Page History: Publication List
Compare Page Revisions
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Current
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
« Older Revision
-
Back to Page History
-
Newer Revision »
Page Revision: 2018/11/20 21:39
[
Back to main page
]
Manuscripts
Wang-Zhou Dai, Qiu-Ling Xu,
Yang Yu
, and Zhi-Hua Zhou.
Tunneling neural perception and logic reasoning through abductive learning
.
arXiv:1802.01173
, 2018.
Yu-Ren Liu, Yi-Qi Hu, Hong Qian,
Yang Yu
, and Chao Qian.
ZOOpt: Toolbox for derivative-free optimization
.
arXiv:1801.00329
, 2018.
Book Chapter
Zhi-Hua Zhou and
Yang Yu
.
The AdaBoost algorithm
. In: X. Wu and V. Kumar eds.
The Top Ten Algorithms in Data Mining
, Boca Raton, FL: Chapman & Hall, 2009. (
PDF
)
Conference Papers
Jing-Cheng Shi,
Yang Yu
, Qing Da, Shi-Yong Chen, and An-Xiang Zeng.
Virtual-Taobao: Virtualizing real-world online retail environment for reinforcement learning
. In:
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19)
, Honolulu, HI, 2019. (
PDF
)
Yi-Qi Hu,
Yang Yu
, Wei-Wei Tu, Qiang Yang, Yuqiang Chen, and Wenyuan Dai.
Multi-fidelity automatic hyper-parameter tuning via transfer series expansion
. In:
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19)
, Honolulu, HI, 2019. (
PDF
)
Zhen-Jia Pang, Ruo-Ze Liu, Zhou-Yu Meng, Yi Zhang,
Yang Yu
, and Tong Lu.
On reinforcement learning for full-length game of StarCraft
. In:
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19)
, Honolulu, HI, 2019. (
PDF
)
Ji Feng,
Yang Yu
, Zhi-Hua Zhou.
Multi-layered gradient boosting decision trees
. In:
Advances in Neural Information Processing Systems 31 (NIPS'18)
, Montreal, Canada, 2018.
arXiv:1806.00007
.
Yang Yu
.
Towards sample efficient reinforcement learning.
In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18) (Early Career)
, Stockholm, Sweden, 2018, pp.5739-5743. (
PDF
)
Jorge G. Madrid, Hugo Jair Escalante, Eduardo F. Morales, Wei-Wei Tu, Yang Yu, Lisheng Sun-Hosoya, Isabelle Guyon, and Michele Sebag.
Towards AutoML in the presence of drift: First results.
In:
ICML 2018 Workshop on AutoML
, Stockholm, Sweden, 2018.
Shi-Yong Chen,
Yang Yu
, Qing Da, Jun Tan, Hai-Kuan Huang and Hai-Hong Tang.
Stabilizing reinforcement learning in dynamic environment with application to online recommendation
. In:
Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'18)
(Research Track), London, UK, 2018. (
PDF
)
Yujing Hu, Qing Da, Anxiang Zeng,
Yang Yu
and Yinghui Xu.
Reinforcement learning to rank in e-commerce search engine: Formalization, analysis, and application
. In:
Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'18)
(Applied Track), London, UK, 2018. (
PDF
)
Chao Qian, Chao Bian,
Yang Yu
, Ke Tang, and Xin Yao.
Analysis of noisy evolutionary optimization when sampling fails
. In:
Proceedings of the 20th ACM Conference on Genetic and Evolutionary Computation (GECCO'18)
, Kyoto, Japan, 2018. (
PDF
)
Yang Yu
, Wen-Ji Zhou.
Mixture of GANs for clustering.
In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18)
, Stockholm, Sweden, 2018, pp.3047-3053. (
PDF
)
Chao Zhang,
Yang Yu
, Zhi-Hua Zhou.
Learning environmental calibration actions for policy self-evolution
. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18)
, Stockholm, Sweden, 2018, pp.3061-3067. (
PDF
)
Yi-Qi Hu,
Yang Yu
, Zhi-Hua Zhou.
Experienced optimization with reusable directional model for hyper-parameter search
. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18)
, Stockholm, Sweden, 2018, pp.2276-2282. (
PDF
)
Chao Qian,
Yang Yu
, Ke Tang.
Approximation guarantees of stochastic greedy algorithms for subset selection.
In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18)
, Stockholm, Sweden, 2018, pp.1478-1484. (
PDF
)
Hong Wang, Hong Qian, and
Yang Yu
.
Noisy derivative-free optimization with value suppression
. In:
Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18)
, New Orleans, LA, 2018. (
PDF
)
Chao Qian, Jing-Cheng Shi,
Yang Yu
, Ke Tang, and Zhi-Hua Zhou.
Subset selection under noise
. In:
Advances in Neural Information Processing Systems 30 (NIPS'17)
, Long Beach, CA, 2017. (
PDF with Appendix
)
Jing-Cheng Shi, Chao Qian, and
Yang Yu
.
Evolutionary multi-objective optimization made faster by sequential decomposition
. In:
Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC'17)
, San Sebastian, Spain, 2017. (
PDF
)
Yang Yu
, Wei-Yang Qu, Nan Li, and Zimin Guo.
Open category classification by adversarial sample generation
. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17)
, Melbourne, Australia, 2017, pp.3357-3363. (
PDF
)(
Code
)
Wen-Ji Zhou,
Yang Yu
, and Min-Ling Zhang.
Binary linear compression for multi-label classification
. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17)
, Melbourne, Australia, 2017, pp.3546-3552. (
PDF
)
Jing-Wen Yang,
Yang Yu
, and Xiao-Peng Zhang.
Life-stage modeling by customer-manifold embedding
. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17)
, Melbourne, Australia, 2017, pp.3259-3265. (
PDF
)
Chao Qian, Jing-Cheng Shi,
Yang Yu
, Ke Tang and Zhi-Hua Zhou.
Optimizing ratio of monotone set functions
. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17)
, Melbourne, Australia, 2017, pp.2606-2612. (
PDF
) (
Code
)
Chao Qian, Jing-Cheng Shi,
Yang Yu
, and Ke Tang.
On subset selection with general cost constraints
. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17)
, Melbourne, Australia, 2017, pp.2613-2619. (
PDF
) (
Code
)
Jianbing Zhang, Yixin Sun, Shu-Jian Huang, Cam-Tu Nguyen, Xiaoliang Wang, Xin-Yu Dai, Jiajun Chen, and
Yang Yu
.
AGRA: An analysis-generation-ranking framework for automatic abbreviation from paper titles
. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17)
, Melbourne, Australia, 2017, pp.4221-4227. (
PDF
) (
online demo
)
Hong Qian and
Yang Yu
.
Solving high-dimensional multi-objective optimization problems with low effective dimensions
. In:
Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17)
, San Francisco, CA, 2017, pp.875-881. (
PDF with Appendix
)
Yi-Qi Hu, Hong Qian, and
Yang Yu
.
Sequential classification-based optimization for direct policy search
. In:
Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17)
, San Francisco, CA, 2017, pp.2029-2035. (
PDF with Appendix
) (
Code
)
Chao Qian,
Yang Yu
, and Zhi-Hua Zhou.
A lower bound analysis of population-based evolutionary algorithms for pseudo-Boolean functions
. In:
Proceedings of the 17th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL'16)
, Yangzhou, China, 2016, pp.457-467. (
PDF
)
(This paper won a Best Paper Award of IDEAL'16)
Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu,
Yang Yu
, Xin Chen, and Xuandong Li.
Symbolic execution of complex program driven by machine learning based constraint solving
. In:
Proceedings of the 31th IEEE/ACM International Conference on Automated Software Engineering (ASE'16)
, Singapore, 2016, pp.554-559. (
PDF
)
Han Wang and
Yang Yu
.
Exploring multi-action relationship in reinforcement learning
. In:
Proceedings of the 14th Pacific Rim International Conference on Artificial Intelligence (PRICAI'16)
, Phuket, Thailand, 2016, pp.574–587. (
PDF
)
Hong Qian, Yi-Qi Hu and
Yang Yu
.
Derivative-free optimization of high-dimensional non-convex functions by sequential random embeddings
. In:
Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16)
, New York, NY, 2016, pp.1946-1952. (
PDF
) (
Code
)
Chao Qian, Jing-Cheng Shi,
Yang Yu
, Ke Tang, and Zhi-Hua Zhou.
Parallel Pareto optimization for subset selection
. In:
Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16)
, New York, NY, 2016, pp.1939-1945. (
PDF
)
Hong Qian and
Yang Yu
.
On sampling-and-classification optimization in discrete domains
. In:
Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC'16)
, Vancouver, Canada, 2016, pp.4374-4381. (
PDF
)
Yang Yu
, Peng-Fei Hou, Qing Da, and Yu Qian.
Boosting nonparametric policies
. In:
Proceedings of the 2016 International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'16)
, Singapore, 2016, pp.477-484. (
PDF
) (
Code
)
Yang Yu
, Hong Qian, and Yi-Qi Hu.
Derivative-free optimization via classification
. In:
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16)
, Phoenix, AZ, 2016, pp.2286-2292. (
PDF
) (
Appendix
) (
Code
)
Hong Qian,
Yang Yu
.
Scaling simultaneous optimistic optimization for high-dimensional non-convex functions with low effective dimensions
. In:
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16)
, Phoenix, AZ, 2016, pp.2000-2006. (
PDF
)
Chao Qian,
Yang Yu
and Zhi-Hua Zhou.
Subset selection by Pareto optimization
. In:
Advances in Neural Information Processing Systems 28 (NIPS'15)
, Montreal, Canada, 2015. (
PDF
) (
code
)
Chao Qian,
Yang Yu
and Zhi-Hua Zhou.
On constrained Boolean Pareto optimization
. In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI'15)
, Buenos Aires, Argentina, 2015, pp.389-395. (
PDF
)
Yang Yu
, Chao Qian.
Running time analysis: Convergence-based analysis reduces to switch analysis
. In:
Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC'15)
, Sendai, Japan, 2015, pp.2603-2610, pp.2603-2610. (
PDF
)
Chao Qian,
Yang Yu
and Zhi-Hua Zhou.
Pareto ensemble pruning
. In:
Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI'15)
, Austin, TX, 2015, pp.2935-2941.(
PDF
)
Chao Qian,
Yang Yu
, Yaochu Jin and Zhi-Hua Zhou.
On the effectiveness of sampling for evolutionary optimization in noisy environments
. In:
Proceedings of the 13th International Conference on Parallel Problem Solving from Nature (PPSN’14)
, Ljubljana, Slovenia, 2014, pp.302-311. (
PDF
)
Yang Yu
and Qing Da,
PolicyBoost: Functional policy gradient with ranking-based reward objective
. In:
Proceedings of AAAI Workshop on AI and Robotics (AIRob'14)
, Quebec City, Canada, 2014, pp.57-62. (
PDF
)
Yang Yu
, and Hong Qian.
The sampling-and-learning framework: A statistical view of evolutionary algorithms
. In:
Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC'14)
, Beijing, China, 2014, pp.149-158. (
PDF
)
Qing Da,
Yang Yu
, and Zhi-Hua Zhou.
Learning with augmented class by exploiting unlabeled data
. In:
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI'14)
, Québec city, Canada, 2014, pp.1760-1766. (
PDF
)
Qing Da,
Yang Yu
, and Zhi-Hua Zhou.
Napping for functional representation of policy
. In:
Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'14)
, Paris, France, 2014, pp.189-196. (
PDF
) (
Code
)
Qing Da,
Yang Yu
, and Zhi-Hua Zhou.
Self-practice imitation learning from weak policy
. In:
Proceedings of the 2nd IAPR International Workshop on Partially Supervised Learning (PSL'13)
, Nanjing, China, 2013, pp.9-20.
Yang Yu
, Xin Yao, and Zhi-Hua Zhou.
On the approximation ability of evolutionary optimization with application to minimum set cover: Extended abstract
. In:
Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI'13)
(Journal Paper Track), Beijing, China, 2013.
Nan Li,
Yang Yu
, and Zhi-Hua Zhou.
Diversity regularized ensemble pruning
. In:
Proceedings of the 23rd European Conference on Machine Learning (ECML'12)
, Bristol, U.K., 2012, pp.330-345. (
PDF
) (
code
)
Chao Qian,
Yang Yu
, and Zhi-Hua Zhou.
On algorithm-dependent boundary case identification for problem classes
. In:
Proceedings of the 12th International Conference on Parallel Problem Solving from Nature (PPSN'12)
Taormina, Italy, 2012, pp.62-71. (
PDF
)
Sheng-Jun Huang,
Yang Yu
, and Zhi-Hua Zhou.
Multi-label hypothesis reuse
. In:
Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'12)
, Beijing, China, 2012, pp.525-533. (
PDF
) (
code
)
(The poster presentation won the Best Poster Award at KDD'12)
Sheng-Jun Huang,
Yang Yu
and Zhi-Hua Zhou,
Multi-label boosting via hypothesis reuse
. In:
Proceedings of NIPS Workshop on Chanllenges in Learning Hierarchical Models: Transfer Learning and Optimization
, Granada, Spain 2011.
Wang-Zhou Dai,
Yang Yu
, and Zhi-Hua Zhou.
Lifted-rollout for approximate policy iteration of Markov decision process
. In:
Proceedings of the International Workshop on Learning and Data Mining for Robotics (LEMIR'11)
, in conjunction with ICDM'11, Vancouver, Canada, 2011.
Yang Yu
, Yu-Feng Li, and Zhi-Hua Zhou.
Diversity Regularized Machine
In:
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI'11)
, Barcelona, Spain, 2011, pp. 1603-1608. (
PDF
) (
code
)
Chao Qian,
Yang Yu
, and Zhi-Hua Zhou.
An analysis on recombination in multi-objective evolutionary optimization
. In:
Proceedings of the 13th ACM Conference on Genetic and Evolutionary Computation (GECCO'11)
, Dublin, Ireland, 2011, pp. 2051-2058. (
PDF
)
(This paper won the Best Paper Award of the Theory Track at GECCO'11)
Chao Qian,
Yang Yu
, and Zhi-Hua Zhou.
Collisions are helpful for computing unique input-output sequences
. In:
Proceedings of the 13th ACM Conference on Genetic and Evolutionary Computation (GECCO'11)
(Companion Material/Poster), Dublin, Ireland, 2011, pp. 265-266. (
PDF
)
Yang Yu
, Chao Qian, and Zhi-Hua Zhou.
Towards analyzing recombination operators in evolutionary search
. In:
Proceedings of the 11th International Conference on Parallel Problem Solving from Nature (PPSN'10)
Part I, Krakow, Poland, 2010, pp.144-153. (
PDF
)
Nan Li,
Yang Yu
, and Zhi-Hua Zhou.
Semi-naive exploitation of one-dependence estimators
. In:
Proceedings of the 9th IEEE International Conference on Data Mining (ICDM'09)
, Miami, FL, 2009, pp.278-287. (
PDF
)
Yang Yu
and Zhi-Hua Zhou.
A framework for modeling positive class expansion with single snapshot
. In:
Proceedings of the 12th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'08)
, Osaka, Japan, LNAI 5012, 2008, pp.429-440. (
PDF
) (
slides
)
(This paper won the Best Paper Award at PAKDD'08)
Yang Yu
and Zhi-Hua Zhou.
On the usefulness of infeasible solutions in evolutionary search: A theoretical study
. In:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC'08)
, Hong Kong, China, 2008, pp.835-840. (
PDF
)
Li-Ping Liu,
Yang Yu
, Yuan Jiang, and Zhi-Hua Zhou.
TEFE: A time-efficient approach to feature extraction
. In:
Proceedings of the 8th IEEE International Conference on Data Mining (ICDM'08)
, Pisa, Italy, 2008, pp.423-432. (
PDF
)
Yang Yu
, Zhi-Hua Zhou, and Kai Ming Ting.
Cocktail ensemble for regression
. In:
Proceedings of the 7th IEEE International Conference on Data Mining (ICDM'07)
, Omaha, NE, 2007, pp.721-726. (
PDF
)
Yang Yu
and Zhi-Hua Zhou.
A new approach to estimating the expected first hitting time of evolutionary algorithms
. In:
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI'06)
, Boston, MA, 2006, pp.555-560. (
PDF
)
Journal Articles
Yang Yu
, Shi-Yong Chen, Qing Da, Zhi-Hua Zhou.
Reusable reinforcement learning via shallow trails
.
IEEE Transactions on Neural Networks and Learning Systems
, 2018, 29(6): 2204-2215.
(Preprint PDF)
Chao Qian,
Yang Yu
, Ke Tang, Yaochu Jin, Xin Yao, and Zhi-Hua Zhou.
On the effectiveness of sampling for evolutionary optimization in noisy environments
.
Evolutionary Computation
, 2018, 26(2): 237-267.
(Preprint PDF)
(Supplementary)
Chao Qian,
Yang Yu
, and Zhi-Hua Zhou.
Analyzing evolutionary optimization in noisy environments
.
Evolutionary Computation
, 2018, 26(1): 1–41.
(Preprint PDF)
Yang Yu
, Chao Qian, and Zhi-Hua Zhou.
Switch analysis for running time analysis of evolutionary algorithms
.
IEEE Transactions on Evolutionary Computation
, 2015, 19(6):777-792.
(Preprint PDF)
Chao Qian,
Yang Yu
, and Zhi-Hua Zhou.
Variable solution structure can be helpful in evolutionary optimization
.
Science China: Information Sciences
, 2015, 58(11): 1-17.
(Preprint PDF)
Chaoli Sun, Yaochu Jin, Jianchao Zeng, and
Yang Yu
.
A two-layer surrogate-assisted particle swarm optimization algorithm
.
Soft Computing
,19(6):1461-1475, 2015.
Chao Qian,
Yang Yu
, and Zhi-Hua Zhou.
An analysis on recombination in multi-objective evolutionary optimization
.
Artificial Intelligence
, 2013, 204:99-119. (Extended from GECCO'11)
(Preprint PDF)
Yang Yu
, Xin Yao, and Zhi-Hua Zhou.
On the approximation ability of evolutionary optimization with application to minimum set cover
.
Artificial Intelligence
, 2012, 180-181:20-33. (
Preprint PDF
) (
CORR abs/1011.4028
)
Yang Yu
and Zhi-Hua Zhou.
A framework for modeling positive class expansion with single snapshot
.
Knowledge and Information Systems
, 2010, 25(2):211-227. (Extended from PAKDD'08) (
Preprint PDF
) (
slides
) (
code&data
)
Yang Yu
and Zhi-Hua Zhou.
A new approach to estimating the expected first hitting time of evolutionary algorithms
.
Artificial Intelligence
, 2008, 172(15): 1809-1832. (Extended from AAAI'06) (
Preprint PDF
)
Fei Tony Liu, Kai Ming Ting,
Yang Yu
, and Zhi-Hua Zhou .
Spectrum of variable-random trees
.
Journal of Artificial Intelligence Research
, 2008, 32:355-384. (
Preprint PDF
)
Yang Yu
, De-Chuan. Zhan, Xu-Ying Liu, Ming Li, and Zhi-Hua Zhou.
Predicting future customers via ensembling gradually expanded trees
.
International Journal of Data Warehousing and Mining
, 2007 3(2): 12-21.
(Invited paper for the PAKDD'06 Data Mining Competition (Open Category) Grand Champion Team)
(
Preprint PDF
)
Zhi-Hua Zhou and
Yang Yu
.
Ensembling local learners through multi-modal perturbation
.
IEEE Transactions on System, Man, And Cybernetics - Part B: Cybernetics
, 2005, 35(4): 725-735. (
Preprint PDF
) (
code
)
Zhi-Hua Zhou and
Yang Yu
.
Adapt bagging to nearest neighbor classifiers
.
Journal of Computer Science and Technology
, 2005, vol.20, no.1 pp.48-54. (
Preprint PDF
) (
detailed result
)
Thesis
Yang Yu
.
Evolutionary Computation: Theoretical Analysis and Learning Algorithms
. Ph.D. Dissertation, 2011.
Yang Yu
.
Local Validity Based Selective Ensemble of Decision Trees
. B.Sc. Thesis, 2004. (in Chinese with English abstract) (
PDF
)
The end