mWh 76.854 93.463

basic data augmentation. When we apply mWh at Stage 2, it refers to the
alternating of mixup and basic data augmentation between the mini-batches of
60 to 90 percent. Using mWh at Stage 3 means running mixup with a probability
of ε in the final 10 percent of the mini-batches.

From Table 5, we can find no matter at what stage, applying mWh instead of
mixup leads to higher accuracy. Especially, mixup reduces the performance of the
model in Stage 3, which coincides well with results in Table 1 and our conjecture
(mixup is harmful in later epochs). These results verify the effectiveness of our
framework. Note that those results do not mean that our 3 stages setting is the
best, maybe four stages or cosine decaying chance strategy performs better in
some experimental results. After all, our contribution is a working algorithm
that meets our goal (attain mixup accuracy with fewer epochs and insensitive
to alpha).

4 Experiments

In this section, we evaluate the performance of mWh. We first conduct exper-
iments to validate the effectiveness of mWh on four benchmark classification
datasets. For a fair comparison, mWh used the same random seed as mixup.
Then we show its transferability in CutMix [17]. The parameters p and q are
always set to 0.6 and 0.9. All our experiments are conducted by PyTorch.



8 Hao Yu, Huanyu Wang, and Jianxin Wu

100 epoch 200 epoch
93

94

95

96

97

94.82 95.0795.00 95.7295.11 95.92

Baseline mixup mWh

(a) CIFAR-10, α = 0.2

100 epoch 200 epoch
93

94

95

96

97

94.82 95.0795.06 96.0895.17 96.16

Baseline mixup mWh

(b) CIFAR-10, α = 0.5

100 epoch 200 epoch
75

76

77

78

79

80

81

82

76.05 77.4877.29 79.9878.11 80.27

Baseline mixup mWh

(c) CIFAR-100, α = 0.2

100 epoch 200 epoch
75

76

77

78

79

80

81

82

76.05 77.4878.71 80.2279.94 81.45

Baseline mixup mWh

(d) CIFAR-100, α = 0.5

Fig. 2. Accuracy (%) on CIFAR-10, CIFAR-100 using mixup and mWh.

4.1 Experiments on Image Classification Tasks

First we will show the results on four small-scale datasets, i.e., CIFAR-10,
CIFAR-100 [8] and CUB-200 [15]. Then the results on ImageNet will be pre-
sented.

We want to show that without doubled epochs and tuning hyper-parameters
we can still get better performance in all datasets, so we follow the setting of
Zhang et al. [18] but halve the training epochs. We also set α to 0.2 and 0.5
to illustrate mWh is robust to hyper-parameter selection. To further show the
validity of mWh, we double the epochs and report the results, although it is not
our primary focus.

Datasets: CIFAR-10 and CIFAR-100 [8] both consist of 50k training and
10k test images at 32x32 resolution. CIFAR-10 contains 5k training and 1k test
images per class in a total of 10 classes, and CIFAR-100 has 100 classes containing
600 images each. For the CUB-200, it contains 200 categories of birds with 5,994
training and 5,794 testing images. The large-scale ImageNet ILSVRC-12 dataset
consists of 1.28M training and 50K validation images of various resolutions.

Implementation details: For CIFAR-10 and CIFAR-100, to provide a
strong baseline we train DenseNet-121 [7] with the mini-batch size of 128 for
100 epochs. Learning rate starts at 0.1 and is divided by 10 after 50 and 75
epochs. Note that we also conduct experiments to double the epoch, i.e., we
train the model with 200 epochs, and divide the learning rate by 10 after 100
and 150 epochs.



Mixup without Hesitation 9

Table 6. Accuracy (%) on CUB-200. The first two groups of experiments are about
training ResNet-18 from scratch and the rest are the fine-tuning experiments.

Method
α = 0.2 α = 0.5

Epochs Accuracy Epochs Accuracy

Baseline 350 64.308 350 64.308
mixup 350 66.672 350 68.347
mWh 350 67.535 350 70.297

Baseline 175 62.858 175 62.858
mixup 175 63.704 175 64.118
mWh 175 63.704 175 65.948

Baseline 300 77.080 300 77.080
mixup 300 78.650 300 78.391
mWh 300 79.272 300 79.185

Baseline 150 76.345 150 76.345
mixup 150 78.236 150 78.219
mWh 150 78.357 150 78.840

For CUB-200, we use ResNet-18 and crop 224*224 patches as input images
for training. For fair comparisons, we evaluate the strategy of training from
scratch and fining tune. For training from scratch, we set the number of training
epochs to be 175 and 300, and initialize the learning rate as 0.1, batch size as 32.
A smoother cosine learning rate adjustment is applied. For fine-tuning, we train
the model with 150 and 300 epochs. We set the learning rate as 0.001, batch size
as 32. We also use a cosine schedule to scale the learning rate. The initialization
ResNet-18 model is downloaded from the PyTorch official website.

To provide further evidence about the quality of representations learned with
mWh, we evaluate it on ImageNet. We train ResNet-50 from scratch. For faster
convergence we use NVIDIA’s mixed-precision training code base with batch size
2048. The default learning rate is 0.1 ∗ batch size

256 with a linear warmup for the
first 5 epochs and divided by 10 after training 30, 60, 90 epochs when training
100 epochs, or after 60, 120 and 180 epochs when training 200 epochs. We first
randomly crop a patch from the original image and then resize the patch to the
target size (224*224). Finally, the patch is horizontally flipped with a probability
of 0.5.

Results: For CIFAR-10 and CIFAR-100, we summarize the results in Fig.
2. mWh consistently outperforms mixup and the baseline. And, mWh with 100
epochs consistently outperforms baseline with even 200 epochs. Note that on
CIFAR-100, with a higher α, mWh boosts more accuracy. We think the reason
is that the difference between the augmented data and the original data will
be greater because of a higher α, so the empirical risk will decrease more after
introducing basic data augmentation. This indicates mWh will bring more im-
provement with larger α, and this situation is particularly noticeable on more
complex datasets.



10 Hao Yu, Huanyu Wang, and Jianxin Wu

Table 7. Accuracy (%) on ImageNet with ResNet-50.

Method
α = 0.2 α = 0.5

Epochs Accuracy Epochs Accuracy

Baseline 200 76.392 200 76.392
mixup 200 77.148 200 77.838
mWh 200 77.098 200 77.888

Baseline 100 76.043 100 76.043
mixup 100 76.718 100 76.212
mWh 100 76.948 100 76.854

Table 6 shows the results on CUB-200, and similar to the previous experi-
ments, we observe mWh is highly competitive when compared with mixup. When
jointly applying mixup and basic data augmentation, mWh obtains the lowest
Top-1 error in both training from scratch and fining tune.

Table 7 demonstrates the validation accuracy rates on the ImageNet dataset.
mWh outperforms (or is on par with) mixup, mWh also exhibits its robustness
to the hyper-parameter α. In the 100 epochs case, although mixup is effective
when α = 0.2, it is not effective when α = 0.5 (only improves 0.169% over the
baseline). However, mWh is consistently effective for different α values.

As the results have shown, mWh achieves the state-of-the-art performance
when halving the epochs, and without deliberately selecting α we can still gain
consistently better performance than mixup. Although mWh’s goal is not to gain
improvement with more epochs, our results show that mWh performs better
than mixup when training time is doubled. These results indicate that without
doubling epochs and selecting optimal α, mWh can still perform very well. The
fact that with more epochs mWh performs better than mixup is a nice byproduct.

4.2 Transferability in CutMix

In order to provide insights into what makes mWh successful, we further study
the transferability of mWh in CutMix. We examine the effect of mWh in CutMix
for the image classification tasks.

Implementation details: All of our following experiments share the same
setting with previous ones. We train our strategy in CIFAR-10 and CIFAR-
100. Note that different from mixup, we select α as 1 instead of 0.2. It is because
according to the recommendation of Yun et al. [17], choosing α as 1.0 will achieve
better performance. For providing strong baselines we set α to 1.0 and 0.5.

Results: The results of CutMix with mWh in CIFAR-10 and CIFAR-100
are shown in Fig. 3. mWh also brings considerable improvement, which proves
the validity of our algorithm.



Mixup without Hesitation 11

100 epoch 200 epoch
93

94

95

96

97

94.82 95.0795.28 96.2095.85 96.58

Baseline CutMix mWh

(a) CIFAR-10, α = 0.5

100 epoch 200 epoch
93

94

95

96

97

94.82 95.0795.24 96.4595.53 96.59

Baseline CutMix mWh

(b) CIFAR-10, α = 1.0

100 epoch 200 epoch
76

77

78

79

80

81

82

83

76.05 77.4879.89 80.8480.47 82.43

Baseline CutMix mWh

(c) CIFAR-100, α = 0.5

100 epoch 200 epoch
76

77

78

79

80

81

82

83

76.05 77.4879.91 80.8681.18 82.46

Baseline CutMix mWh

(d) CIFAR-100, α = 1.0

Fig. 3. Accuracy (%) on CIFAR-10, CIFAR-100 using CutMix and mWh in CutMix.

5 Discussion and Conclusion

In this paper, we proposed mixup Without hesitation (mWh), a simple but gen-
eral training policy for effective training. We apply the strategy of reintroducing
basic data augmentation to balance exploration and exploitation. Experimental
results showed that mWh improves the convergence rate of various dataset in-
stances and is robust to the hyper-parameter selection. It also gains remarkable
improvement in different tasks and models compared with the baseline.

Many data augmentation algorithms used in computer vision have similar
features as mixup. Therefore, One interesting future work is to extend the pro-
posed algorithm to other augmentation algorithms.

Acknowledgements. This research was partially supported by the National
Natural Science Foundation of China (61772256).

References

1. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.:
MixMatch: A Holistic Approach to Semi-Supervised Learning. In: Advances in
Neural Information Processing Systems 32, pp. 5049–5059 (2019)



12 Hao Yu, Huanyu Wang, and Jianxin Wu

2. Chen, P.: GridMask Data Augmentation. arXiv preprint arXiv:2001.04086 (2020)
3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: Learn-

ing Augmentation Strategies from Data. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 113–123 (2019)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale
hierarchical image database. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 248–255 (2009)

5. DeVries, T., Taylor, G.W.: Improved Regularization of Convolutional Neural Net-
works with Cutout. arXiv preprint arXiv:1708.04552 (2017)

6. He, Z., Xie, L., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Data Augmentation
Revisited: Rethinking the Distribution Gap between Clean and Augmented Data.
arXiv preprint arXiv:1909.09148 (2019)

7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely Connected
Convolutional Networks. In: The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). pp. 4700–4708 (2017)

8. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images.
Tech. rep., University of Toronto (2009)

9. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast AutoAugment. In: Advances in
Neural Information Processing Systems 32. pp. 6662–6672 (2019)

10. Pang, T., Xu, K., Zhu, J.: Mixup inference: Better exploiting mixup to defend ad-
versarial attacks. In: International Conference on Learning Representations, ICLR
(2019)

11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. In: Advances in Neural Information
Processing Systems 28, pp. 91–99 (2015)

12. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, 2nd edition.
MIT press (2018)

13. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.:
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep
Neural Networks. In: Advances in Neural Information Processing Systems 32. pp.
13888–13899 (2019)

14. Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Courville, A., Lopez-
Paz, D., Bengio, Y.: Manifold Mixup: Better Representations by Interpolating
Hidden States. In: International Conference on Machine Learning. pp. 6438–6447
(2019)

15. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.:
Caltech-UCSD birds 200. Tech. rep., California Institute of Technology (2010)

16. Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., Zhang, W.: Adversarial
Domain Adaptation with Domain Mixup. In: Proceedings of the AAAI Conference
on Artificial Intelligence. pp. 6502–6509 (2020)

17. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: Regularization
Strategy to Train Strong Classifiers with Localizable Features. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 6023–6032 (2019)

18. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical
risk minimization. In: International Conference on Learning Representations, ICLR
(2018)


	Mixup without Hesitation

