
Towards Evolutionary Approximate Optimization for
Machine Learning

http://lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology
Nanjing University, China

Yang Yu
(俞扬)

joint work with (alphabetic order):
Mr. Yi-Qi Hu, Dr. Chao Qian, Mr. Hong Qian, Mr. Jing-Cheng Shi,

Prof. Ke Tang, Prof. Xin Yao, Prof. Zhi-Hua Zhou

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Machine learning

machine learning
is in the center of

artificial intelligence

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Machine learning

IBM Watson���� Google AlphaGo����IBM Watson���� Google AlphaGo����

machine learning
is in the center of

artificial intelligence

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Optimization in machine learning
A typical learning task:

training data
test datamodel

learning
algorithm

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Optimization in machine learning
A typical learning task:

Components [Domingos, CACM’12]:
machine learning = representation + evaluation + optimization

training data
test datamodel

learning
algorithm

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Optimization in machine learning
A typical learning task:

Components [Domingos, CACM’12]:
machine learning = representation + evaluation + optimization

gradient0/1 error + kwk0

training data
test datamodel

learning
algorithm

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Optimization in machine learning
A typical learning task:

Components [Domingos, CACM’12]:
machine learning = representation + evaluation + optimization

non-linear non-convex

gradient0/1 error + kwk0

training data
test datamodel

learning
algorithm

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Optimization in machine learning
A typical learning task:

Components [Domingos, CACM’12]:
machine learning = representation + evaluation + optimization

non-linear non-convex

gradient0/1 error + kwk0

training data
test datamodel

learning
algorithm

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Optimization in machine learning
A typical learning task:

Components [Domingos, CACM’12]:
machine learning = representation + evaluation + optimization

non-linear non-convex

gradient0/1 error + kwk0

can we have more powerful optimization tools?

convex loss functions are noise-
sensitive [Long and Servedio, MLJ’00]

convex regularizations are not
consistent [Fan and Li, JASA’01]

training data
test datamodel

learning
algorithm

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

for binary vector:

for real vector:

mutation: [1,0,0,1,0] → [1,1,0,1,0]

crossover: [1,0,0,1,0] + [0,1,1,1,0]

 → [0,1,0,1,0] + [1,0,1,1,0]

mutation: x = x+ �, � ⇠ N (0, 1)

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithms

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

only need to evaluate solutions ⇒ calculate f(x) !

[I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.]

Genetic Algorithms

Evolutionary Strategies

Evolutionary Programming

and many other nature-inspired algorithms ...

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Application of evolutionary algorithms

Series 700

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Application of evolutionary algorithms

Series 700

Series N700

new$
solutionsarchive

ran
do
m

ini
tia
liz
ati
on

evaluation$
&$selection

problem6independent
reproduction

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Application of evolutionary algorithms

Series 700

this nose ... has been newly developed ... using the
latest analytical technique (i.e. genetic algorithms)

N700 cars save 19% energy ... 30% increase in the
output... This is a result of adopting the ... nose shape

Series N700

new$
solutionsarchive

ran
do
m

ini
tia
liz
ati
on

evaluation$
&$selection

problem6independent
reproduction

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithm + machine learning

training data
test datamodel

learning
algorithm

new
solutionsarchive

ran
dom

initia
liz

ati
on

evaluation
& selection

problem-independent
reproduction

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithm + machine learning

training data
test datamodel

learning
algorithm

new
solutionsarchive

ran
dom

initia
liz

ati
on

evaluation
& selection

problem-independent
reproduction

many existing studies, e.g. [Mukhopadhyay, et al. Survey of
Multiobjective Evolutionary Algorithms for Data Mining, IEEE TEC’14]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithm + machine learning

training data
test datamodel

learning
algorithm

new
solutionsarchive

ran
dom

initia
liz

ati
on

evaluation
& selection

problem-independent
reproduction

many existing studies, e.g. [Mukhopadhyay, et al. Survey of
Multiobjective Evolutionary Algorithms for Data Mining, IEEE TEC’14]

machine learning:
approximate solution
can be sufficient

evolutionary algorithm:
suitable for solving
approximate solutions

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithm + machine learning

training data
test datamodel

learning
algorithm

new
solutionsarchive

ran
dom

initia
liz

ati
on

evaluation
& selection

problem-independent
reproduction

many existing studies, e.g. [Mukhopadhyay, et al. Survey of
Multiobjective Evolutionary Algorithms for Data Mining, IEEE TEC’14]

machine learning:
approximate solution
can be sufficient

evolutionary algorithm:
suitable for solving
approximate solutions

“...save 19% energy ... 30%
increase in the output...”

“...38% efficiency ... resulted
in 93% efficiency...”

“... roughly a fourfold
improvement...”

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithm + machine learning

training data
test datamodel

learning
algorithm

new
solutionsarchive

ran
dom

initia
liz

ati
on

evaluation
& selection

problem-independent
reproduction

many existing studies, e.g. [Mukhopadhyay, et al. Survey of
Multiobjective Evolutionary Algorithms for Data Mining, IEEE TEC’14]

machine learning:
approximate solution
can be sufficient

evolutionary algorithm:
suitable for solving
approximate solutions

“...save 19% energy ... 30%
increase in the output...”

“...38% efficiency ... resulted
in 93% efficiency...”

“... roughly a fourfold
improvement...”

For maximum matching, a simple
EA takes exponential time to find
an optimal solution, but
time to find a -approximate
solution [Giel and Wegener, STACS’03]

O(n2d1/✏e)

(1 + ✏)

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

approximate optimization: obtain good enough solutions

x*

f(x)

x

with a close-to-
opt. objective value

Exact v.s. approximate

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

approximate optimization: obtain good enough solutions

x*

f(x)

x

with a close-to-
opt. objective value

Exact v.s. approximate

measure of the goodness: (for minimization)

f(x)

f(x⇤)
� 1 is called the approximation ratio of x

x is an r-approximate solution

f(x)� f(x⇤) � 0

approximation ratio:

simple regret:
is called the simple regret of x

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Evolutionary algorithm + machine learning

training data
test datamodel

learning
algorithm

new
solutionsarchive

ran
dom

initia
liz

ati
on

evaluation
& selection

problem-independent
reproduction

many existing studies, e.g. [Mukhopadhyay, et al. Survey of
Multiobjective Evolutionary Algorithms for Data Mining, IEEE TEC’14]

‣ theoretical supports
‣ competitors of domain-specific algorithms

‣ large-scale optimization tasks

‣ ...

Challenges:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Outline

Subset selection problem
and Pareto optimization

Local Lipschitz continuous problem
and classification-based optimization

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Selection problems in learning

training
data

test data

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Selection problems in learning

training
data

test data

model selection

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Selection problems in learning

training
data

test data

model selection

feature selection

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Selection problems in learning

training
data

test data

model selection

sample selection
training data

feature selection

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Example: selective ensemble

training
data

test data

Ensemble: [M. P. Perrone: Pulling it all together: Methods for combining neural networks. NIPS’94]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Example: selective ensemble

[Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better
than all. Artificial Intelligence, 2002]Selective ensemble:

training
data

test data

training
data

test data

Ensemble: [M. P. Perrone: Pulling it all together: Methods for combining neural networks. NIPS’94]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Example: selective ensemble

[Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better
than all. Artificial Intelligence, 2002]Selective ensemble:

training
data

test data

training
data

test data

Ensemble:

two major branches:
Optimization-based methods
Ordering-based methods

[M. P. Perrone: Pulling it all together: Methods for combining neural networks. NIPS’94]

12

LED-7 all the three ensemble approaches obtain similar performance, in Image segmentation and Waveform-
40, GASEN is far better than Boosting but comparable to Bagging, in LED-24 GASEN is far better than

Boosting but slightly worse than Bagging, and in Allbp GASEN is worse than Boosting but comparable to

Bagging. So, we believe that GASEN is better than both Bagging and Boosting when utilized in

classification, which is supported by the subfigure titled “average” in Fig.3.

In summary, Fig.2 and Fig.3 show that GASEN is superior to both Bagging and Boosting in both

regression and classification, which strongly supports our theory formally proved in Section 2 that it may be

a better choice to ensemble many instead of all neural networks at hand.

Fig.2 and Fig.3 also show that Bagging is consistently better than a single neural network in both

regression and classification, but the performance of Boosting is not so stable. There are tasks such as 3-d
Mexican Hat and Allbp where Boosting obtains the best performance, but there are also tasks such as Credit
(German), LED-24, and Waveform-40 where the performance of Boosting is even worse than that of single

neural networks. Such observation is accordant with those reported in previous works [1, 32].

0

0.2

0.4

0.6

0.8

1

2-d Mexican Hat

re
la

ti
v

e
 e

rr
o

r

0

0.2

0.4

0.6

0.8

1

3-d Mexican Hat

re
la

ti
v

e
 e

rr
o

r

0

0.2

0.4

0.6

0.8

1

Friedman #1

re
la

ti
v

e
 e

rr
o

r

0

0.1

0.2

0.3

0.4

Friedman #2

re
la

ti
v
e
 e

rr
o
r

0

0.2

0.4

0.6

0.8

1

Friedman #3

re
la

ti
v

e
 e

rr
o

r

0

0.2

0.4

0.6

0.8

1

Gabor

re
la

ti
v
e
 e

rr
o
r

0

0.2

0.4

0.6

0.8

1

Multi

re
la

ti
v

e
 e

rr
o

r

0

0.2

0.4

0.6

0.8

1

Plane
re

la
ti

v
e
 e

rr
o
r

0

0.2

0.4

0.6

0.8

1

Polynomial

re
la

ti
v
e
 e

rr
o
r

0

0.2

0.4

0.6

0.8

1

SinC

re
la

ti
v

e
 e

rr
o

r

0

0.2

0.4

0.6

0.8

1

average

re
la

ti
v

e
 e

rr
o

r

Bagging

Boosting

GASEN

Fig. 2. Comparison of the relative error of Bagging, Boosting, and GASEN on regression tasks.

13

We also compare GASEN with its two variants on those twenty data sets with 10-fold cross validation.
The first variant is GASEN-w that uses the evolved weights to select the component neural networks but
combines the predictions of the selected networks with the normalized version of their evolved weights. In
other words, weighted averaging or weighted voting is used instead of simple averaging or majority voting
for combining the predictions of the selected networks. The second variant is GASEN-wa that also uses
genetic algorithm to evolve the weights but does not select the component neural networks according to the
evolved weights. In other words, all the available neural networks are kept in the ensembles and their
predictions are combined via weighted averaging or weighted voting with the normalized version of their
evolved weights. Note that the computational cost of GASEN-w and GASEN-wa is similar to that of
GASEN because the main difference of those approaches only lies in the utilization of the evolved weights.
The comparison results on regression and classification are shown in Table 3 and Table 4 respectively. Note

0

0.2

0.4

0.6

0.8

1

Allbp

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Chess

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1
1.2

Credit (German)

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Hypothyroid

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Image segmentation

re
la

tiv
e

er
ro

r

0

0.2
0.4
0.6
0.8

1

LED-7

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1
1.2
1.4

LED-24

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Sick

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Sick-euthyroid

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Waveform-40

re
la

tiv
e

er
ro

r

0

0.2

0.4

0.6

0.8

1

average

re
la

tiv
e

er
ro

r Bagging

Boosting

GASEN

Fig. 3. Comparison of the relative error of Bagging, Boosting, and GASEN on classification tasks.

13

We also compare GASEN with its two variants on those twenty data sets with 10-fold cross validation.
The first variant is GASEN-w that uses the evolved weights to select the component neural networks but
combines the predictions of the selected networks with the normalized version of their evolved weights. In
other words, weighted averaging or weighted voting is used instead of simple averaging or majority voting
for combining the predictions of the selected networks. The second variant is GASEN-wa that also uses
genetic algorithm to evolve the weights but does not select the component neural networks according to the
evolved weights. In other words, all the available neural networks are kept in the ensembles and their
predictions are combined via weighted averaging or weighted voting with the normalized version of their
evolved weights. Note that the computational cost of GASEN-w and GASEN-wa is similar to that of
GASEN because the main difference of those approaches only lies in the utilization of the evolved weights.
The comparison results on regression and classification are shown in Table 3 and Table 4 respectively. Note

0

0.2

0.4

0.6

0.8

1

Allbp

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Chess
re

la
tiv

e
er

ro
r

0
0.2
0.4
0.6
0.8

1
1.2

Credit (German)

re
la

tiv
e

er
ro

r
0

0.2
0.4
0.6
0.8

1

Hypothyroid

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Image segmentation

re
la

tiv
e

er
ro

r

0

0.2
0.4
0.6
0.8

1

LED-7
re

la
tiv

e
er

ro
r

0
0.2
0.4
0.6
0.8

1
1.2
1.4

LED-24

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Sick

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1

Sick-euthyroid

re
la

tiv
e

er
ro

r

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Waveform-40

re
la

tiv
e

er
ro

r

0

0.2

0.4

0.6

0.8

1

average

re
la

tiv
e

er
ro

r Bagging

Boosting

GASEN

Fig. 3. Comparison of the relative error of Bagging, Boosting, and GASEN on classification tasks.

regression classification

figures from
[Zhou et al., AIJ’02]

GASEN: a genetic
algorithm approach:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Subset selection problem

a set V = {X1, X2, . . . , Xn}
a function f : 2V ! R

given a subset size restriction k
optimize the function within the subset size:

argmin
S✓V

f(S) s.t. |S|  k

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Subset selection problem

a set V = {X1, X2, . . . , Xn}
a function f : 2V ! R

given a subset size restriction k
optimize the function within the subset size:

argmin
S✓V

f(S) s.t. |S|  k

greedy algorithm convex relaxation heuristic search

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Pareto Optimization

solution

argmin
x

f(x)

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Pareto Optimization

solution

argmin
x

f(x) ⇒

price

pe
rfo

rm
an

ce

optimal Pareto

front

A

C B

be
tte

r p
ric

e:
C

be
tte

r p
erf

orm
an

ce:
 A

better price: A
better performance: A

f = g1 + g2
argmin

x

(g1(x), g2(x))

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Pareto Optimization

multi-objective
evolutionary algorithm

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

solution

argmin
x

f(x) ⇒

price

pe
rfo

rm
an

ce

optimal Pareto

front

A

C B

be
tte

r p
ric

e:
C

be
tte

r p
erf

orm
an

ce:
 A

better price: A
better performance: A

f = g1 + g2
argmin

x

(g1(x), g2(x))

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Pareto Optimization

multi-objective
evolutionary algorithm

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

solution

argmin
x

f(x) ⇒

price

pe
rfo

rm
an

ce

optimal Pareto

front

A

C B

be
tte

r p
ric

e:
C

be
tte

r p
erf

orm
an

ce:
 A

better price: A
better performance: A

f = g1 + g2
argmin

x

(g1(x), g2(x))

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Pareto Optimization

multi-objective
evolutionary algorithm

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

problem-independent
reproduction

solution

argmin
x

f(x) ⇒

price

pe
rfo

rm
an

ce

optimal Pareto

front

A

C B

be
tte

r p
ric

e:
C

be
tte

r p
erf

orm
an

ce:
 A

better price: A
better performance: A

f = g1 + g2
argmin

x

(g1(x), g2(x))

As good as greedy algorithm on minimum
vertex cover problem [Friedrich et al., ECJ’10]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

SEIP framework
Pareto optimization is covered by the SEIP framework

[Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

SEIP framework
Pareto optimization is covered by the SEIP framework

[Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

xnew

Isolation function: isolates the competition among solutions

x1
x2

Properly configured isolation ⇒

the multi-objective reformulation

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

SEIP framework
Pareto optimization is covered by the SEIP framework

[Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

xnew

Isolation function: isolates the competition among solutions

x1
x2

Properly configured isolation ⇒

the multi-objective reformulation

Partial ratio:
measures infeasible solutions

Definition 4 (Partial reference function)

Given a set [q] and a value v, a function L[q],v : 2[q] ! R is a partial reference function if

1) L[q],v([q]) = v,

2) L[q],v(R1) = L[q],v(R2) for all R1, R2 ✓ [q] such that |R1| = |R2|.

For a minimization problem with optimal cost OPT and an isolation function µ mapping feasible

solutions to the set [q], we denote a partial reference function with respect to [q] and OPT as L[q],OPT .

When the problem and the isolation function are clear, we omit the subscripts and simply denote the

partial reference function as L.

Definition 5 (Partial ratio)

Given a minimization problem (n, f, C) and an isolation function µ, the partial ratio of a (partial)

solution x with respect to a corresponding partial reference function L is

p-ratio(x) =
f(x)

L(µ(x)) ,

and the conditional partial ratio of y conditioned on x is

p-ratio(x | y) = f(y | x)
L(µ(y) | µ(x)) ,

where f(y | x) = f(x [y)� f(x) and L(µ(y) | µ(x)) = L(µ(y) [µ(x))� L(µ(x)).

The partial ratio is an extension of the approximation ratio. Note that the partial ratio for a feasible

solution equals its approximation ratio. We have two properties of the partial ratio. One is that it

is non-increasing in SEIP, as stated in Lemma 1, and the other is its decomposability, as stated in

Lemma 2.

Lemma 1

Given a minimization problem (n, f, C) and an isolation function µ, if SEIP has generated an o↵spring

x with partial ratio p with respect to a corresponding partial reference function L, then there is a

solution y in the population such that |µ(y)| = |µ(x)|, and the partial ratio of y is at most p.

Proof. x is put into the population after it is generated; otherwise there is another solution x

0 with

|µ(x0)| = |µ(x)| and f(x0)  f(x), and in this case let x = x

0. The lemma is proved since L(x) = L(y)

and by the superior function the cost is non-increasing.

From Lemma 1, we know that the partial ratio in each isolation remains non-increasing. Since SEIP

repeatedly tries to generate solutions in each isolation, SEIP can be considered as optimizing the partial

ratio in each isolation.

Lemma 2

Given a minimization problem (n, f, C) and an isolation function µ, for three (partial) solutions x,y

10

Definition 4 (Partial reference function)

Given a set [q] and a value v, a function L[q],v : 2[q] ! R is a partial reference function if

1) L[q],v([q]) = v,

2) L[q],v(R1) = L[q],v(R2) for all R1, R2 ✓ [q] such that |R1| = |R2|.

For a minimization problem with optimal cost OPT and an isolation function µ mapping feasible

solutions to the set [q], we denote a partial reference function with respect to [q] and OPT as L[q],OPT .

When the problem and the isolation function are clear, we omit the subscripts and simply denote the

partial reference function as L.

Definition 5 (Partial ratio)

Given a minimization problem (n, f, C) and an isolation function µ, the partial ratio of a (partial)

solution x with respect to a corresponding partial reference function L is

p-ratio(x) =
f(x)

L(µ(x)) ,

and the conditional partial ratio of y conditioned on x is

p-ratio(x | y) = f(y | x)
L(µ(y) | µ(x)) ,

where f(y | x) = f(x [y)� f(x) and L(µ(y) | µ(x)) = L(µ(y) [µ(x))� L(µ(x)).

The partial ratio is an extension of the approximation ratio. Note that the partial ratio for a feasible

solution equals its approximation ratio. We have two properties of the partial ratio. One is that it

is non-increasing in SEIP, as stated in Lemma 1, and the other is its decomposability, as stated in

Lemma 2.

Lemma 1

Given a minimization problem (n, f, C) and an isolation function µ, if SEIP has generated an o↵spring

x with partial ratio p with respect to a corresponding partial reference function L, then there is a

solution y in the population such that |µ(y)| = |µ(x)|, and the partial ratio of y is at most p.

Proof. x is put into the population after it is generated; otherwise there is another solution x

0 with

|µ(x0)| = |µ(x)| and f(x0)  f(x), and in this case let x = x

0. The lemma is proved since L(x) = L(y)

and by the superior function the cost is non-increasing.

From Lemma 1, we know that the partial ratio in each isolation remains non-increasing. Since SEIP

repeatedly tries to generate solutions in each isolation, SEIP can be considered as optimizing the partial

ratio in each isolation.

Lemma 2

Given a minimization problem (n, f, C) and an isolation function µ, for three (partial) solutions x,y

10

infeasiblefeasible

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

SEIP framework [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

SEIP can find -approximate solutions in time(
Xq�1

i=0
ri) O(q2nc)

Theorem

number of isolations

size of an isolationbest conditional partial ratio
in isolations

r0
r1

Pareto optimization ⇒ balance q and c

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

k is the size of the
largest set

n elements in E
m weighted sets in C

Example

a typical NP-hard problem for approximation studies

[Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

On minimum set cover problem

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

k is the size of the
largest set

n elements in E
m weighted sets in C

SEIP finds -approximate
solutions in timeO(mn2)

Hn

For unbounded minimum set cover problem:

Example

a typical NP-hard problem for approximation studies

[Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

On minimum set cover problem

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

k is the size of the
largest set

n elements in E
m weighted sets in C SEIP finds -approximate

solutions in time

For minimum k-set cover problem:
(Hk � k � 1

8k9
)

O(mk+1n2)

SEIP finds -approximate
solutions in timeO(mn2)

Hn

For unbounded minimum set cover problem:

Example

a typical NP-hard problem for approximation studies

[Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

On minimum set cover problem

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

k is the size of the
largest set

n elements in E
m weighted sets in C SEIP finds -approximate

solutions in time

For minimum k-set cover problem:
(Hk � k � 1

8k9
)

O(mk+1n2)

SEIP finds -approximate
solutions in timeO(mn2)

Hn

For unbounded minimum set cover problem:

Pareto optimization can be the
best-so-far approximation algorithm

Example

a typical NP-hard problem for approximation studies

[Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

On minimum set cover problem

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

1 + ✏

1

1/2

1/k

......

Example [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

Greedy algorithm: bad! no better than Hk

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

1 + ✏

1

1/2

1/k

......

Example [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

c = 0, 1, . . . ,
n

k
(Hk � c

k

n
(Hk � 1))SEIP: for , -approximate

solutions in time

0 1 2 3 4 5 6 7 8 9 10
x 1028

1

1.5

2

2.5

ap
pr

ox
im

at
e

ra
ti
o

time

O(mn2 + cn2mk+1/k)
(anytime algorithm)

Greedy algorithm: bad! no better than Hk

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

1 + ✏

1

1/2

1/k

......

Example [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 2012.]

c = 0, 1, . . . ,
n

k
(Hk � c

k

n
(Hk � 1))SEIP: for , -approximate

solutions in time

0 1 2 3 4 5 6 7 8 9 10
x 1028

1

1.5

2

2.5

ap
pr

ox
im

at
e

ra
ti
o

time

O(mn2 + cn2mk+1/k)
(anytime algorithm)

Greedy algorithm: bad! no better than Hk

Pareto optimization can be the best-so-far
approximation algorithm, with practical advantages

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

A question before using

how to decompose f ?

multi-objective
evolutionary algorithm

new
solutionsarchive

ran
dom

init
iali

zat
ion

evaluation
& selection

problem-independent
reproduction

solution

argmin
x

f(x) ⇒

price

pe
rf

or
m

an
ce

optimal Pareto

front

A

C B

be
tte

r p
ric

e:
C

be
tte

r p
erf

orm
an

ce:
 A

better price: A
better performance: A

f = g1 + g2
argmin

x

(g1(x), g2(x))

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

A question before using

how to decompose f ?

multi-objective
evolutionary algorithm

new
solutionsarchive

ran
dom

init
iali

zat
ion

evaluation
& selection

problem-independent
reproduction

solution

argmin
x

f(x) ⇒

price

pe
rf

or
m

an
ce

optimal Pareto

front

A

C B

be
tte

r p
ric

e:
C

be
tte

r p
erf

orm
an

ce:
 A

better price: A
better performance: A

f = g1 + g2
argmin

x

(g1(x), g2(x))

Subset selection is a constrained problem.

argmin
S✓V

f(S) s.t. |S|  k

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

For constrained optimization problems

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

For constrained optimization problems

The rest of the paper starts by a section of preliminaries.
Section 3 and 4 present the studies on minimum matroid op-
timization and minimum cost coverage, respectively. We fur-
ther compare Pareto optimization with greedy algorithms in
section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

argmin

x2{0,1}n f(x) (1)
subject to g

i

(x) = 0 for 1  i  q,

h
i

(x)  0 for q + 1  i  m,

where f(x) is the objective function, g
i

(x) and h
i

(x) are the
equality and inequality constraints, respectively.

Note that we consider binary solution spaces {0, 1}n in this
paper. We also only consider minimization since maximiz-
ing f is equivalent to minimizing �f . A solution is feasible
(infeasible) if it does (not) satisfy the constraints. Thus, con-
strained optimization is to find a feasible solution minimizing
the objective function.

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq.(1), the penalty function method turns to
solve an unconstrained optimization problem:

argmin

x2{0,1}n f(x) + �
X

m

i=1

f
i

(x),

where f is the objective in Eq.(1), � is the penalty coefficient,
and f

i

is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set f

i

is

f
i

(x) =

⇢
|g

i

(x)| 1  i  q,
max{0, h

i

(x)} q + 1  i  m.
(2)

For the penalty coefficient �, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static � value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Powell and Skolnick, 1993; Deb, 2000] that first prefers
a smaller constraints violation degree, and then compares the
objective value if having the same violation degree. Such a
strategy ensures that a feasible solution is always better than
an infeasible one, and thus the optimal solutions must be fea-
sible and are the same as that of the constrained optimization.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the
context of general purpose optimization algorithms, such as

randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let h(x) = f(x)+�
P

m

i=1

f
i

(x) according to Eq.(2).
2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x

0
= flip each bit of x independently with prob. 1

n

.
5. if h(x0

)  h(x)
6. x = x

0.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new solu-
tions in evolutionary algorithms, that flips each bit (0 to 1 or
inverse) of the solution with a probability 1

n

. This algorithm
does not make any assumption to the optimization problems,
but only require that two solutions can be compared for the
goodness. Thus it can be widely applied.

2.3 The Pareto Optimization Method
Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] first transforms the original optimization problem into
a bi-objective optimization

argmin

x2{0,1}n

�
f(x),

X
m

i=1

f
i

(x)

�

where f
i

is the constraint violation degree and can be set
as Eq.(2). In this bi-objective formulation, a solution has
an objective vector instead of a scalar value. Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimen-
sion while the other is better on the second dimension. For
this situation, the domination relationship between solutions
is usually used, which is introduced in Definition 2 for the
bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g
1

, g
2

) : X ! R2 be
the objective vector. For two solutions x,x0 2 X :
(1) x weakly dominates x

0 if g
1

(x)  g
1

(x

0
) and g

2

(x) 
g
2

(x

0
), denoted as ⌫

g

;
(2) x dominates x0 if x ⌫

g

x

0 and either g
1

(x) < g
1

(x

0
) or

g
2

(x) < g
2

(x

0
), denoted as �

g

.

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;
Qian et al., 2013] with the same initialization and random

Constrained optimization:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

For constrained optimization problems

The rest of the paper starts by a section of preliminaries.
Section 3 and 4 present the studies on minimum matroid op-
timization and minimum cost coverage, respectively. We fur-
ther compare Pareto optimization with greedy algorithms in
section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

argmin

x2{0,1}n f(x) (1)
subject to g

i

(x) = 0 for 1  i  q,

h
i

(x)  0 for q + 1  i  m,

where f(x) is the objective function, g
i

(x) and h
i

(x) are the
equality and inequality constraints, respectively.

Note that we consider binary solution spaces {0, 1}n in this
paper. We also only consider minimization since maximiz-
ing f is equivalent to minimizing �f . A solution is feasible
(infeasible) if it does (not) satisfy the constraints. Thus, con-
strained optimization is to find a feasible solution minimizing
the objective function.

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq.(1), the penalty function method turns to
solve an unconstrained optimization problem:

argmin

x2{0,1}n f(x) + �
X

m

i=1

f
i

(x),

where f is the objective in Eq.(1), � is the penalty coefficient,
and f

i

is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set f

i

is

f
i

(x) =

⇢
|g

i

(x)| 1  i  q,
max{0, h

i

(x)} q + 1  i  m.
(2)

For the penalty coefficient �, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static � value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Powell and Skolnick, 1993; Deb, 2000] that first prefers
a smaller constraints violation degree, and then compares the
objective value if having the same violation degree. Such a
strategy ensures that a feasible solution is always better than
an infeasible one, and thus the optimal solutions must be fea-
sible and are the same as that of the constrained optimization.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the
context of general purpose optimization algorithms, such as

randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let h(x) = f(x)+�
P

m

i=1

f
i

(x) according to Eq.(2).
2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x

0
= flip each bit of x independently with prob. 1

n

.
5. if h(x0

)  h(x)
6. x = x

0.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new solu-
tions in evolutionary algorithms, that flips each bit (0 to 1 or
inverse) of the solution with a probability 1

n

. This algorithm
does not make any assumption to the optimization problems,
but only require that two solutions can be compared for the
goodness. Thus it can be widely applied.

2.3 The Pareto Optimization Method
Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] first transforms the original optimization problem into
a bi-objective optimization

argmin

x2{0,1}n

�
f(x),

X
m

i=1

f
i

(x)

�

where f
i

is the constraint violation degree and can be set
as Eq.(2). In this bi-objective formulation, a solution has
an objective vector instead of a scalar value. Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimen-
sion while the other is better on the second dimension. For
this situation, the domination relationship between solutions
is usually used, which is introduced in Definition 2 for the
bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g
1

, g
2

) : X ! R2 be
the objective vector. For two solutions x,x0 2 X :
(1) x weakly dominates x

0 if g
1

(x)  g
1

(x

0
) and g

2

(x) 
g
2

(x

0
), denoted as ⌫

g

;
(2) x dominates x0 if x ⌫

g

x

0 and either g
1

(x) < g
1

(x

0
) or

g
2

(x) < g
2

(x

0
), denoted as �

g

.

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;
Qian et al., 2013] with the same initialization and random

Constrained optimization:

Penalty Function method:

The rest of the paper starts by a section of preliminaries.
Section 3 and 4 present the studies on minimum matroid op-
timization and minimum cost coverage, respectively. We fur-
ther compare Pareto optimization with greedy algorithms in
section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

argmin

x2{0,1}n f(x) (1)
subject to g

i

(x) = 0 for 1  i  q,

h
i

(x)  0 for q + 1  i  m,

where f(x) is the objective function, g
i

(x) and h
i

(x) are the
equality and inequality constraints, respectively.

Note that we consider binary solution spaces {0, 1}n in this
paper. We also only consider minimization since maximiz-
ing f is equivalent to minimizing �f . A solution is feasible
(infeasible) if it does (not) satisfy the constraints. Thus, con-
strained optimization is to find a feasible solution minimizing
the objective function.

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq.(1), the penalty function method turns to
solve an unconstrained optimization problem:

argmin

x2{0,1}n f(x) + �
X

m

i=1

f
i

(x),

where f is the objective in Eq.(1), � is the penalty coefficient,
and f

i

is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set f

i

is

f
i

(x) =

⇢
|g

i

(x)| 1  i  q,
max{0, h

i

(x)} q + 1  i  m.
(2)

For the penalty coefficient �, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static � value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Powell and Skolnick, 1993; Deb, 2000] that first prefers
a smaller constraints violation degree, and then compares the
objective value if having the same violation degree. Such a
strategy ensures that a feasible solution is always better than
an infeasible one, and thus the optimal solutions must be fea-
sible and are the same as that of the constrained optimization.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the
context of general purpose optimization algorithms, such as

randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let h(x) = f(x)+�
P

m

i=1

f
i

(x) according to Eq.(2).
2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x

0
= flip each bit of x independently with prob. 1

n

.
5. if h(x0

)  h(x)
6. x = x

0.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new solu-
tions in evolutionary algorithms, that flips each bit (0 to 1 or
inverse) of the solution with a probability 1

n

. This algorithm
does not make any assumption to the optimization problems,
but only require that two solutions can be compared for the
goodness. Thus it can be widely applied.

2.3 The Pareto Optimization Method
Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] first transforms the original optimization problem into
a bi-objective optimization

argmin

x2{0,1}n

�
f(x),

X
m

i=1

f
i

(x)

�

where f
i

is the constraint violation degree and can be set
as Eq.(2). In this bi-objective formulation, a solution has
an objective vector instead of a scalar value. Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimen-
sion while the other is better on the second dimension. For
this situation, the domination relationship between solutions
is usually used, which is introduced in Definition 2 for the
bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g
1

, g
2

) : X ! R2 be
the objective vector. For two solutions x,x0 2 X :
(1) x weakly dominates x

0 if g
1

(x)  g
1

(x

0
) and g

2

(x) 
g
2

(x

0
), denoted as ⌫

g

;
(2) x dominates x0 if x ⌫

g

x

0 and either g
1

(x) < g
1

(x

0
) or

g
2

(x) < g
2

(x

0
), denoted as �

g

.

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;
Qian et al., 2013] with the same initialization and random

argmin
x2{0,1}n f(x) + �

Xm

i=1
fi(x)

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

For constrained optimization problems

The rest of the paper starts by a section of preliminaries.
Section 3 and 4 present the studies on minimum matroid op-
timization and minimum cost coverage, respectively. We fur-
ther compare Pareto optimization with greedy algorithms in
section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

argmin

x2{0,1}n f(x) (1)
subject to g

i

(x) = 0 for 1  i  q,

h
i

(x)  0 for q + 1  i  m,

where f(x) is the objective function, g
i

(x) and h
i

(x) are the
equality and inequality constraints, respectively.

Note that we consider binary solution spaces {0, 1}n in this
paper. We also only consider minimization since maximiz-
ing f is equivalent to minimizing �f . A solution is feasible
(infeasible) if it does (not) satisfy the constraints. Thus, con-
strained optimization is to find a feasible solution minimizing
the objective function.

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq.(1), the penalty function method turns to
solve an unconstrained optimization problem:

argmin

x2{0,1}n f(x) + �
X

m

i=1

f
i

(x),

where f is the objective in Eq.(1), � is the penalty coefficient,
and f

i

is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set f

i

is

f
i

(x) =

⇢
|g

i

(x)| 1  i  q,
max{0, h

i

(x)} q + 1  i  m.
(2)

For the penalty coefficient �, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static � value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Powell and Skolnick, 1993; Deb, 2000] that first prefers
a smaller constraints violation degree, and then compares the
objective value if having the same violation degree. Such a
strategy ensures that a feasible solution is always better than
an infeasible one, and thus the optimal solutions must be fea-
sible and are the same as that of the constrained optimization.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the
context of general purpose optimization algorithms, such as

randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let h(x) = f(x)+�
P

m

i=1

f
i

(x) according to Eq.(2).
2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x

0
= flip each bit of x independently with prob. 1

n

.
5. if h(x0

)  h(x)
6. x = x

0.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new solu-
tions in evolutionary algorithms, that flips each bit (0 to 1 or
inverse) of the solution with a probability 1

n

. This algorithm
does not make any assumption to the optimization problems,
but only require that two solutions can be compared for the
goodness. Thus it can be widely applied.

2.3 The Pareto Optimization Method
Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] first transforms the original optimization problem into
a bi-objective optimization

argmin

x2{0,1}n

�
f(x),

X
m

i=1

f
i

(x)

�

where f
i

is the constraint violation degree and can be set
as Eq.(2). In this bi-objective formulation, a solution has
an objective vector instead of a scalar value. Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimen-
sion while the other is better on the second dimension. For
this situation, the domination relationship between solutions
is usually used, which is introduced in Definition 2 for the
bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g
1

, g
2

) : X ! R2 be
the objective vector. For two solutions x,x0 2 X :
(1) x weakly dominates x

0 if g
1

(x)  g
1

(x

0
) and g

2

(x) 
g
2

(x

0
), denoted as ⌫

g

;
(2) x dominates x0 if x ⌫

g

x

0 and either g
1

(x) < g
1

(x

0
) or

g
2

(x) < g
2

(x

0
), denoted as �

g

.

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;
Qian et al., 2013] with the same initialization and random

Constrained optimization:

⇒
f = g1 + g2

argmin
x

f(x) argmin
x

(g1(x), g2(x))

Pareto Optimization method :

argmin
x2{0,1}n(f(x),

Xm

i=1
fi(x))

Penalty Function method:

The rest of the paper starts by a section of preliminaries.
Section 3 and 4 present the studies on minimum matroid op-
timization and minimum cost coverage, respectively. We fur-
ther compare Pareto optimization with greedy algorithms in
section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

argmin

x2{0,1}n f(x) (1)
subject to g

i

(x) = 0 for 1  i  q,

h
i

(x)  0 for q + 1  i  m,

where f(x) is the objective function, g
i

(x) and h
i

(x) are the
equality and inequality constraints, respectively.

Note that we consider binary solution spaces {0, 1}n in this
paper. We also only consider minimization since maximiz-
ing f is equivalent to minimizing �f . A solution is feasible
(infeasible) if it does (not) satisfy the constraints. Thus, con-
strained optimization is to find a feasible solution minimizing
the objective function.

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq.(1), the penalty function method turns to
solve an unconstrained optimization problem:

argmin

x2{0,1}n f(x) + �
X

m

i=1

f
i

(x),

where f is the objective in Eq.(1), � is the penalty coefficient,
and f

i

is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set f

i

is

f
i

(x) =

⇢
|g

i

(x)| 1  i  q,
max{0, h

i

(x)} q + 1  i  m.
(2)

For the penalty coefficient �, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static � value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Powell and Skolnick, 1993; Deb, 2000] that first prefers
a smaller constraints violation degree, and then compares the
objective value if having the same violation degree. Such a
strategy ensures that a feasible solution is always better than
an infeasible one, and thus the optimal solutions must be fea-
sible and are the same as that of the constrained optimization.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the
context of general purpose optimization algorithms, such as

randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let h(x) = f(x)+�
P

m

i=1

f
i

(x) according to Eq.(2).
2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x

0
= flip each bit of x independently with prob. 1

n

.
5. if h(x0

)  h(x)
6. x = x

0.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new solu-
tions in evolutionary algorithms, that flips each bit (0 to 1 or
inverse) of the solution with a probability 1

n

. This algorithm
does not make any assumption to the optimization problems,
but only require that two solutions can be compared for the
goodness. Thus it can be widely applied.

2.3 The Pareto Optimization Method
Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] first transforms the original optimization problem into
a bi-objective optimization

argmin

x2{0,1}n

�
f(x),

X
m

i=1

f
i

(x)

�

where f
i

is the constraint violation degree and can be set
as Eq.(2). In this bi-objective formulation, a solution has
an objective vector instead of a scalar value. Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimen-
sion while the other is better on the second dimension. For
this situation, the domination relationship between solutions
is usually used, which is introduced in Definition 2 for the
bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g
1

, g
2

) : X ! R2 be
the objective vector. For two solutions x,x0 2 X :
(1) x weakly dominates x

0 if g
1

(x)  g
1

(x

0
) and g

2

(x) 
g
2

(x

0
), denoted as ⌫

g

;
(2) x dominates x0 if x ⌫

g

x

0 and either g
1

(x) < g
1

(x

0
) or

g
2

(x) < g
2

(x

0
), denoted as �

g

.

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;
Qian et al., 2013] with the same initialization and random

argmin
x2{0,1}n f(x) + �

Xm

i=1
fi(x)

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

For constrained optimization problems

The rest of the paper starts by a section of preliminaries.
Section 3 and 4 present the studies on minimum matroid op-
timization and minimum cost coverage, respectively. We fur-
ther compare Pareto optimization with greedy algorithms in
section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

argmin

x2{0,1}n f(x) (1)
subject to g

i

(x) = 0 for 1  i  q,

h
i

(x)  0 for q + 1  i  m,

where f(x) is the objective function, g
i

(x) and h
i

(x) are the
equality and inequality constraints, respectively.

Note that we consider binary solution spaces {0, 1}n in this
paper. We also only consider minimization since maximiz-
ing f is equivalent to minimizing �f . A solution is feasible
(infeasible) if it does (not) satisfy the constraints. Thus, con-
strained optimization is to find a feasible solution minimizing
the objective function.

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq.(1), the penalty function method turns to
solve an unconstrained optimization problem:

argmin

x2{0,1}n f(x) + �
X

m

i=1

f
i

(x),

where f is the objective in Eq.(1), � is the penalty coefficient,
and f

i

is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set f

i

is

f
i

(x) =

⇢
|g

i

(x)| 1  i  q,
max{0, h

i

(x)} q + 1  i  m.
(2)

For the penalty coefficient �, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static � value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Powell and Skolnick, 1993; Deb, 2000] that first prefers
a smaller constraints violation degree, and then compares the
objective value if having the same violation degree. Such a
strategy ensures that a feasible solution is always better than
an infeasible one, and thus the optimal solutions must be fea-
sible and are the same as that of the constrained optimization.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the
context of general purpose optimization algorithms, such as

randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let h(x) = f(x)+�
P

m

i=1

f
i

(x) according to Eq.(2).
2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x

0
= flip each bit of x independently with prob. 1

n

.
5. if h(x0

)  h(x)
6. x = x

0.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new solu-
tions in evolutionary algorithms, that flips each bit (0 to 1 or
inverse) of the solution with a probability 1

n

. This algorithm
does not make any assumption to the optimization problems,
but only require that two solutions can be compared for the
goodness. Thus it can be widely applied.

2.3 The Pareto Optimization Method
Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] first transforms the original optimization problem into
a bi-objective optimization

argmin

x2{0,1}n

�
f(x),

X
m

i=1

f
i

(x)

�

where f
i

is the constraint violation degree and can be set
as Eq.(2). In this bi-objective formulation, a solution has
an objective vector instead of a scalar value. Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimen-
sion while the other is better on the second dimension. For
this situation, the domination relationship between solutions
is usually used, which is introduced in Definition 2 for the
bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g
1

, g
2

) : X ! R2 be
the objective vector. For two solutions x,x0 2 X :
(1) x weakly dominates x

0 if g
1

(x)  g
1

(x

0
) and g

2

(x) 
g
2

(x

0
), denoted as ⌫

g

;
(2) x dominates x0 if x ⌫

g

x

0 and either g
1

(x) < g
1

(x

0
) or

g
2

(x) < g
2

(x

0
), denoted as �

g

.

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;
Qian et al., 2013] with the same initialization and random

Constrained optimization:

can Pareto optimization be better?

⇒
f = g1 + g2

argmin
x

f(x) argmin
x

(g1(x), g2(x))

Pareto Optimization method :

argmin
x2{0,1}n(f(x),

Xm

i=1
fi(x))

Penalty Function method:

The rest of the paper starts by a section of preliminaries.
Section 3 and 4 present the studies on minimum matroid op-
timization and minimum cost coverage, respectively. We fur-
ther compare Pareto optimization with greedy algorithms in
section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

argmin

x2{0,1}n f(x) (1)
subject to g

i

(x) = 0 for 1  i  q,

h
i

(x)  0 for q + 1  i  m,

where f(x) is the objective function, g
i

(x) and h
i

(x) are the
equality and inequality constraints, respectively.

Note that we consider binary solution spaces {0, 1}n in this
paper. We also only consider minimization since maximiz-
ing f is equivalent to minimizing �f . A solution is feasible
(infeasible) if it does (not) satisfy the constraints. Thus, con-
strained optimization is to find a feasible solution minimizing
the objective function.

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq.(1), the penalty function method turns to
solve an unconstrained optimization problem:

argmin

x2{0,1}n f(x) + �
X

m

i=1

f
i

(x),

where f is the objective in Eq.(1), � is the penalty coefficient,
and f

i

is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set f

i

is

f
i

(x) =

⇢
|g

i

(x)| 1  i  q,
max{0, h

i

(x)} q + 1  i  m.
(2)

For the penalty coefficient �, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static � value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Powell and Skolnick, 1993; Deb, 2000] that first prefers
a smaller constraints violation degree, and then compares the
objective value if having the same violation degree. Such a
strategy ensures that a feasible solution is always better than
an infeasible one, and thus the optimal solutions must be fea-
sible and are the same as that of the constrained optimization.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the
context of general purpose optimization algorithms, such as

randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let h(x) = f(x)+�
P

m

i=1

f
i

(x) according to Eq.(2).
2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x

0
= flip each bit of x independently with prob. 1

n

.
5. if h(x0

)  h(x)
6. x = x

0.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new solu-
tions in evolutionary algorithms, that flips each bit (0 to 1 or
inverse) of the solution with a probability 1

n

. This algorithm
does not make any assumption to the optimization problems,
but only require that two solutions can be compared for the
goodness. Thus it can be widely applied.

2.3 The Pareto Optimization Method
Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] first transforms the original optimization problem into
a bi-objective optimization

argmin

x2{0,1}n

�
f(x),

X
m

i=1

f
i

(x)

�

where f
i

is the constraint violation degree and can be set
as Eq.(2). In this bi-objective formulation, a solution has
an objective vector instead of a scalar value. Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimen-
sion while the other is better on the second dimension. For
this situation, the domination relationship between solutions
is usually used, which is introduced in Definition 2 for the
bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g
1

, g
2

) : X ! R2 be
the objective vector. For two solutions x,x0 2 X :
(1) x weakly dominates x

0 if g
1

(x)  g
1

(x

0
) and g

2

(x) 
g
2

(x

0
), denoted as ⌫

g

;
(2) x dominates x0 if x ⌫

g

x

0 and either g
1

(x) < g
1

(x

0
) or

g
2

(x) < g
2

(x

0
), denoted as �

g

.

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;
Qian et al., 2013] with the same initialization and random

argmin
x2{0,1}n f(x) + �

Xm

i=1
fi(x)

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 1 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

Minimum Matroid Problem

perturbation as Algorithm 1 is then employed to solve this
bi-objective problem, presented in Algorithm 2.

Algorithm 2 (The Pareto Optimization Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let g(x) = (f(x),
P

m

i=1

f
i

(x)).
2. x = selected from {0, 1}n uniformly at random.
3. P = {x}.
4. repeat until the termination condition is met
5. x = selected from P uniformly at random.
6. x

0
=flip each bit of x independently with prob. 1

n

.
7. if @z 2 P such that z �

g

x

0

8. P = (P � {z 2 P |x0 ⌫
g

z}) [{x0}.
9. return x 2 P with

P
m

i=1

f
i

(x) = 0

It firstly generates a random solution, and puts it into the can-
didate solution set P ; and then follows a cycle to improve the
solutions in P iteratively. In each iteration, a solution x is
randomly selected from P ; and is then perturbed to generate
a new solution x

0; if x0 is not dominated by any solution in
P , x0 is added into P and at the same time solutions in P
that are weakly dominated by x

0 get removed. Finally, the
solution in P that violates no constraints is selected.

Note that, Pareto optimization here is different from tradi-
tional multi-objective optimization [Deb et al., 2002]. The
latter aims at finding a uniform approximation of the Pareto
front, while Pareto optimization aims at finding the optimal
solution for the original constrained optimization problem.

2.4 Running Time Analysis Comparison
To measure the performance of an algorithm solving a prob-
lem, we employ the expected running time complexity, which
counts the number of objective function evaluations (the most
time-consuming step) until finding a desired solution, since it
has been a leading theoretical aspect for randomized search
heuristics [Neumann and Witt, 2010; Auger and Doerr, 2011].
Because both the two analyzed methods perform only one
objective evaluation (i.e., h(x0

) and g(x

0
)) in each iteration,

the expected running time equals the average number of itera-
tions. For P-solvable problems, we use exact analysis [He and
Yao, 2001], i.e., the running time until an optimal solution is
found. For NP-hard problems, we use approximate analy-
sis [Yu et al., 2012], i.e., the running time until finding an ↵-
approximate solution having the objective value  ↵ ·OPT ,
where ↵ > 1 and OPT is the optimal function value.

3 On Minimum Matroid Optimization
We first analyze the P-solvable minimum matroid optimiza-
tion problem [Edmonds, 1971], which covers several combi-
natorial optimization problems, e.g., minimum spanning tree.

Let | · | denote the size (i.e., cardinality) of a set. A matroid
is a pair (U, S), where U is a finite set and S ✓ 2

U , satisfying

(1) ; 2 S; (2) 8A ✓ B 2 S,A 2 S;

(3) 8A,B 2 S, |A| > |B| : 9e 2 A�B,B [{e} 2 S.

The elements of S are called independent. For any A ✓ U ,
a maximal independent subset of A is called a basis of A;
the rank of A is the maximal cardinality of a basis of A, i.e.,

r(A) = max{|B| | B ✓ A,B 2 S}. Note that for a matroid,
all bases of A have the same cardinality.

Given a matroid (U, S) and a weight function w : U ! N
where N denotes the positive integer set, the minimum ma-
troid optimization problem is to find a basis of U with the
minimum weight. Let U = {e

1

, e
2

, . . . , e
n

} and w
i

= w(e
i

).
Let x 2 {0, 1}n represent a subset of U , where x

i

= 1 means
that e

i

is selected. For notational convenience, we will not
distinguish x and its corresponding subset {e

i

2 U |x
i

= 1}.
The problem then can be formally stated as follows.

Definition 3 (Minimum Matroid Optimization) Given a
matroid (U, S) and a weight function w : U ! N, it is to find
a solution such that

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t. r(x) = r(U). (3)

Note that, a rank oracle that computes the rank of a subset is
polynomially equivalent to an independence oracle that tells
whether a subset is independent [Korte and Vygen, 2012].

For Pareto optimization, noting r(U) � r(x), the objective
vector g is implemented as

g(x) =

�
w(x), r(U)� r(x)

�
.

Theorem 1 proves the running time bound, where w
max

=

max

1in

w
i

is the maximum element weight in U .

Theorem 1 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding an
optimal solution is O(r(U)n(log n+ logw

max

+ r(U))).
The proof idea is to divide the optimization process into

two phases: (1) starts after initialization and finishes until
finding the special solution {0}n; (2) starts from {0}n and
follows the greedy behavior [Edmonds, 1971] to find an opti-
mal solution. The running time of phase (1) shown in Lemma
2 is derived by applying multiplicative drift analysis (i.e.,
Lemma 1), a recently proposed approach for analyzing the
hitting time of a random process.

Lemma 1 (Multiplicative Drift Analysis) [Doerr et al.,
2012] Let S ✓ R+ be a finite set of positive numbers with
minimum s

min

. Let {X
t

}
t2N be a sequence of random vari-

ables over S[{0}. Let T be the random variable that denotes
the first point in time t 2 N for which X

t

= 0. Suppose that
there exists a real number � > 0 such that

E[[X
t

�X
t+1

|X
t

= s]] � �s

holds for all s 2 S. Then for all s
0

2 S, we have

E[[T |X
0

= s
0

]]  (1 + log(s
0

/s
min

))/�.

Lemma 2 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding
{0}n is O(r(U)n(log n+ logw

max

)).

Proof. We prove it by using Lemma 1. Let X
t

=

min{w(x) | x 2 P} (i.e., the minimum weight of solutions
in the candidate solution set P) after the t-th iteration of Al-
gorithm 2. X

t

= 0 implies that the solution {0}n has been
found, and thus T is the running time for finding {0}n.

matroid

rank:perturbation as Algorithm 1 is then employed to solve this
bi-objective problem, presented in Algorithm 2.

Algorithm 2 (The Pareto Optimization Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let g(x) = (f(x),
P

m

i=1

f
i

(x)).
2. x = selected from {0, 1}n uniformly at random.
3. P = {x}.
4. repeat until the termination condition is met
5. x = selected from P uniformly at random.
6. x

0
=flip each bit of x independently with prob. 1

n

.
7. if @z 2 P such that z �

g

x

0

8. P = (P � {z 2 P |x0 ⌫
g

z}) [{x0}.
9. return x 2 P with

P
m

i=1

f
i

(x) = 0

It firstly generates a random solution, and puts it into the can-
didate solution set P ; and then follows a cycle to improve the
solutions in P iteratively. In each iteration, a solution x is
randomly selected from P ; and is then perturbed to generate
a new solution x

0; if x0 is not dominated by any solution in
P , x0 is added into P and at the same time solutions in P
that are weakly dominated by x

0 get removed. Finally, the
solution in P that violates no constraints is selected.

Note that, Pareto optimization here is different from tradi-
tional multi-objective optimization [Deb et al., 2002]. The
latter aims at finding a uniform approximation of the Pareto
front, while Pareto optimization aims at finding the optimal
solution for the original constrained optimization problem.

2.4 Running Time Analysis Comparison
To measure the performance of an algorithm solving a prob-
lem, we employ the expected running time complexity, which
counts the number of objective function evaluations (the most
time-consuming step) until finding a desired solution, since it
has been a leading theoretical aspect for randomized search
heuristics [Neumann and Witt, 2010; Auger and Doerr, 2011].
Because both the two analyzed methods perform only one
objective evaluation (i.e., h(x0

) and g(x

0
)) in each iteration,

the expected running time equals the average number of itera-
tions. For P-solvable problems, we use exact analysis [He and
Yao, 2001], i.e., the running time until an optimal solution is
found. For NP-hard problems, we use approximate analy-
sis [Yu et al., 2012], i.e., the running time until finding an ↵-
approximate solution having the objective value  ↵ ·OPT ,
where ↵ > 1 and OPT is the optimal function value.

3 On Minimum Matroid Optimization
We first analyze the P-solvable minimum matroid optimiza-
tion problem [Edmonds, 1971], which covers several combi-
natorial optimization problems, e.g., minimum spanning tree.

Let | · | denote the size (i.e., cardinality) of a set. A matroid
is a pair (U, S), where U is a finite set and S ✓ 2

U , satisfying

(1) ; 2 S; (2) 8A ✓ B 2 S,A 2 S;

(3) 8A,B 2 S, |A| > |B| : 9e 2 A�B,B [{e} 2 S.

The elements of S are called independent. For any A ✓ U ,
a maximal independent subset of A is called a basis of A;
the rank of A is the maximal cardinality of a basis of A, i.e.,

r(A) = max{|B| | B ✓ A,B 2 S}. Note that for a matroid,
all bases of A have the same cardinality.

Given a matroid (U, S) and a weight function w : U ! N
where N denotes the positive integer set, the minimum ma-
troid optimization problem is to find a basis of U with the
minimum weight. Let U = {e

1

, e
2

, . . . , e
n

} and w
i

= w(e
i

).
Let x 2 {0, 1}n represent a subset of U , where x

i

= 1 means
that e

i

is selected. For notational convenience, we will not
distinguish x and its corresponding subset {e

i

2 U |x
i

= 1}.
The problem then can be formally stated as follows.

Definition 3 (Minimum Matroid Optimization) Given a
matroid (U, S) and a weight function w : U ! N, it is to find
a solution such that

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t. r(x) = r(U). (3)

Note that, a rank oracle that computes the rank of a subset is
polynomially equivalent to an independence oracle that tells
whether a subset is independent [Korte and Vygen, 2012].

For Pareto optimization, noting r(U) � r(x), the objective
vector g is implemented as

g(x) =

�
w(x), r(U)� r(x)

�
.

Theorem 1 proves the running time bound, where w
max

=

max

1in

w
i

is the maximum element weight in U .

Theorem 1 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding an
optimal solution is O(r(U)n(log n+ logw

max

+ r(U))).
The proof idea is to divide the optimization process into

two phases: (1) starts after initialization and finishes until
finding the special solution {0}n; (2) starts from {0}n and
follows the greedy behavior [Edmonds, 1971] to find an opti-
mal solution. The running time of phase (1) shown in Lemma
2 is derived by applying multiplicative drift analysis (i.e.,
Lemma 1), a recently proposed approach for analyzing the
hitting time of a random process.

Lemma 1 (Multiplicative Drift Analysis) [Doerr et al.,
2012] Let S ✓ R+ be a finite set of positive numbers with
minimum s

min

. Let {X
t

}
t2N be a sequence of random vari-

ables over S[{0}. Let T be the random variable that denotes
the first point in time t 2 N for which X

t

= 0. Suppose that
there exists a real number � > 0 such that

E[[X
t

�X
t+1

|X
t

= s]] � �s

holds for all s 2 S. Then for all s
0

2 S, we have

E[[T |X
0

= s
0

]]  (1 + log(s
0

/s
min

))/�.

Lemma 2 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding
{0}n is O(r(U)n(log n+ logw

max

)).

Proof. We prove it by using Lemma 1. Let X
t

=

min{w(x) | x 2 P} (i.e., the minimum weight of solutions
in the candidate solution set P) after the t-th iteration of Al-
gorithm 2. X

t

= 0 implies that the solution {0}n has been
found, and thus T is the running time for finding {0}n.

minimum matroid optimization

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 1 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

Minimum Matroid Problem

perturbation as Algorithm 1 is then employed to solve this
bi-objective problem, presented in Algorithm 2.

Algorithm 2 (The Pareto Optimization Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let g(x) = (f(x),
P

m

i=1

f
i

(x)).
2. x = selected from {0, 1}n uniformly at random.
3. P = {x}.
4. repeat until the termination condition is met
5. x = selected from P uniformly at random.
6. x

0
=flip each bit of x independently with prob. 1

n

.
7. if @z 2 P such that z �

g

x

0

8. P = (P � {z 2 P |x0 ⌫
g

z}) [{x0}.
9. return x 2 P with

P
m

i=1

f
i

(x) = 0

It firstly generates a random solution, and puts it into the can-
didate solution set P ; and then follows a cycle to improve the
solutions in P iteratively. In each iteration, a solution x is
randomly selected from P ; and is then perturbed to generate
a new solution x

0; if x0 is not dominated by any solution in
P , x0 is added into P and at the same time solutions in P
that are weakly dominated by x

0 get removed. Finally, the
solution in P that violates no constraints is selected.

Note that, Pareto optimization here is different from tradi-
tional multi-objective optimization [Deb et al., 2002]. The
latter aims at finding a uniform approximation of the Pareto
front, while Pareto optimization aims at finding the optimal
solution for the original constrained optimization problem.

2.4 Running Time Analysis Comparison
To measure the performance of an algorithm solving a prob-
lem, we employ the expected running time complexity, which
counts the number of objective function evaluations (the most
time-consuming step) until finding a desired solution, since it
has been a leading theoretical aspect for randomized search
heuristics [Neumann and Witt, 2010; Auger and Doerr, 2011].
Because both the two analyzed methods perform only one
objective evaluation (i.e., h(x0

) and g(x

0
)) in each iteration,

the expected running time equals the average number of itera-
tions. For P-solvable problems, we use exact analysis [He and
Yao, 2001], i.e., the running time until an optimal solution is
found. For NP-hard problems, we use approximate analy-
sis [Yu et al., 2012], i.e., the running time until finding an ↵-
approximate solution having the objective value  ↵ ·OPT ,
where ↵ > 1 and OPT is the optimal function value.

3 On Minimum Matroid Optimization
We first analyze the P-solvable minimum matroid optimiza-
tion problem [Edmonds, 1971], which covers several combi-
natorial optimization problems, e.g., minimum spanning tree.

Let | · | denote the size (i.e., cardinality) of a set. A matroid
is a pair (U, S), where U is a finite set and S ✓ 2

U , satisfying

(1) ; 2 S; (2) 8A ✓ B 2 S,A 2 S;

(3) 8A,B 2 S, |A| > |B| : 9e 2 A�B,B [{e} 2 S.

The elements of S are called independent. For any A ✓ U ,
a maximal independent subset of A is called a basis of A;
the rank of A is the maximal cardinality of a basis of A, i.e.,

r(A) = max{|B| | B ✓ A,B 2 S}. Note that for a matroid,
all bases of A have the same cardinality.

Given a matroid (U, S) and a weight function w : U ! N
where N denotes the positive integer set, the minimum ma-
troid optimization problem is to find a basis of U with the
minimum weight. Let U = {e

1

, e
2

, . . . , e
n

} and w
i

= w(e
i

).
Let x 2 {0, 1}n represent a subset of U , where x

i

= 1 means
that e

i

is selected. For notational convenience, we will not
distinguish x and its corresponding subset {e

i

2 U |x
i

= 1}.
The problem then can be formally stated as follows.

Definition 3 (Minimum Matroid Optimization) Given a
matroid (U, S) and a weight function w : U ! N, it is to find
a solution such that

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t. r(x) = r(U). (3)

Note that, a rank oracle that computes the rank of a subset is
polynomially equivalent to an independence oracle that tells
whether a subset is independent [Korte and Vygen, 2012].

For Pareto optimization, noting r(U) � r(x), the objective
vector g is implemented as

g(x) =

�
w(x), r(U)� r(x)

�
.

Theorem 1 proves the running time bound, where w
max

=

max

1in

w
i

is the maximum element weight in U .

Theorem 1 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding an
optimal solution is O(r(U)n(log n+ logw

max

+ r(U))).
The proof idea is to divide the optimization process into

two phases: (1) starts after initialization and finishes until
finding the special solution {0}n; (2) starts from {0}n and
follows the greedy behavior [Edmonds, 1971] to find an opti-
mal solution. The running time of phase (1) shown in Lemma
2 is derived by applying multiplicative drift analysis (i.e.,
Lemma 1), a recently proposed approach for analyzing the
hitting time of a random process.

Lemma 1 (Multiplicative Drift Analysis) [Doerr et al.,
2012] Let S ✓ R+ be a finite set of positive numbers with
minimum s

min

. Let {X
t

}
t2N be a sequence of random vari-

ables over S[{0}. Let T be the random variable that denotes
the first point in time t 2 N for which X

t

= 0. Suppose that
there exists a real number � > 0 such that

E[[X
t

�X
t+1

|X
t

= s]] � �s

holds for all s 2 S. Then for all s
0

2 S, we have

E[[T |X
0

= s
0

]]  (1 + log(s
0

/s
min

))/�.

Lemma 2 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding
{0}n is O(r(U)n(log n+ logw

max

)).

Proof. We prove it by using Lemma 1. Let X
t

=

min{w(x) | x 2 P} (i.e., the minimum weight of solutions
in the candidate solution set P) after the t-th iteration of Al-
gorithm 2. X

t

= 0 implies that the solution {0}n has been
found, and thus T is the running time for finding {0}n.

matroid

rank:perturbation as Algorithm 1 is then employed to solve this
bi-objective problem, presented in Algorithm 2.

Algorithm 2 (The Pareto Optimization Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let g(x) = (f(x),
P

m

i=1

f
i

(x)).
2. x = selected from {0, 1}n uniformly at random.
3. P = {x}.
4. repeat until the termination condition is met
5. x = selected from P uniformly at random.
6. x

0
=flip each bit of x independently with prob. 1

n

.
7. if @z 2 P such that z �

g

x

0

8. P = (P � {z 2 P |x0 ⌫
g

z}) [{x0}.
9. return x 2 P with

P
m

i=1

f
i

(x) = 0

It firstly generates a random solution, and puts it into the can-
didate solution set P ; and then follows a cycle to improve the
solutions in P iteratively. In each iteration, a solution x is
randomly selected from P ; and is then perturbed to generate
a new solution x

0; if x0 is not dominated by any solution in
P , x0 is added into P and at the same time solutions in P
that are weakly dominated by x

0 get removed. Finally, the
solution in P that violates no constraints is selected.

Note that, Pareto optimization here is different from tradi-
tional multi-objective optimization [Deb et al., 2002]. The
latter aims at finding a uniform approximation of the Pareto
front, while Pareto optimization aims at finding the optimal
solution for the original constrained optimization problem.

2.4 Running Time Analysis Comparison
To measure the performance of an algorithm solving a prob-
lem, we employ the expected running time complexity, which
counts the number of objective function evaluations (the most
time-consuming step) until finding a desired solution, since it
has been a leading theoretical aspect for randomized search
heuristics [Neumann and Witt, 2010; Auger and Doerr, 2011].
Because both the two analyzed methods perform only one
objective evaluation (i.e., h(x0

) and g(x

0
)) in each iteration,

the expected running time equals the average number of itera-
tions. For P-solvable problems, we use exact analysis [He and
Yao, 2001], i.e., the running time until an optimal solution is
found. For NP-hard problems, we use approximate analy-
sis [Yu et al., 2012], i.e., the running time until finding an ↵-
approximate solution having the objective value  ↵ ·OPT ,
where ↵ > 1 and OPT is the optimal function value.

3 On Minimum Matroid Optimization
We first analyze the P-solvable minimum matroid optimiza-
tion problem [Edmonds, 1971], which covers several combi-
natorial optimization problems, e.g., minimum spanning tree.

Let | · | denote the size (i.e., cardinality) of a set. A matroid
is a pair (U, S), where U is a finite set and S ✓ 2

U , satisfying

(1) ; 2 S; (2) 8A ✓ B 2 S,A 2 S;

(3) 8A,B 2 S, |A| > |B| : 9e 2 A�B,B [{e} 2 S.

The elements of S are called independent. For any A ✓ U ,
a maximal independent subset of A is called a basis of A;
the rank of A is the maximal cardinality of a basis of A, i.e.,

r(A) = max{|B| | B ✓ A,B 2 S}. Note that for a matroid,
all bases of A have the same cardinality.

Given a matroid (U, S) and a weight function w : U ! N
where N denotes the positive integer set, the minimum ma-
troid optimization problem is to find a basis of U with the
minimum weight. Let U = {e

1

, e
2

, . . . , e
n

} and w
i

= w(e
i

).
Let x 2 {0, 1}n represent a subset of U , where x

i

= 1 means
that e

i

is selected. For notational convenience, we will not
distinguish x and its corresponding subset {e

i

2 U |x
i

= 1}.
The problem then can be formally stated as follows.

Definition 3 (Minimum Matroid Optimization) Given a
matroid (U, S) and a weight function w : U ! N, it is to find
a solution such that

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t. r(x) = r(U). (3)

Note that, a rank oracle that computes the rank of a subset is
polynomially equivalent to an independence oracle that tells
whether a subset is independent [Korte and Vygen, 2012].

For Pareto optimization, noting r(U) � r(x), the objective
vector g is implemented as

g(x) =

�
w(x), r(U)� r(x)

�
.

Theorem 1 proves the running time bound, where w
max

=

max

1in

w
i

is the maximum element weight in U .

Theorem 1 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding an
optimal solution is O(r(U)n(log n+ logw

max

+ r(U))).
The proof idea is to divide the optimization process into

two phases: (1) starts after initialization and finishes until
finding the special solution {0}n; (2) starts from {0}n and
follows the greedy behavior [Edmonds, 1971] to find an opti-
mal solution. The running time of phase (1) shown in Lemma
2 is derived by applying multiplicative drift analysis (i.e.,
Lemma 1), a recently proposed approach for analyzing the
hitting time of a random process.

Lemma 1 (Multiplicative Drift Analysis) [Doerr et al.,
2012] Let S ✓ R+ be a finite set of positive numbers with
minimum s

min

. Let {X
t

}
t2N be a sequence of random vari-

ables over S[{0}. Let T be the random variable that denotes
the first point in time t 2 N for which X

t

= 0. Suppose that
there exists a real number � > 0 such that

E[[X
t

�X
t+1

|X
t

= s]] � �s

holds for all s 2 S. Then for all s
0

2 S, we have

E[[T |X
0

= s
0

]]  (1 + log(s
0

/s
min

))/�.

Lemma 2 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding
{0}n is O(r(U)n(log n+ logw

max

)).

Proof. We prove it by using Lemma 1. Let X
t

=

min{w(x) | x 2 P} (i.e., the minimum weight of solutions
in the candidate solution set P) after the t-th iteration of Al-
gorithm 2. X

t

= 0 implies that the solution {0}n has been
found, and thus T is the running time for finding {0}n.

minimum matroid optimization

perturbation as Algorithm 1 is then employed to solve this
bi-objective problem, presented in Algorithm 2.

Algorithm 2 (The Pareto Optimization Method) Given a
constrained optimization problem as in Eq.(1), it contains:

1. Let g(x) = (f(x),
P

m

i=1

f
i

(x)).
2. x = selected from {0, 1}n uniformly at random.
3. P = {x}.
4. repeat until the termination condition is met
5. x = selected from P uniformly at random.
6. x

0
=flip each bit of x independently with prob. 1

n

.
7. if @z 2 P such that z �

g

x

0

8. P = (P � {z 2 P |x0 ⌫
g

z}) [{x0}.
9. return x 2 P with

P
m

i=1

f
i

(x) = 0

It firstly generates a random solution, and puts it into the can-
didate solution set P ; and then follows a cycle to improve the
solutions in P iteratively. In each iteration, a solution x is
randomly selected from P ; and is then perturbed to generate
a new solution x

0; if x0 is not dominated by any solution in
P , x0 is added into P and at the same time solutions in P
that are weakly dominated by x

0 get removed. Finally, the
solution in P that violates no constraints is selected.

Note that, Pareto optimization here is different from tradi-
tional multi-objective optimization [Deb et al., 2002]. The
latter aims at finding a uniform approximation of the Pareto
front, while Pareto optimization aims at finding the optimal
solution for the original constrained optimization problem.

2.4 Running Time Analysis Comparison
To measure the performance of an algorithm solving a prob-
lem, we employ the expected running time complexity, which
counts the number of objective function evaluations (the most
time-consuming step) until finding a desired solution, since it
has been a leading theoretical aspect for randomized search
heuristics [Neumann and Witt, 2010; Auger and Doerr, 2011].
Because both the two analyzed methods perform only one
objective evaluation (i.e., h(x0

) and g(x

0
)) in each iteration,

the expected running time equals the average number of itera-
tions. For P-solvable problems, we use exact analysis [He and
Yao, 2001], i.e., the running time until an optimal solution is
found. For NP-hard problems, we use approximate analy-
sis [Yu et al., 2012], i.e., the running time until finding an ↵-
approximate solution having the objective value  ↵ ·OPT ,
where ↵ > 1 and OPT is the optimal function value.

3 On Minimum Matroid Optimization
We first analyze the P-solvable minimum matroid optimiza-
tion problem [Edmonds, 1971], which covers several combi-
natorial optimization problems, e.g., minimum spanning tree.

Let | · | denote the size (i.e., cardinality) of a set. A matroid
is a pair (U, S), where U is a finite set and S ✓ 2

U , satisfying

(1) ; 2 S; (2) 8A ✓ B 2 S,A 2 S;

(3) 8A,B 2 S, |A| > |B| : 9e 2 A�B,B [{e} 2 S.

The elements of S are called independent. For any A ✓ U ,
a maximal independent subset of A is called a basis of A;
the rank of A is the maximal cardinality of a basis of A, i.e.,

r(A) = max{|B| | B ✓ A,B 2 S}. Note that for a matroid,
all bases of A have the same cardinality.

Given a matroid (U, S) and a weight function w : U ! N
where N denotes the positive integer set, the minimum ma-
troid optimization problem is to find a basis of U with the
minimum weight. Let U = {e

1

, e
2

, . . . , e
n

} and w
i

= w(e
i

).
Let x 2 {0, 1}n represent a subset of U , where x

i

= 1 means
that e

i

is selected. For notational convenience, we will not
distinguish x and its corresponding subset {e

i

2 U |x
i

= 1}.
The problem then can be formally stated as follows.

Definition 3 (Minimum Matroid Optimization) Given a
matroid (U, S) and a weight function w : U ! N, it is to find
a solution such that

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t. r(x) = r(U). (3)

Note that, a rank oracle that computes the rank of a subset is
polynomially equivalent to an independence oracle that tells
whether a subset is independent [Korte and Vygen, 2012].

For Pareto optimization, noting r(U) � r(x), the objective
vector g is implemented as

g(x) =

�
w(x), r(U)� r(x)

�
.

Theorem 1 proves the running time bound, where w
max

=

max

1in

w
i

is the maximum element weight in U .

Theorem 1 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding an
optimal solution is O(r(U)n(log n+ logw

max

+ r(U))).
The proof idea is to divide the optimization process into

two phases: (1) starts after initialization and finishes until
finding the special solution {0}n; (2) starts from {0}n and
follows the greedy behavior [Edmonds, 1971] to find an opti-
mal solution. The running time of phase (1) shown in Lemma
2 is derived by applying multiplicative drift analysis (i.e.,
Lemma 1), a recently proposed approach for analyzing the
hitting time of a random process.

Lemma 1 (Multiplicative Drift Analysis) [Doerr et al.,
2012] Let S ✓ R+ be a finite set of positive numbers with
minimum s

min

. Let {X
t

}
t2N be a sequence of random vari-

ables over S[{0}. Let T be the random variable that denotes
the first point in time t 2 N for which X

t

= 0. Suppose that
there exists a real number � > 0 such that

E[[X
t

�X
t+1

|X
t

= s]] � �s

holds for all s 2 S. Then for all s
0

2 S, we have

E[[T |X
0

= s
0

]]  (1 + log(s
0

/s
min

))/�.

Lemma 2 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding
{0}n is O(r(U)n(log n+ logw

max

)).

Proof. We prove it by using Lemma 1. Let X
t

=

min{w(x) | x 2 P} (i.e., the minimum weight of solutions
in the candidate solution set P) after the t-th iteration of Al-
gorithm 2. X

t

= 0 implies that the solution {0}n has been
found, and thus T is the running time for finding {0}n.

minimum matroid optimization

given a matroid (U,S), let x be the subset indicator vector of
U

e.g. minimum spanning tree, maximum bipartite matching

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 1 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

-the worst problem-case average-runtime complexity
-solve optimal solutions

Minimum Matroid Problem

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 1 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

-the worst problem-case average-runtime complexity
-solve optimal solutions

Minimum Matroid Problem

For the Penalty Function Method

⌦(r2n(log n+ logw
max

))

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 1 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

-the worst problem-case average-runtime complexity
-solve optimal solutions

Minimum Matroid Problem

For the Penalty Function Method

⌦(r2n(log n+ logw
max

))

For the Pareto Optimization Method

O(rn(r + log n+ logw
max

))

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

Minimum Cost Coverage

Let U = {e1, e2, . . . , en} be a finite set. A set function f : 2

U ! R is monotone

and submodular i↵ 8A,B ✓ U , f(A)  f(B) +

P
e2A�B(f(B [{e})� f(B))

Monotonic submodular function

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

Minimum Cost Coverage

Let U = {e1, e2, . . . , en} be a finite set. A set function f : 2

U ! R is monotone

and submodular i↵ 8A,B ✓ U , f(A)  f(B) +

P
e2A�B(f(B [{e})� f(B))

Monotonic submodular function

Definition 5 (Minimum Cost Coverage) Given a monotone
submodular function f : 2

U ! R, some value q  f(U) and
a weight function w : U ! N, it is to find a solution such that

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t. f(x) � q. (4)

We consider f is integer-valued and f(;) = 0. Assume that q
is a positive integer. Since the rank of a matroid is a monotone
submodular function, minimum matroid optimization is actu-
ally a minimum cost coverage instance with q = r(U). We
analyze them separately because minimum matroid optimiza-
tion is P-solvable and minimum cost coverage is NP-hard in
general. We use exact and approximate analysis, respectively.

For minimum cost coverage by Pareto optimization, the ob-
jective vector g is implemented as

g(x) =

�
w(x),max{0, q � f(x)}

�
.

The running time bound is proved in Theorem 3. Let H
q

=P
q

i=1

1

i

be the q-th harmonic number. The proof idea is sim-
ilar to that for Theorem 1 except that it follows the greedy
behavior [Wolsey, 1982] to find an approximate solution.

Theorem 3 For minimum cost coverage, the expected run-
ning time of the Pareto optimization method for finding a H

q

-
approximate solution is O(qn(log n+ logw

max

+ q)).

Proof. Since f(;) = 0 and f is integer-valued, the objective
max{0, q� f(x)} 2 {q, q� 1, . . . , 1, 0}. Furthermore, since
the solutions in P are incomparable, the largest size of P is
not larger than q + 1. By using the same proof as Lemma 2
except P

max

 q + 1 here, we can derive that the expected
running time for finding {0}n is O(qn(log n+ logw

max

)).
Let R

k

= H
q

� H
q�k

. Let x⇤ and OPT denote an op-
timal solution and the optimal function value of Eq.(4), re-
spectively. Then, w(x⇤

) = OPT . Let K
max

denote the
maximum value of k such that there exists one solution x

in P with min{q, f(x)} = k and w(x)  R
k

· OPT . That
is, K

max

= max{k | 9x 2 P,min{q, f(x)} = k ^ w(x) 
R

k

· OPT}. Then, we are to analyze the expected running
time until K

max

= q, which implies that it finds a R
q

(i.e.,
H

q

)-approximate solution.
After finding {0}n, K

max

� 0. Assume that currently
K

max

= k < q. Let x denote the corresponding solution with
the value k, i.e., min{q, f(x)} = k and w(x)  R

k

· OPT .
We are first to show that K

max

cannot decrease. If x is kept
in P , K

max

obviously will not decrease. If x is deleted,
by step 7 and 8 of Algorithm 2, a newly generated solu-
tion x

0 weakly dominating x (i.e., x0 is not worse on both
the two objectives) must be included. Note that max{0, q �
f(x)} = q � min{q, f(x)}. Thus, min{q, f(x0

)} = k0 �
min{q, f(x)} = k and w(x0

)  w(x). Because R
k

in-
creases with k, w(x0

)  R
k

· OPT  R
k

0 · OPT . Thus,
K

max

� k0, i.e., K
max

will not decrease.
Then, we are to show that K

max

can increase by flipping
a specific 0 bit of x. Let f 0

(x) = min{q, f(x)}. Let xi de-
note the solution generated by flipping the i-th bit of x. Let
I = {i 2 [1, n] | f 0

(x

i

) � f 0
(x) > 0} denote the 0 bit po-

sitions of x where the flipping can generate a solution with a
positive increment on f 0. Let � = min{ wi

f

0
(x

i
)�f

0
(x)

| i 2 I}.

Then, �  OPT/(q � k). Otherwise, for any e
i

2 x

⇤ � x,
w

i

> (f 0
(x

i

)�f 0
(x))·OPT/(q�k). Thus,

P
ei2x

⇤�x

w
i

>�P
ei2x

⇤�x

(f 0
(x

i

) � f 0
(x))

�
· OPT/(q � k). Since f is

monotone and submodular, f 0 is also monotone and submod-
ular, then f 0

(x

⇤
) � f 0

(x) 
P

ei2x

⇤�x

(f 0
(x

i

) � f 0
(x)).

Thus,
P

ei2x

⇤�x

w
i

> (f 0
(x

⇤
) � f 0

(x)) · OPT/(q � k) =
OPT , which contradicts with

P
ei2x

⇤�x

w
i

 w(x⇤
) =

OPT . Thus, by selecting x in step 5 of Algorithm 2 and
flipping only the 0 bit corresponding to � in step 6, it can gen-
erate a new solution x

0 with min{q, f(x0
)} = k0 > k and

w(x0
)  w(x) + (k0 � k) ·OPT/(q � k)  R

k

0 ·OPT.

Once generated, x0 will be included into P . Otherwise, there
must exist a solution in P dominating x

0 which has a larger
f 0 and a smaller w; this implies that K

max

has already been
larger than k, which contradicts with the assumption K

max

=

k. After including x

0, K
max

increases from k to k0.
The probability of flipping a specific 0 bit of x is at least

1

q+1

· 1

n

(1 � 1

n

)

n�1 � 1

en(q+1)

. Thus, the expected running
time for such a step of increasing K

max

is at most en(q +

1). Since q such steps are sufficient to make K
max

= q, the
expected running time of this phase is O(q2n).

By combining the two phases, the expected running time
of the whole process is O(qn(log n+ logw

max

+ q)). ⇤

For the penalty function method, we first show that mini-
mum set cover (MSC) is an instance of minimum cost cover-
age and then give a concrete MSC example where the penalty
function method is less efficient than Pareto optimization.

Definition 6 (Minimum Set Cover) Given a set S =

{e
1

, . . . , e
m

}, a collection C = {C
1

, . . . , C
n

} of subsets of S
with corresponding costs w : C ! N, it is to find a subset of
C (represented by x 2 {0, 1}n) with the minimum cost such
that all the elements of S are covered, that is

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t.
[

i:xi=1

C
i

= S.

Let U = C and f(x) = |
S

i:xi=1

C
i

|. Then f is monotone
and submodular. Since f(x)  m and |S| = m, it is easy to
verify that the MSC problem is an instance of minimum cost
coverage (i.e., Definition 5) with q = m.

Friedrich et al. [2010] have analyzed the running time of
the penalty function method on a specific MSC example, as
shown in Lemma 4 (i.e., Theorem 8 in their paper). Thus, we
have Theorem 4 by letting ✏ being a constant and w

max

= 2

n.

Lemma 4 [Friedrich et al., 2010] Let � > 0 be a constant
and n��1  ✏ < 1/2. The expected running time of the
penalty function method on a MSC example (m = ✏(1�✏)n2)
for finding an approximation better than ((1 � ✏)w

max

)/✏ is
exponential w.r.t. n.

Theorem 4 There exists a minimum cost coverage instance,
where the expected running time of the penalty function
method for finding a H

q

-approximate solution is exponential
w.r.t. n, q and logw

max

.

minimum cost coverage problem

given U, let x be the subset indicator vector of U, given a
monotone and submodular function f , and some value

Definition 5 (Minimum Cost Coverage) Given a monotone
submodular function f : 2

U ! R, some value q  f(U) and
a weight function w : U ! N, it is to find a solution such that

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t. f(x) � q. (4)

We consider f is integer-valued and f(;) = 0. Assume that q
is a positive integer. Since the rank of a matroid is a monotone
submodular function, minimum matroid optimization is actu-
ally a minimum cost coverage instance with q = r(U). We
analyze them separately because minimum matroid optimiza-
tion is P-solvable and minimum cost coverage is NP-hard in
general. We use exact and approximate analysis, respectively.

For minimum cost coverage by Pareto optimization, the ob-
jective vector g is implemented as

g(x) =

�
w(x),max{0, q � f(x)}

�
.

The running time bound is proved in Theorem 3. Let H
q

=P
q

i=1

1

i

be the q-th harmonic number. The proof idea is sim-
ilar to that for Theorem 1 except that it follows the greedy
behavior [Wolsey, 1982] to find an approximate solution.

Theorem 3 For minimum cost coverage, the expected run-
ning time of the Pareto optimization method for finding a H

q

-
approximate solution is O(qn(log n+ logw

max

+ q)).

Proof. Since f(;) = 0 and f is integer-valued, the objective
max{0, q� f(x)} 2 {q, q� 1, . . . , 1, 0}. Furthermore, since
the solutions in P are incomparable, the largest size of P is
not larger than q + 1. By using the same proof as Lemma 2
except P

max

 q + 1 here, we can derive that the expected
running time for finding {0}n is O(qn(log n+ logw

max

)).
Let R

k

= H
q

� H
q�k

. Let x⇤ and OPT denote an op-
timal solution and the optimal function value of Eq.(4), re-
spectively. Then, w(x⇤

) = OPT . Let K
max

denote the
maximum value of k such that there exists one solution x

in P with min{q, f(x)} = k and w(x)  R
k

· OPT . That
is, K

max

= max{k | 9x 2 P,min{q, f(x)} = k ^ w(x) 
R

k

· OPT}. Then, we are to analyze the expected running
time until K

max

= q, which implies that it finds a R
q

(i.e.,
H

q

)-approximate solution.
After finding {0}n, K

max

� 0. Assume that currently
K

max

= k < q. Let x denote the corresponding solution with
the value k, i.e., min{q, f(x)} = k and w(x)  R

k

· OPT .
We are first to show that K

max

cannot decrease. If x is kept
in P , K

max

obviously will not decrease. If x is deleted,
by step 7 and 8 of Algorithm 2, a newly generated solu-
tion x

0 weakly dominating x (i.e., x0 is not worse on both
the two objectives) must be included. Note that max{0, q �
f(x)} = q � min{q, f(x)}. Thus, min{q, f(x0

)} = k0 �
min{q, f(x)} = k and w(x0

)  w(x). Because R
k

in-
creases with k, w(x0

)  R
k

· OPT  R
k

0 · OPT . Thus,
K

max

� k0, i.e., K
max

will not decrease.
Then, we are to show that K

max

can increase by flipping
a specific 0 bit of x. Let f 0

(x) = min{q, f(x)}. Let xi de-
note the solution generated by flipping the i-th bit of x. Let
I = {i 2 [1, n] | f 0

(x

i

) � f 0
(x) > 0} denote the 0 bit po-

sitions of x where the flipping can generate a solution with a
positive increment on f 0. Let � = min{ wi

f

0
(x

i
)�f

0
(x)

| i 2 I}.

Then, �  OPT/(q � k). Otherwise, for any e
i

2 x

⇤ � x,
w

i

> (f 0
(x

i

)�f 0
(x))·OPT/(q�k). Thus,

P
ei2x

⇤�x

w
i

>�P
ei2x

⇤�x

(f 0
(x

i

) � f 0
(x))

�
· OPT/(q � k). Since f is

monotone and submodular, f 0 is also monotone and submod-
ular, then f 0

(x

⇤
) � f 0

(x) 
P

ei2x

⇤�x

(f 0
(x

i

) � f 0
(x)).

Thus,
P

ei2x

⇤�x

w
i

> (f 0
(x

⇤
) � f 0

(x)) · OPT/(q � k) =
OPT , which contradicts with

P
ei2x

⇤�x

w
i

 w(x⇤
) =

OPT . Thus, by selecting x in step 5 of Algorithm 2 and
flipping only the 0 bit corresponding to � in step 6, it can gen-
erate a new solution x

0 with min{q, f(x0
)} = k0 > k and

w(x0
)  w(x) + (k0 � k) ·OPT/(q � k)  R

k

0 ·OPT.

Once generated, x0 will be included into P . Otherwise, there
must exist a solution in P dominating x

0 which has a larger
f 0 and a smaller w; this implies that K

max

has already been
larger than k, which contradicts with the assumption K

max

=

k. After including x

0, K
max

increases from k to k0.
The probability of flipping a specific 0 bit of x is at least

1

q+1

· 1

n

(1 � 1

n

)

n�1 � 1

en(q+1)

. Thus, the expected running
time for such a step of increasing K

max

is at most en(q +

1). Since q such steps are sufficient to make K
max

= q, the
expected running time of this phase is O(q2n).

By combining the two phases, the expected running time
of the whole process is O(qn(log n+ logw

max

+ q)). ⇤

For the penalty function method, we first show that mini-
mum set cover (MSC) is an instance of minimum cost cover-
age and then give a concrete MSC example where the penalty
function method is less efficient than Pareto optimization.

Definition 6 (Minimum Set Cover) Given a set S =

{e
1

, . . . , e
m

}, a collection C = {C
1

, . . . , C
n

} of subsets of S
with corresponding costs w : C ! N, it is to find a subset of
C (represented by x 2 {0, 1}n) with the minimum cost such
that all the elements of S are covered, that is

argmin

x2{0,1}n

w(x) =
X

n

i=1

w
i

x
i

s.t.
[

i:xi=1

C
i

= S.

Let U = C and f(x) = |
S

i:xi=1

C
i

|. Then f is monotone
and submodular. Since f(x)  m and |S| = m, it is easy to
verify that the MSC problem is an instance of minimum cost
coverage (i.e., Definition 5) with q = m.

Friedrich et al. [2010] have analyzed the running time of
the penalty function method on a specific MSC example, as
shown in Lemma 4 (i.e., Theorem 8 in their paper). Thus, we
have Theorem 4 by letting ✏ being a constant and w

max

= 2

n.

Lemma 4 [Friedrich et al., 2010] Let � > 0 be a constant
and n��1  ✏ < 1/2. The expected running time of the
penalty function method on a MSC example (m = ✏(1�✏)n2)
for finding an approximation better than ((1 � ✏)w

max

)/✏ is
exponential w.r.t. n.

Theorem 4 There exists a minimum cost coverage instance,
where the expected running time of the penalty function
method for finding a H

q

-approximate solution is exponential
w.r.t. n, q and logw

max

.

e.g. minimum submodular cover, minimum set cover

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

-the worst problem-case average-runtime complexity
-solve Hq-approximate solutions

Minimum Matroid Problem

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

-the worst problem-case average-runtime complexity
-solve Hq-approximate solutions

Minimum Matroid Problem

On Constrained Boolean Pareto Optimization

Paper ID: 1100

Abstract
Pareto optimization, a general purpose optimiza-
tion approach, has shown its power in applications
solving constrained Boolean optimization prob-
lems. However, theoretical studies on Pareto op-
timization are quite rare. To better understand its
ability, this work theoretically compares Pareto op-
timization with a penalty approach, which is a com-
mon method transforming a constrained optimiza-
tion into an unconstrained optimization. We prove
that on two large problem classes, minimum ma-
troid optimization (P-solvable) and minimum cost
coverage (NP-hard), Pareto optimization is more
efficient than the penalty function method for ob-
taining the optimal and approximate solutions, re-
spectively. Furthermore, on a minimum cost cover-
age instance, we also show the advantage of Pareto
optimization over a greedy algorithm.

1 Introduction
Optimization tasks usually come with constraints [Bertsekas,
1999], which must be satisfied by the final solutions. For
general constrained optimization, i.e., we don’t make as-
sumptions on its objective function and constraints, the most
widely used method is the penalty function method [Ben
Hadj-Alouane and Bean, 1997; Coello Coello, 2002], which
forms an unconstrained optimization problem that is the ob-
jective function of the original problem adding a penalty term,
where the penalty term usually measures the degree of the
constraints violation. When the penalty term is well balanced
with the objective function, the unconstrained optimization
problem will yield the same optimal solutions as the original
constrained optimization problem.

Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006], inspired from multi-objective evolutionary optimiza-
tion, solves a constrained optimization in a new way: by
treating the constraints violation degree as an additional ob-
jective function, the original optimization problem is refor-
mulated as a bi-objective optimization problem, which is
to optimize the objective function and meanwhile to mini-
mize the violation degree; and after solving the reformulated
problem by a bi-objective optimization algorithm, the solu-
tions are transformed back to the original problem. The per-

formance of this approach was only tested by experiments
on some benchmark problems [Venkatraman and Yen, 2005;
Wang et al., 2007]. Recently it has been applied to the en-
semble pruning problem [Qian et al., 2015], which aims at
minimizing the error with a constraint on the number of used
classifiers. In this application, Pareto optimization is shown
to be superior both theoretically and empirically [Qian et al.,
2015]. However, the theoretical understanding of Pareto opti-
mization is still quite rare. It is then important to theoretically
study how widely Pareto optimization can be applicable.

This paper tries to shed some light on the power of Pareto
optimization. We theoretically compare the efficiency of
Pareto optimization with a penalty function method on two
large Boolean optimization problem classes, where the effi-
ciency is measured by the expected running time for achiev-
ing an optimal or approximate solution. To compare on a
problem class F , we use the worst case comparison [Cor-
men et al., 2001]. Denoting POM(f) and PFM(f) as
the expected running time of the Pareto optimization and
the penalty function method for solving f 2 F , respec-
tively, we compare POM(F)=max{POM(f)|f 2F} with
PFM(F)=max{PFM(f)|f 2F}. Our main results are:

• On the P-solvable minimum matroid optimization prob-
lem (denoted as M) for finding an optimal solution,
POM(M) 2 O(rn(log n + logw

max

+ r)) (Theorem 1)
and PFM(M) 2 ⌦(r2n(log n + logw

max

)) (Theorem
2), where n, w

max

and r are parameters of problem size,
maximum weight and matroid ranking, respectively. Thus,
Pareto optimization is faster than the penalty function
method by at least a factor of min{log n+ logw

max

, r}.

• On the NP-hard minimum cost coverage problem (denoted
as C) for finding an approximate solution, POM(C) 2
O(qn(log n+ logw

max

+ q)) (Theorem 3) and PFM(C)
is at least exponential w.r.t. n, q and logw

max

(Theorem
4), where q is a submodular threshold parameter. Thus,
Pareto optimization is exponentially faster than the penalty
function method.

• On a specific minimum cost coverage instance C 2 C, the
greedy algorithm finds a local optimal solution (Proposi-
tion 1), while POM(C) 2 O(n2

log n) (Proposition 2)
and PFM(C) 2 O(n3

log n) (Proposition 3) for finding
the global optimal solution. Thus, Pareto optimization can
be better than the greedy algorithm.

For the Penalty Function Method

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

-the worst problem-case average-runtime complexity
-solve Hq-approximate solutions

Minimum Matroid Problem

On Constrained Boolean Pareto Optimization

Paper ID: 1100

Abstract
Pareto optimization, a general purpose optimiza-
tion approach, has shown its power in applications
solving constrained Boolean optimization prob-
lems. However, theoretical studies on Pareto op-
timization are quite rare. To better understand its
ability, this work theoretically compares Pareto op-
timization with a penalty approach, which is a com-
mon method transforming a constrained optimiza-
tion into an unconstrained optimization. We prove
that on two large problem classes, minimum ma-
troid optimization (P-solvable) and minimum cost
coverage (NP-hard), Pareto optimization is more
efficient than the penalty function method for ob-
taining the optimal and approximate solutions, re-
spectively. Furthermore, on a minimum cost cover-
age instance, we also show the advantage of Pareto
optimization over a greedy algorithm.

1 Introduction
Optimization tasks usually come with constraints [Bertsekas,
1999], which must be satisfied by the final solutions. For
general constrained optimization, i.e., we don’t make as-
sumptions on its objective function and constraints, the most
widely used method is the penalty function method [Ben
Hadj-Alouane and Bean, 1997; Coello Coello, 2002], which
forms an unconstrained optimization problem that is the ob-
jective function of the original problem adding a penalty term,
where the penalty term usually measures the degree of the
constraints violation. When the penalty term is well balanced
with the objective function, the unconstrained optimization
problem will yield the same optimal solutions as the original
constrained optimization problem.

Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006], inspired from multi-objective evolutionary optimiza-
tion, solves a constrained optimization in a new way: by
treating the constraints violation degree as an additional ob-
jective function, the original optimization problem is refor-
mulated as a bi-objective optimization problem, which is
to optimize the objective function and meanwhile to mini-
mize the violation degree; and after solving the reformulated
problem by a bi-objective optimization algorithm, the solu-
tions are transformed back to the original problem. The per-

formance of this approach was only tested by experiments
on some benchmark problems [Venkatraman and Yen, 2005;
Wang et al., 2007]. Recently it has been applied to the en-
semble pruning problem [Qian et al., 2015], which aims at
minimizing the error with a constraint on the number of used
classifiers. In this application, Pareto optimization is shown
to be superior both theoretically and empirically [Qian et al.,
2015]. However, the theoretical understanding of Pareto opti-
mization is still quite rare. It is then important to theoretically
study how widely Pareto optimization can be applicable.

This paper tries to shed some light on the power of Pareto
optimization. We theoretically compare the efficiency of
Pareto optimization with a penalty function method on two
large Boolean optimization problem classes, where the effi-
ciency is measured by the expected running time for achiev-
ing an optimal or approximate solution. To compare on a
problem class F , we use the worst case comparison [Cor-
men et al., 2001]. Denoting POM(f) and PFM(f) as
the expected running time of the Pareto optimization and
the penalty function method for solving f 2 F , respec-
tively, we compare POM(F)=max{POM(f)|f 2F} with
PFM(F)=max{PFM(f)|f 2F}. Our main results are:

• On the P-solvable minimum matroid optimization prob-
lem (denoted as M) for finding an optimal solution,
POM(M) 2 O(rn(log n + logw

max

+ r)) (Theorem 1)
and PFM(M) 2 ⌦(r2n(log n + logw

max

)) (Theorem
2), where n, w

max

and r are parameters of problem size,
maximum weight and matroid ranking, respectively. Thus,
Pareto optimization is faster than the penalty function
method by at least a factor of min{log n+ logw

max

, r}.

• On the NP-hard minimum cost coverage problem (denoted
as C) for finding an approximate solution, POM(C) 2
O(qn(log n+ logw

max

+ q)) (Theorem 3) and PFM(C)
is at least exponential w.r.t. n, q and logw

max

(Theorem
4), where q is a submodular threshold parameter. Thus,
Pareto optimization is exponentially faster than the penalty
function method.

• On a specific minimum cost coverage instance C 2 C, the
greedy algorithm finds a local optimal solution (Proposi-
tion 1), while POM(C) 2 O(n2

log n) (Proposition 2)
and PFM(C) 2 O(n3

log n) (Proposition 3) for finding
the global optimal solution. Thus, Pareto optimization can
be better than the greedy algorithm.

For the Penalty Function Method

On Constrained Boolean Pareto Optimization

Paper ID: 1100

Abstract
Pareto optimization, a general purpose optimiza-
tion approach, has shown its power in applications
solving constrained Boolean optimization prob-
lems. However, theoretical studies on Pareto op-
timization are quite rare. To better understand its
ability, this work theoretically compares Pareto op-
timization with a penalty approach, which is a com-
mon method transforming a constrained optimiza-
tion into an unconstrained optimization. We prove
that on two large problem classes, minimum ma-
troid optimization (P-solvable) and minimum cost
coverage (NP-hard), Pareto optimization is more
efficient than the penalty function method for ob-
taining the optimal and approximate solutions, re-
spectively. Furthermore, on a minimum cost cover-
age instance, we also show the advantage of Pareto
optimization over a greedy algorithm.

1 Introduction
Optimization tasks usually come with constraints [Bertsekas,
1999], which must be satisfied by the final solutions. For
general constrained optimization, i.e., we don’t make as-
sumptions on its objective function and constraints, the most
widely used method is the penalty function method [Ben
Hadj-Alouane and Bean, 1997; Coello Coello, 2002], which
forms an unconstrained optimization problem that is the ob-
jective function of the original problem adding a penalty term,
where the penalty term usually measures the degree of the
constraints violation. When the penalty term is well balanced
with the objective function, the unconstrained optimization
problem will yield the same optimal solutions as the original
constrained optimization problem.

Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006], inspired from multi-objective evolutionary optimiza-
tion, solves a constrained optimization in a new way: by
treating the constraints violation degree as an additional ob-
jective function, the original optimization problem is refor-
mulated as a bi-objective optimization problem, which is
to optimize the objective function and meanwhile to mini-
mize the violation degree; and after solving the reformulated
problem by a bi-objective optimization algorithm, the solu-
tions are transformed back to the original problem. The per-

formance of this approach was only tested by experiments
on some benchmark problems [Venkatraman and Yen, 2005;
Wang et al., 2007]. Recently it has been applied to the en-
semble pruning problem [Qian et al., 2015], which aims at
minimizing the error with a constraint on the number of used
classifiers. In this application, Pareto optimization is shown
to be superior both theoretically and empirically [Qian et al.,
2015]. However, the theoretical understanding of Pareto opti-
mization is still quite rare. It is then important to theoretically
study how widely Pareto optimization can be applicable.

This paper tries to shed some light on the power of Pareto
optimization. We theoretically compare the efficiency of
Pareto optimization with a penalty function method on two
large Boolean optimization problem classes, where the effi-
ciency is measured by the expected running time for achiev-
ing an optimal or approximate solution. To compare on a
problem class F , we use the worst case comparison [Cor-
men et al., 2001]. Denoting POM(f) and PFM(f) as
the expected running time of the Pareto optimization and
the penalty function method for solving f 2 F , respec-
tively, we compare POM(F)=max{POM(f)|f 2F} with
PFM(F)=max{PFM(f)|f 2F}. Our main results are:

• On the P-solvable minimum matroid optimization prob-
lem (denoted as M) for finding an optimal solution,
POM(M) 2 O(rn(log n + logw

max

+ r)) (Theorem 1)
and PFM(M) 2 ⌦(r2n(log n + logw

max

)) (Theorem
2), where n, w

max

and r are parameters of problem size,
maximum weight and matroid ranking, respectively. Thus,
Pareto optimization is faster than the penalty function
method by at least a factor of min{log n+ logw

max

, r}.

• On the NP-hard minimum cost coverage problem (denoted
as C) for finding an approximate solution, POM(C) 2
O(qn(log n+ logw

max

+ q)) (Theorem 3) and PFM(C)
is at least exponential w.r.t. n, q and logw

max

(Theorem
4), where q is a submodular threshold parameter. Thus,
Pareto optimization is exponentially faster than the penalty
function method.

• On a specific minimum cost coverage instance C 2 C, the
greedy algorithm finds a local optimal solution (Proposi-
tion 1), while POM(C) 2 O(n2

log n) (Proposition 2)
and PFM(C) 2 O(n3

log n) (Proposition 3) for finding
the global optimal solution. Thus, Pareto optimization can
be better than the greedy algorithm.

For the Pareto Optimization Method

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained
Boolean Pareto Optimization. IJCAI’15]

-the worst problem-case average-runtime complexity
-solve Hq-approximate solutions

Minimum Matroid Problem

On Constrained Boolean Pareto Optimization

Paper ID: 1100

Abstract
Pareto optimization, a general purpose optimiza-
tion approach, has shown its power in applications
solving constrained Boolean optimization prob-
lems. However, theoretical studies on Pareto op-
timization are quite rare. To better understand its
ability, this work theoretically compares Pareto op-
timization with a penalty approach, which is a com-
mon method transforming a constrained optimiza-
tion into an unconstrained optimization. We prove
that on two large problem classes, minimum ma-
troid optimization (P-solvable) and minimum cost
coverage (NP-hard), Pareto optimization is more
efficient than the penalty function method for ob-
taining the optimal and approximate solutions, re-
spectively. Furthermore, on a minimum cost cover-
age instance, we also show the advantage of Pareto
optimization over a greedy algorithm.

1 Introduction
Optimization tasks usually come with constraints [Bertsekas,
1999], which must be satisfied by the final solutions. For
general constrained optimization, i.e., we don’t make as-
sumptions on its objective function and constraints, the most
widely used method is the penalty function method [Ben
Hadj-Alouane and Bean, 1997; Coello Coello, 2002], which
forms an unconstrained optimization problem that is the ob-
jective function of the original problem adding a penalty term,
where the penalty term usually measures the degree of the
constraints violation. When the penalty term is well balanced
with the objective function, the unconstrained optimization
problem will yield the same optimal solutions as the original
constrained optimization problem.

Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006], inspired from multi-objective evolutionary optimiza-
tion, solves a constrained optimization in a new way: by
treating the constraints violation degree as an additional ob-
jective function, the original optimization problem is refor-
mulated as a bi-objective optimization problem, which is
to optimize the objective function and meanwhile to mini-
mize the violation degree; and after solving the reformulated
problem by a bi-objective optimization algorithm, the solu-
tions are transformed back to the original problem. The per-

formance of this approach was only tested by experiments
on some benchmark problems [Venkatraman and Yen, 2005;
Wang et al., 2007]. Recently it has been applied to the en-
semble pruning problem [Qian et al., 2015], which aims at
minimizing the error with a constraint on the number of used
classifiers. In this application, Pareto optimization is shown
to be superior both theoretically and empirically [Qian et al.,
2015]. However, the theoretical understanding of Pareto opti-
mization is still quite rare. It is then important to theoretically
study how widely Pareto optimization can be applicable.

This paper tries to shed some light on the power of Pareto
optimization. We theoretically compare the efficiency of
Pareto optimization with a penalty function method on two
large Boolean optimization problem classes, where the effi-
ciency is measured by the expected running time for achiev-
ing an optimal or approximate solution. To compare on a
problem class F , we use the worst case comparison [Cor-
men et al., 2001]. Denoting POM(f) and PFM(f) as
the expected running time of the Pareto optimization and
the penalty function method for solving f 2 F , respec-
tively, we compare POM(F)=max{POM(f)|f 2F} with
PFM(F)=max{PFM(f)|f 2F}. Our main results are:

• On the P-solvable minimum matroid optimization prob-
lem (denoted as M) for finding an optimal solution,
POM(M) 2 O(rn(log n + logw

max

+ r)) (Theorem 1)
and PFM(M) 2 ⌦(r2n(log n + logw

max

)) (Theorem
2), where n, w

max

and r are parameters of problem size,
maximum weight and matroid ranking, respectively. Thus,
Pareto optimization is faster than the penalty function
method by at least a factor of min{log n+ logw

max

, r}.

• On the NP-hard minimum cost coverage problem (denoted
as C) for finding an approximate solution, POM(C) 2
O(qn(log n+ logw

max

+ q)) (Theorem 3) and PFM(C)
is at least exponential w.r.t. n, q and logw

max

(Theorem
4), where q is a submodular threshold parameter. Thus,
Pareto optimization is exponentially faster than the penalty
function method.

• On a specific minimum cost coverage instance C 2 C, the
greedy algorithm finds a local optimal solution (Proposi-
tion 1), while POM(C) 2 O(n2

log n) (Proposition 2)
and PFM(C) 2 O(n3

log n) (Proposition 3) for finding
the global optimal solution. Thus, Pareto optimization can
be better than the greedy algorithm.

For the Penalty Function Method

On Constrained Boolean Pareto Optimization

Paper ID: 1100

Abstract
Pareto optimization, a general purpose optimiza-
tion approach, has shown its power in applications
solving constrained Boolean optimization prob-
lems. However, theoretical studies on Pareto op-
timization are quite rare. To better understand its
ability, this work theoretically compares Pareto op-
timization with a penalty approach, which is a com-
mon method transforming a constrained optimiza-
tion into an unconstrained optimization. We prove
that on two large problem classes, minimum ma-
troid optimization (P-solvable) and minimum cost
coverage (NP-hard), Pareto optimization is more
efficient than the penalty function method for ob-
taining the optimal and approximate solutions, re-
spectively. Furthermore, on a minimum cost cover-
age instance, we also show the advantage of Pareto
optimization over a greedy algorithm.

1 Introduction
Optimization tasks usually come with constraints [Bertsekas,
1999], which must be satisfied by the final solutions. For
general constrained optimization, i.e., we don’t make as-
sumptions on its objective function and constraints, the most
widely used method is the penalty function method [Ben
Hadj-Alouane and Bean, 1997; Coello Coello, 2002], which
forms an unconstrained optimization problem that is the ob-
jective function of the original problem adding a penalty term,
where the penalty term usually measures the degree of the
constraints violation. When the penalty term is well balanced
with the objective function, the unconstrained optimization
problem will yield the same optimal solutions as the original
constrained optimization problem.

Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006], inspired from multi-objective evolutionary optimiza-
tion, solves a constrained optimization in a new way: by
treating the constraints violation degree as an additional ob-
jective function, the original optimization problem is refor-
mulated as a bi-objective optimization problem, which is
to optimize the objective function and meanwhile to mini-
mize the violation degree; and after solving the reformulated
problem by a bi-objective optimization algorithm, the solu-
tions are transformed back to the original problem. The per-

formance of this approach was only tested by experiments
on some benchmark problems [Venkatraman and Yen, 2005;
Wang et al., 2007]. Recently it has been applied to the en-
semble pruning problem [Qian et al., 2015], which aims at
minimizing the error with a constraint on the number of used
classifiers. In this application, Pareto optimization is shown
to be superior both theoretically and empirically [Qian et al.,
2015]. However, the theoretical understanding of Pareto opti-
mization is still quite rare. It is then important to theoretically
study how widely Pareto optimization can be applicable.

This paper tries to shed some light on the power of Pareto
optimization. We theoretically compare the efficiency of
Pareto optimization with a penalty function method on two
large Boolean optimization problem classes, where the effi-
ciency is measured by the expected running time for achiev-
ing an optimal or approximate solution. To compare on a
problem class F , we use the worst case comparison [Cor-
men et al., 2001]. Denoting POM(f) and PFM(f) as
the expected running time of the Pareto optimization and
the penalty function method for solving f 2 F , respec-
tively, we compare POM(F)=max{POM(f)|f 2F} with
PFM(F)=max{PFM(f)|f 2F}. Our main results are:

• On the P-solvable minimum matroid optimization prob-
lem (denoted as M) for finding an optimal solution,
POM(M) 2 O(rn(log n + logw

max

+ r)) (Theorem 1)
and PFM(M) 2 ⌦(r2n(log n + logw

max

)) (Theorem
2), where n, w

max

and r are parameters of problem size,
maximum weight and matroid ranking, respectively. Thus,
Pareto optimization is faster than the penalty function
method by at least a factor of min{log n+ logw

max

, r}.

• On the NP-hard minimum cost coverage problem (denoted
as C) for finding an approximate solution, POM(C) 2
O(qn(log n+ logw

max

+ q)) (Theorem 3) and PFM(C)
is at least exponential w.r.t. n, q and logw

max

(Theorem
4), where q is a submodular threshold parameter. Thus,
Pareto optimization is exponentially faster than the penalty
function method.

• On a specific minimum cost coverage instance C 2 C, the
greedy algorithm finds a local optimal solution (Proposi-
tion 1), while POM(C) 2 O(n2

log n) (Proposition 2)
and PFM(C) 2 O(n3

log n) (Proposition 3) for finding
the global optimal solution. Thus, Pareto optimization can
be better than the greedy algorithm.

For the Pareto Optimization Method

Pareto optimization can be much better than penalty method

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App. 1: selective ensemble

Ordering-based methods

Optimization-based methods
semi-definite programming [Zhang, Burer and Street, JMLR’06]

quadratic programming [Li and Zhou, MCS’09]

genetic algorithms [Zhou, Wu and Tang, AIJ’02]

artificial immune algorithms [Castro et al., ICARIS’05]

error minimization [Margineantu and Dietterich, ICML’97]

diversity-like criterion maximization [Banfield et al., Info Fusion’05]
[Martínez-Munõz, Hernańdez-Lobato, and Suaŕez TPAMI’09]

combined criterion [Li, Yu, and Zhou, ECML’12]

SEP

OEP

Previous approaches

Selective ensemble:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App. 1: selective ensemble

selective ensemble can be divided into two goals
reduce error reduce size

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

by Pareto optimization method:

argmin
model subset

`(model subset) s.t. subset size  k

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App. 1: selective ensemble
Pareto Ensemble Pruning (PEP):
1. random generate a pruned ensemble, put it into the archive
2. loop
| 2.1 pick an ensemble randomly from the archive
| 2.2 randomly change it to make a new one
| 2.3 if the new one is not dominated
| | 2.3.1 put it into the archive
| | 2.3.2 put its good neighbors into the archive
3. when terminates, select an ensemble from the archive

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

reproduction:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App. 1: selective ensemble
Pareto Ensemble Pruning (PEP):
1. random generate a pruned ensemble, put it into the archive
2. loop
| 2.1 pick an ensemble randomly from the archive
| 2.2 randomly change it to make a new one
| 2.3 if the new one is not dominated
| | 2.3.1 put it into the archive
| | 2.3.2 put its good neighbors into the archive
3. when terminates, select an ensemble from the archive

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

reproduction:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App. 1: selective ensemble
Pareto Ensemble Pruning (PEP):
1. random generate a pruned ensemble, put it into the archive
2. loop
| 2.1 pick an ensemble randomly from the archive
| 2.2 randomly change it to make a new one
| 2.3 if the new one is not dominated
| | 2.3.1 put it into the archive
| | 2.3.2 put its good neighbors into the archive
3. when terminates, select an ensemble from the archive

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

reproduction:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App. 1: selective ensemble
Pareto Ensemble Pruning (PEP):
1. random generate a pruned ensemble, put it into the archive
2. loop
| 2.1 pick an ensemble randomly from the archive
| 2.2 randomly change it to make a new one
| 2.3 if the new one is not dominated
| | 2.3.1 put it into the archive
| | 2.3.2 put its good neighbors into the archive
3. when terminates, select an ensemble from the archive

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

reproduction:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App. 1: selective ensemble
Pareto Ensemble Pruning (PEP):
1. random generate a pruned ensemble, put it into the archive
2. loop
| 2.1 pick an ensemble randomly from the archive
| 2.2 randomly change it to make a new one
| 2.3 if the new one is not dominated
| | 2.3.1 put it into the archive
| | 2.3.2 put its good neighbors into the archive
3. when terminates, select an ensemble from the archive

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

reproduction:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

Previously, hard to perform theoretical comparison
Now:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

Previously, hard to perform theoretical comparison
Now:

Theoretical Analysis
This section investigates the effectiveness of PEP by com-
paring it theoretically with the ordering-based ensemble
pruning methods, briefly called OEP. Algorithm 3 presents
a common structure of OEP, where the objective f is used
to guide the search and an evaluation criterion (usually using
the validation error) is employed to select the final ensemble.
Algorithm 3 (OEP). Given trained classifiers H={hi}ni=1,
an objective f :2H →R and a criterion eval, it contains:

1. Let HS = ∅, HU = {h1, h2, . . . , hn}.
2. Repeat until HU = ∅ :
3. h∗ = argminh∈HU f(HS ∪ {h}).
4. HS = HS ∪ {h∗}, HU = HU − {h∗}.
5. Let HS = {h∗

1, . . . , h
∗
n}, where h∗

i is the classifier
added in the i-th iteration.

6. Let k = argmin1≤i≤n eval({h∗
1, . . . , h

∗
i }).

7. Output {h∗
1, h

∗
2, . . . , h

∗
k}.

In the following subsections, we firstly show that, for any
pruning instance, PEP can produce a solution at least as good
as that by OEP. We then show that PEP is strictly better than
OEP on some cases. Furthermore, we show that traditional
heuristic single-objective optimization based pruning meth-
ods (briefly called SEP) can be much worse than PEP/OEP.
All proof details are presented in the supplementary material
due to page limit, and we give only the proof idea here.

PEP Can Do All of OEP
We prove in Theorem 1 that for any pruning task, PEP can
efficiently produce at least an equally good solution as that
by OEP in both the performance and the size. The optimiza-
tion time is counted as the number of pruned ensemble eval-
uations, which is often the most time consuming step.
Theorem 1. For any objective and any size, PEP within
O(n4 log n) expected optimization time can find a solution
weakly dominating that generated by OEP at the fixed size.

The proof idea is that, first PEP can find the special solu-
tion {0}n (i.e., none of the classifiers is selected) efficiently;
then PEP can apply VDS on {0}n to follow the process of
OEP; and thus PEP can produce a solution at least as good
as that by OEP.

PEP Can Do Better Than OEP
We consider binary classification (i.e., Y = {−1, 1}), vot-
ing for combining base classifiers, and taking the validation
data set error as the performance objective f and also the
evaluation criterion. The validation error is calculated as

f(Hs) =
1

m

∑m

i=1
I(Hs(xi) ̸= yi), (1)

where I(·) is the indicator function that is 1 if the inner ex-
pression is true and 0 otherwise. Let f(Hs={0}n) = +∞ to
ensure that at least one classifier will be selected.

Theorem 2 shows that, for the type of pruning tasks de-
scribed in Situation 1, PEP can find the optimal pruned en-
semble within polynomial time, while OEP only finds a sub-
optimal one with larger error, or larger size, or both.

In this setting, a pruned ensemble Hs is composited as

Hs(x) = argmaxy∈Y
∑n

i=1
si · I(hi(x) = y).

We define the difference of two classifiers as

diff(hi, hj) =
1

m

∑m

k=1

(
1− hi(xk)hj(xk)

)
/2,

and the error of one classifier as

err(hi) =
1

m

∑m

k=1

(
1− hi(xk)yk

)
/2.

Both of them ∈ [0, 1]. If diff(hi, hj) = 1 (or 0), hi and hj

always make the opposite (or same) prediction; if err(hi)=1
(or 0), hi always makes the wrong (or right) prediction.

In situation 1, the optimal pruned ensemble consists of 3
base classifiers (i.e., H ′): each makes different mistakes, and
the combination leads to zero error. The proof of Theorem
2 is mainly that OEP will first select the base classifier h∗

with the smallest error due to the greedy nature and will be
misled by it, while PEP can first efficiently find the pruned
ensemble {h∗}, and then applying VDS on it can produce
the optimal pruned ensemble H ′ with a large probability.

Situation 1.

∃H ′⊆H, |H ′|=3 ∧ ∀g,h∈H ′, diff(g,h)=err(g)+err(h);

∃h∗∈H−H ′,

{
err(h∗) < min{err(h)|h ∈ H ′},
∀h∈H ′, diff(h, h∗)<err(h)+err(h∗);

∀g∈H−H ′−{h∗}, err(g)>max{err(h)|h∈H ′}
∧ err(g) + err(h∗)− diff(g, h∗) >

(min+max){err(h)+err(h∗)−diff(h, h∗)|h∈H ′}.

Theorem 2. In Situation 1, OEP using Eq.1 finds a solution
with objective vector (≥ 0,≥ 3) where the two equalities
never hold simultaneously, while PEP finds a solution with
objective vector (0, 3) in O(n4 log n) expected time.

PEP/OEP Can Do Better Than SEP
Heuristic optimization methods like evolutionary algorithms
(EAs) (Bäck 1996) have been employed for solving the en-
semble pruning in a single-objective formulation that mixes
the two goals, which are briefly called SEP. GASEN (Zhou,
Wu, and Tang 2002) is probably the first such method,
and several other methods (e.g., artificial immune algo-
rithms (Castro et al. 2005)) have also been proposed. How-
ever, it was unknown theoretically how well these optimiza-
tion methods can be. Taking an EA presented in Algorithm
4 (He and Yao 2001; Auger and Doerr 2011) as a represen-
tative SEP, we prove that, for the type of pruning tasks de-
scribed in Situation 2, OEP (and thus PEP due to Theorem
1) can find the optimal pruned ensemble efficiently but SEP
needs at least exponential optimization time.

Algorithm 4 (SEP). Given a set of trained classifiers
H = {hi}ni=1 and an objective f : 2H → R, it contains:

1. s = randomly selected from {0, 1}n.
2. Repeat until the termination condition is met:
3. Generate s′ by flipping each bit of s with prob. 1

n .
4. if f(Hs′) ≤ f(Hs) then s = s′.
5. Output s.

✓ PEP is at least as good as ordering-based methods

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

Previously, hard to perform theoretical comparison
Now:

✓ PEP is at least as good as ordering-based methods

Theoretical Analysis
This section investigates the effectiveness of PEP by com-
paring it theoretically with the ordering-based ensemble
pruning methods, briefly called OEP. Algorithm 3 presents
a common structure of OEP, where the objective f is used
to guide the search and an evaluation criterion (usually using
the validation error) is employed to select the final ensemble.
Algorithm 3 (OEP). Given trained classifiers H={hi}ni=1,
an objective f :2H →R and a criterion eval, it contains:

1. Let HS = ∅, HU = {h1, h2, . . . , hn}.
2. Repeat until HU = ∅ :
3. h∗ = argminh∈HU f(HS ∪ {h}).
4. HS = HS ∪ {h∗}, HU = HU − {h∗}.
5. Let HS = {h∗

1, . . . , h
∗
n}, where h∗

i is the classifier
added in the i-th iteration.

6. Let k = argmin1≤i≤n eval({h∗
1, . . . , h

∗
i }).

7. Output {h∗
1, h

∗
2, . . . , h

∗
k}.

In the following subsections, we firstly show that, for any
pruning instance, PEP can produce a solution at least as good
as that by OEP. We then show that PEP is strictly better than
OEP on some cases. Furthermore, we show that traditional
heuristic single-objective optimization based pruning meth-
ods (briefly called SEP) can be much worse than PEP/OEP.
All proof details are presented in the supplementary material
due to page limit, and we give only the proof idea here.

PEP Can Do All of OEP
We prove in Theorem 1 that for any pruning task, PEP can
efficiently produce at least an equally good solution as that
by OEP in both the performance and the size. The optimiza-
tion time is counted as the number of pruned ensemble eval-
uations, which is often the most time consuming step.
Theorem 1. For any objective and any size, PEP within
O(n4 log n) expected optimization time can find a solution
weakly dominating that generated by OEP at the fixed size.

The proof idea is that, first PEP can find the special solu-
tion {0}n (i.e., none of the classifiers is selected) efficiently;
then PEP can apply VDS on {0}n to follow the process of
OEP; and thus PEP can produce a solution at least as good
as that by OEP.

PEP Can Do Better Than OEP
We consider binary classification (i.e., Y = {−1, 1}), vot-
ing for combining base classifiers, and taking the validation
data set error as the performance objective f and also the
evaluation criterion. The validation error is calculated as

f(Hs) =
1

m

∑m

i=1
I(Hs(xi) ̸= yi), (1)

where I(·) is the indicator function that is 1 if the inner ex-
pression is true and 0 otherwise. Let f(Hs={0}n) = +∞ to
ensure that at least one classifier will be selected.

Theorem 2 shows that, for the type of pruning tasks de-
scribed in Situation 1, PEP can find the optimal pruned en-
semble within polynomial time, while OEP only finds a sub-
optimal one with larger error, or larger size, or both.

In this setting, a pruned ensemble Hs is composited as

Hs(x) = argmaxy∈Y
∑n

i=1
si · I(hi(x) = y).

We define the difference of two classifiers as

diff(hi, hj) =
1

m

∑m

k=1

(
1− hi(xk)hj(xk)

)
/2,

and the error of one classifier as

err(hi) =
1

m

∑m

k=1

(
1− hi(xk)yk

)
/2.

Both of them ∈ [0, 1]. If diff(hi, hj) = 1 (or 0), hi and hj

always make the opposite (or same) prediction; if err(hi)=1
(or 0), hi always makes the wrong (or right) prediction.

In situation 1, the optimal pruned ensemble consists of 3
base classifiers (i.e., H ′): each makes different mistakes, and
the combination leads to zero error. The proof of Theorem
2 is mainly that OEP will first select the base classifier h∗

with the smallest error due to the greedy nature and will be
misled by it, while PEP can first efficiently find the pruned
ensemble {h∗}, and then applying VDS on it can produce
the optimal pruned ensemble H ′ with a large probability.

Situation 1.

∃H ′⊆H, |H ′|=3 ∧ ∀g,h∈H ′, diff(g,h)=err(g)+err(h);

∃h∗∈H−H ′,

{
err(h∗) < min{err(h)|h ∈ H ′},
∀h∈H ′, diff(h, h∗)<err(h)+err(h∗);

∀g∈H−H ′−{h∗}, err(g)>max{err(h)|h∈H ′}
∧ err(g) + err(h∗)− diff(g, h∗) >

(min+max){err(h)+err(h∗)−diff(h, h∗)|h∈H ′}.

Theorem 2. In Situation 1, OEP using Eq.1 finds a solution
with objective vector (≥ 0,≥ 3) where the two equalities
never hold simultaneously, while PEP finds a solution with
objective vector (0, 3) in O(n4 log n) expected time.

PEP/OEP Can Do Better Than SEP
Heuristic optimization methods like evolutionary algorithms
(EAs) (Bäck 1996) have been employed for solving the en-
semble pruning in a single-objective formulation that mixes
the two goals, which are briefly called SEP. GASEN (Zhou,
Wu, and Tang 2002) is probably the first such method,
and several other methods (e.g., artificial immune algo-
rithms (Castro et al. 2005)) have also been proposed. How-
ever, it was unknown theoretically how well these optimiza-
tion methods can be. Taking an EA presented in Algorithm
4 (He and Yao 2001; Auger and Doerr 2011) as a represen-
tative SEP, we prove that, for the type of pruning tasks de-
scribed in Situation 2, OEP (and thus PEP due to Theorem
1) can find the optimal pruned ensemble efficiently but SEP
needs at least exponential optimization time.

Algorithm 4 (SEP). Given a set of trained classifiers
H = {hi}ni=1 and an objective f : 2H → R, it contains:

1. s = randomly selected from {0, 1}n.
2. Repeat until the termination condition is met:
3. Generate s′ by flipping each bit of s with prob. 1

n .
4. if f(Hs′) ≤ f(Hs) then s = s′.
5. Output s.

Theoretical Analysis
This section investigates the effectiveness of PEP by com-
paring it theoretically with the ordering-based ensemble
pruning methods, briefly called OEP. Algorithm 3 presents
a common structure of OEP, where the objective f is used
to guide the search and an evaluation criterion (usually using
the validation error) is employed to select the final ensemble.
Algorithm 3 (OEP). Given trained classifiers H={hi}ni=1,
an objective f :2H →R and a criterion eval, it contains:

1. Let HS = ∅, HU = {h1, h2, . . . , hn}.
2. Repeat until HU = ∅ :
3. h∗ = argminh∈HU f(HS ∪ {h}).
4. HS = HS ∪ {h∗}, HU = HU − {h∗}.
5. Let HS = {h∗

1, . . . , h
∗
n}, where h∗

i is the classifier
added in the i-th iteration.

6. Let k = argmin1≤i≤n eval({h∗
1, . . . , h

∗
i }).

7. Output {h∗
1, h

∗
2, . . . , h

∗
k}.

In the following subsections, we firstly show that, for any
pruning instance, PEP can produce a solution at least as good
as that by OEP. We then show that PEP is strictly better than
OEP on some cases. Furthermore, we show that traditional
heuristic single-objective optimization based pruning meth-
ods (briefly called SEP) can be much worse than PEP/OEP.
All proof details are presented in the supplementary material
due to page limit, and we give only the proof idea here.

PEP Can Do All of OEP
We prove in Theorem 1 that for any pruning task, PEP can
efficiently produce at least an equally good solution as that
by OEP in both the performance and the size. The optimiza-
tion time is counted as the number of pruned ensemble eval-
uations, which is often the most time consuming step.
Theorem 1. For any objective and any size, PEP within
O(n4 log n) expected optimization time can find a solution
weakly dominating that generated by OEP at the fixed size.

The proof idea is that, first PEP can find the special solu-
tion {0}n (i.e., none of the classifiers is selected) efficiently;
then PEP can apply VDS on {0}n to follow the process of
OEP; and thus PEP can produce a solution at least as good
as that by OEP.

PEP Can Do Better Than OEP
We consider binary classification (i.e., Y = {−1, 1}), vot-
ing for combining base classifiers, and taking the validation
data set error as the performance objective f and also the
evaluation criterion. The validation error is calculated as

f(Hs) =
1

m

∑m

i=1
I(Hs(xi) ̸= yi), (1)

where I(·) is the indicator function that is 1 if the inner ex-
pression is true and 0 otherwise. Let f(Hs={0}n) = +∞ to
ensure that at least one classifier will be selected.

Theorem 2 shows that, for the type of pruning tasks de-
scribed in Situation 1, PEP can find the optimal pruned en-
semble within polynomial time, while OEP only finds a sub-
optimal one with larger error, or larger size, or both.

In this setting, a pruned ensemble Hs is composited as

Hs(x) = argmaxy∈Y
∑n

i=1
si · I(hi(x) = y).

We define the difference of two classifiers as

diff(hi, hj) =
1

m

∑m

k=1

(
1− hi(xk)hj(xk)

)
/2,

and the error of one classifier as

err(hi) =
1

m

∑m

k=1

(
1− hi(xk)yk

)
/2.

Both of them ∈ [0, 1]. If diff(hi, hj) = 1 (or 0), hi and hj

always make the opposite (or same) prediction; if err(hi)=1
(or 0), hi always makes the wrong (or right) prediction.

In situation 1, the optimal pruned ensemble consists of 3
base classifiers (i.e., H ′): each makes different mistakes, and
the combination leads to zero error. The proof of Theorem
2 is mainly that OEP will first select the base classifier h∗

with the smallest error due to the greedy nature and will be
misled by it, while PEP can first efficiently find the pruned
ensemble {h∗}, and then applying VDS on it can produce
the optimal pruned ensemble H ′ with a large probability.

Situation 1.

∃H ′⊆H, |H ′|=3 ∧ ∀g,h∈H ′, diff(g,h)=err(g)+err(h);

∃h∗∈H−H ′,

{
err(h∗) < min{err(h)|h ∈ H ′},
∀h∈H ′, diff(h, h∗)<err(h)+err(h∗);

∀g∈H−H ′−{h∗}, err(g)>max{err(h)|h∈H ′}
∧ err(g) + err(h∗)− diff(g, h∗) >

(min+max){err(h)+err(h∗)−diff(h, h∗)|h∈H ′}.

Theorem 2. In Situation 1, OEP using Eq.1 finds a solution
with objective vector (≥ 0,≥ 3) where the two equalities
never hold simultaneously, while PEP finds a solution with
objective vector (0, 3) in O(n4 log n) expected time.

PEP/OEP Can Do Better Than SEP
Heuristic optimization methods like evolutionary algorithms
(EAs) (Bäck 1996) have been employed for solving the en-
semble pruning in a single-objective formulation that mixes
the two goals, which are briefly called SEP. GASEN (Zhou,
Wu, and Tang 2002) is probably the first such method,
and several other methods (e.g., artificial immune algo-
rithms (Castro et al. 2005)) have also been proposed. How-
ever, it was unknown theoretically how well these optimiza-
tion methods can be. Taking an EA presented in Algorithm
4 (He and Yao 2001; Auger and Doerr 2011) as a represen-
tative SEP, we prove that, for the type of pruning tasks de-
scribed in Situation 2, OEP (and thus PEP due to Theorem
1) can find the optimal pruned ensemble efficiently but SEP
needs at least exponential optimization time.

Algorithm 4 (SEP). Given a set of trained classifiers
H = {hi}ni=1 and an objective f : 2H → R, it contains:

1. s = randomly selected from {0, 1}n.
2. Repeat until the termination condition is met:
3. Generate s′ by flipping each bit of s with prob. 1

n .
4. if f(Hs′) ≤ f(Hs) then s = s′.
5. Output s.

✓ PEP can be better than ordering-based methods

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

Previously, hard to perform theoretical comparison
Now:

✓ PEP is at least as good as ordering-based methods

✓ PEP can be better than ordering-based methods

✓ PEP/ordering-based methods can be better than the direct use
of heuristic search

In Situation 2, all base classifiers make the same predic-
tions except one that makes fewer mistakes. Without loss of
generality, assume H 0

={h2, . . . , hn}. Let err(h1)=c1 and
err(h2H 0

)=c2, where c1<c2. Then, the objective Eq.1 is

f(Hs) =

8
>><

>>:

+1, if s = {0}n,
c1, if s = 1{0}n�1,
(c1 + c2)/2, if |s| = 2 ^ s1 = 1,
c2, otherwise.

The main proof idea of Theorem 3 is that OEP can easily
find the optimal solution 1{0}n�1 by the first greedy step,
while SEP almost performs a random walk on a plateau and
thus is inefficient.
Situation 2.
9H 0 ✓ H, |H 0| = n� 1 ^ 8g, h 2 H 0, diff(g, h) = 0;

err(H �H 0
) < err(h 2 H 0

).

Theorem 3. In Situation 2, OEP using Eq.1 finds the opti-
mal solution in O(n2

) optimization time, while the time of
SEP is at least 2⌦(n) with probability 1� 2

�⌦(n).

Experiments
We conduct experiments on 20 binary and 10 multiclass data
sets (Blake, Keogh, and Merz 1998), pruning the base clas-
sifiers trained by Bagging (Breiman 1996). To assess each
method on each data set, we repeat the following process 30
times. The data set is randomly and evenly split into three
parts, each as the training set, the validation set and the test
set. A Bagging of 100 C4.5 decision trees (Quinlan 1993) is
trained on the training set, then pruned by a pruning method
using the validation set, and finally tested on the test set.

For PEP, the first goal is to minimize the validation er-
ror, which is also used as the evaluation criterion for the
final ensemble selection. Two baselines are the full Bag-
ging, which uses all the base classifiers, and the Best In-
dividual (BI), which selects the best classifier according
to the validation error. Five state-of-the-art ordering meth-
ods are compared, including Reduce-Error (RE) (Caru-
ana et al. 2004), Kappa (Banfield et al. 2005), Comple-
mentarity (CP) (Martı́nez-Muñoz, Hernández-Lobato, and
Suárez 2009), Margin Distance (MD) (Martı́nez-Muñoz,
Hernández-Lobato, and Suárez 2009), and DREP (Li, Yu,
and Zhou 2012) methods. They mainly differ in their con-
sidered objectives relating to the generalization perfor-
mance, and they all use the validation error as the evalu-
ation criterion for selecting the final ensemble. As a rep-
resentative heuristic single-objective optimization method,
an EA (Bäck 1996) is compared, which is similar to Algo-
rithm 4 except that it generates and maintains n solutions in
each iteration, minimizing the validation error. The parame-
ter p for MD is set to 0.075 (Martı́nez-Muñoz, Hernández-
Lobato, and Suárez 2009), and the parameter ⇢ of DREP is
selected from {0.2, 0.25, . . . , 0.5} (Li, Yu, and Zhou 2012).
The number of iterations for PEP is set to dn2

log ne (the to-
tal number of evaluations O(n4

log n) divided by the num-
ber of evaluations in each iteration O(n2

), as suggested by
Theorems 1&2). For the fairness of comparison, the number
of iterations for EA is dn3

log ne so that it costs the same
number of evaluations as PEP.

On Binary Classification

Some of the data sets are generated from the original multi-
class data sets: from the letter data set, letter-ah classifies ‘a’
against ‘h’, and alike letter-br and letter-oq; optdigits clas-
sifies ‘0⇠4’ against ‘5⇠9’; from satimage, satimage-12v57
classifies labels ‘1’ and ‘2’ against ‘5’ and ‘7’, and alike
satimage-2v5; from vehicle, vehicle-bo-vs classifies ‘bus’
and ‘opel’ against ‘van’ and ‘saab’, and alike vehicle-b-v.

Table 1 lists the experiment results on the binary data sets.
Since it is improper to have a single summarization criterion
over multiple data sets and methods, we employ the num-
ber of best, number of direct win that is a pairwise compar-
ison followed by the sign-test (Demšar 2006), the t-test for
pairwise comparison on each data set, and the rank (Demšar
2006). PEP achieves the smallest test error (or size) on 60%
(12/20) of the data sets, while the other methods are less
than 35% (7/20). By the sign-test (Demšar 2006) with con-
fidence level 0.10, PEP is significantly better than all the
compared methods on size and all the methods except Kappa
and DREP on test error, indicated by the rows “PEP: count
of direct win”. Though the sign-test shows that Kappa and
DREP are comparable, PEP is still better on more than 60%
(12.5/20) data sets. From the t-test with significance level
0.05, of which significant better and worse are indicated by
‘•’ and ‘�’, respectively, PEP is never significantly worse
than the compared methods in the test error, and has only
two losses on the size (on vehicle-bo-vs to CP and DREP).
We also compute the rank of each method on each data set
as in (Demšar 2006), which are stacked in Figure 1(a).

All the criteria agree that BI is the worst method on the
test error, which coincides with the fact that ensemble is
usually better than a single classifier. Compared with RE,
which greedily minimizes the validation error, PEP mini-
mizes the validation error and the size simultaneously. PEP
achieves significant improvement on the test error as well
as the ensemble size. This observation supports the theoret-
ical analysis that PEP is more powerful than the OEP. As a
type of the SEP methods, EA produces ensembles with large
sizes, which has been observed in previous studies (Zhou,
Wu, and Tang 2002; Li and Zhou 2009). This also confirms
our theoretical result that PEP/OEP can be better than SEP.
Kappa, CP and MD are also OEP methods but optimizing
diversity-like objectives. These methods leave the validation
error alone. But since we find that the base classifiers have
similar performance as the average coefficient of variation
(i.e., the ratio of the standard deviation to the mean) for the
validation errors of 100 base classifiers is 0.203, optimizing
the diversity may work alone. DREP is an OEP method that
optimizes a combined error and diversity objective, which is
shown to be better than the OEP methods optimizing only
the diversity-like objectives, in both test error and ensem-
ble size from Figure 1(a). PEP is better than DREP and the
diversity-optimization methods, which may be because PEP
achieves smaller sizes that prevent the overfitting problem.

Figure 2 investigates the effect of the original Bagging
size n. We can observe that PEP always has the smallest
error and size; and the ranking order of the methods is con-
sistent with Figure 1(a).

In Situation 2, all base classifiers make the same predic-
tions except one that makes fewer mistakes. Without loss of
generality, assume H 0

={h2, . . . , hn}. Let err(h1)=c1 and
err(h2H 0

)=c2, where c1<c2. Then, the objective Eq.1 is

f(Hs) =

8
>><

>>:

+1, if s = {0}n,
c1, if s = 1{0}n�1,
(c1 + c2)/2, if |s| = 2 ^ s1 = 1,
c2, otherwise.

The main proof idea of Theorem 3 is that OEP can easily
find the optimal solution 1{0}n�1 by the first greedy step,
while SEP almost performs a random walk on a plateau and
thus is inefficient.
Situation 2.
9H 0 ✓ H, |H 0| = n� 1 ^ 8g, h 2 H 0, diff(g, h) = 0;

err(H �H 0
) < err(h 2 H 0

).

Theorem 3. In Situation 2, OEP using Eq.1 finds the opti-
mal solution in O(n2

) optimization time, while the time of
SEP is at least 2⌦(n) with probability 1� 2

�⌦(n).

Experiments
We conduct experiments on 20 binary and 10 multiclass data
sets (Blake, Keogh, and Merz 1998), pruning the base clas-
sifiers trained by Bagging (Breiman 1996). To assess each
method on each data set, we repeat the following process 30
times. The data set is randomly and evenly split into three
parts, each as the training set, the validation set and the test
set. A Bagging of 100 C4.5 decision trees (Quinlan 1993) is
trained on the training set, then pruned by a pruning method
using the validation set, and finally tested on the test set.

For PEP, the first goal is to minimize the validation er-
ror, which is also used as the evaluation criterion for the
final ensemble selection. Two baselines are the full Bag-
ging, which uses all the base classifiers, and the Best In-
dividual (BI), which selects the best classifier according
to the validation error. Five state-of-the-art ordering meth-
ods are compared, including Reduce-Error (RE) (Caru-
ana et al. 2004), Kappa (Banfield et al. 2005), Comple-
mentarity (CP) (Martı́nez-Muñoz, Hernández-Lobato, and
Suárez 2009), Margin Distance (MD) (Martı́nez-Muñoz,
Hernández-Lobato, and Suárez 2009), and DREP (Li, Yu,
and Zhou 2012) methods. They mainly differ in their con-
sidered objectives relating to the generalization perfor-
mance, and they all use the validation error as the evalu-
ation criterion for selecting the final ensemble. As a rep-
resentative heuristic single-objective optimization method,
an EA (Bäck 1996) is compared, which is similar to Algo-
rithm 4 except that it generates and maintains n solutions in
each iteration, minimizing the validation error. The parame-
ter p for MD is set to 0.075 (Martı́nez-Muñoz, Hernández-
Lobato, and Suárez 2009), and the parameter ⇢ of DREP is
selected from {0.2, 0.25, . . . , 0.5} (Li, Yu, and Zhou 2012).
The number of iterations for PEP is set to dn2

log ne (the to-
tal number of evaluations O(n4

log n) divided by the num-
ber of evaluations in each iteration O(n2

), as suggested by
Theorems 1&2). For the fairness of comparison, the number
of iterations for EA is dn3

log ne so that it costs the same
number of evaluations as PEP.

On Binary Classification

Some of the data sets are generated from the original multi-
class data sets: from the letter data set, letter-ah classifies ‘a’
against ‘h’, and alike letter-br and letter-oq; optdigits clas-
sifies ‘0⇠4’ against ‘5⇠9’; from satimage, satimage-12v57
classifies labels ‘1’ and ‘2’ against ‘5’ and ‘7’, and alike
satimage-2v5; from vehicle, vehicle-bo-vs classifies ‘bus’
and ‘opel’ against ‘van’ and ‘saab’, and alike vehicle-b-v.

Table 1 lists the experiment results on the binary data sets.
Since it is improper to have a single summarization criterion
over multiple data sets and methods, we employ the num-
ber of best, number of direct win that is a pairwise compar-
ison followed by the sign-test (Demšar 2006), the t-test for
pairwise comparison on each data set, and the rank (Demšar
2006). PEP achieves the smallest test error (or size) on 60%
(12/20) of the data sets, while the other methods are less
than 35% (7/20). By the sign-test (Demšar 2006) with con-
fidence level 0.10, PEP is significantly better than all the
compared methods on size and all the methods except Kappa
and DREP on test error, indicated by the rows “PEP: count
of direct win”. Though the sign-test shows that Kappa and
DREP are comparable, PEP is still better on more than 60%
(12.5/20) data sets. From the t-test with significance level
0.05, of which significant better and worse are indicated by
‘•’ and ‘�’, respectively, PEP is never significantly worse
than the compared methods in the test error, and has only
two losses on the size (on vehicle-bo-vs to CP and DREP).
We also compute the rank of each method on each data set
as in (Demšar 2006), which are stacked in Figure 1(a).

All the criteria agree that BI is the worst method on the
test error, which coincides with the fact that ensemble is
usually better than a single classifier. Compared with RE,
which greedily minimizes the validation error, PEP mini-
mizes the validation error and the size simultaneously. PEP
achieves significant improvement on the test error as well
as the ensemble size. This observation supports the theoret-
ical analysis that PEP is more powerful than the OEP. As a
type of the SEP methods, EA produces ensembles with large
sizes, which has been observed in previous studies (Zhou,
Wu, and Tang 2002; Li and Zhou 2009). This also confirms
our theoretical result that PEP/OEP can be better than SEP.
Kappa, CP and MD are also OEP methods but optimizing
diversity-like objectives. These methods leave the validation
error alone. But since we find that the base classifiers have
similar performance as the average coefficient of variation
(i.e., the ratio of the standard deviation to the mean) for the
validation errors of 100 base classifiers is 0.203, optimizing
the diversity may work alone. DREP is an OEP method that
optimizes a combined error and diversity objective, which is
shown to be better than the OEP methods optimizing only
the diversity-like objectives, in both test error and ensem-
ble size from Figure 1(a). PEP is better than DREP and the
diversity-optimization methods, which may be because PEP
achieves smaller sizes that prevent the overfitting problem.

Figure 2 investigates the effect of the original Bagging
size n. We can observe that PEP always has the smallest
error and size; and the ranking order of the methods is con-
sistent with Figure 1(a).

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

Previously, hard to perform theoretical comparison
Now:

✓ PEP is at least as good as ordering-based methods

✓ PEP can be better than ordering-based methods

✓ PEP/ordering-based methods can be better than the direct use
of heuristic search

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Empirical comparisonTable 1: The test errors and the sizes (mean+std.) of the compared methods on 20 binary data sets. In each data set, the smallest
values are bolded, and ‘•/�’ denote respectively that PEP is significantly better/worse than the corresponding method by the
t-test with confidence level 0.05. In the rows of the count of the best, the largest values are bolded. The count of direct win
denotes the number of data sets on which PEP has a smaller test error/size than the corresponding method (1 tie is counted as
0.5 win), where significant cells by the sign-test (Demšar 2006) with confidence level 0.10 are bolded.

Test Error
Data set PEP Bagging BI RE Kappa CP MD DREP EA
australian .144±.020 .143±.017 .152±.023• .144±.020 .143±.021 .145±.022 .148±.022 .144±.019 .143±.020
breast-cancer .275±.041 .279±.037 .298±.044• .277±.031 .287±.037 .282±.043 .295±.044• .275±.036 .275±.032
disorders .304±.039 .327±.047• .365±.047• .320±.044• .326±.042• .306±.039 .337±.035• .316±.045 .317±.046•
heart-statlog .197±.037 .195±.038 .235±.049• .187±.044 .201±.038 .199±.044 .226±.048• .194±.044 .196±.032
house-votes .045±.019 .041±.013 .047±.016 .043±.018 .044±.017 .045±.017 .048±.018• .045±.017 .041±.012
ionosphere .088±.021 .092±.025 .117±.022• .086±.021 .084±.020 .089±.021 .100±.026• .085±.021 .093±.026
kr-vs-kp .010±.003 .015±.007• .011±.004 .010±.004 .010±.003 .011±.003 .011±.005 .011±.003 .012±.004
letter-ah .013±.005 .021±.006• .023±.008• .015±.006• .012±.006 .015±.006 .017±.007• .014±.005 .017±.006•
letter-br .046±.008 .059±.013• .078±.012• .048±.012 .048±.014 .048±.012 .057±.014• .048±.009 .053±.011•
letter-oq .043±.009 .049±.012• .078±.017• .046±.011 .042±.011 .042±.010 .046±.011 .041±.010 .044±.011
optdigits .035±.006 .038±.007• .095±.008• .036±.006 .035±.005 .036±.005 .037±.006• .035±.006 .035±.006
satimage-12v57 .028±.004 .029±.004 .052±.006• .029±.004 .028±.004 .029±.004 .029±.004 .029±.004 .029±.004
satimage-2v5 .021±.007 .023±.009 .033±.010• .023±.007 .022±.007 .021±.008 .026±.010• .022±.008 .021±.008
sick .015±.003 .018±.004• .018±.004• .016±.003 .017±.003• .016±.003• .017±.003• .016±.003 .017±.004•
sonar .248±.056 .266±.052 .310±.051• .267±.053• .249±.059 .250±.048 .268±.055• .257±.056 .251±.041
spambase .065±.006 .068±.007• .093±.008• .066±.006 .066±.006 .066±.006 .068±.007• .065±.006 .066±.006
tic-tac-toe .131±.027 .164±.028• .212±.028• .135±.026 .132±.023 .132±.026 .145±.022• .129±.026 .138±.020
vehicle-bo-vs .224±.023 .228±.026 .257±.025• .226±.022 .233±.024• .234±.024• .244±.024• .234±.026• .230±.024
vehicle-b-v .018±.011 .027±.014• .024±.013• .020±.011 .019±.012 .020±.011 .021±.011• .019±.013 .026±.013•
vote .044±.018 .047±.018 .046±.016 .044±.017 .041±.016 .043±.016 .045±.014 .043±.019 .045±.015
count of the best 12 2 0 2 7 1 0 5 5

PEP: count of direct win 17 20 15.5 12.5 17 20 12.5 15.5
Ensemble Size

australian 10.6±4.2 – – 12.5±6.0 14.7±12.6 11.0±9.7 8.5±14.8 11.7±4.7 41.9±6.7•
breast-cancer 8.4±3.5 – – 8.7±3.6 26.1±21.7• 8.8±12.3 7.8±15.2 9.2±3.7 44.6±6.6•
disorders 14.7±4.2 – – 13.9±4.2 24.7±16.3• 15.3±10.6 17.7±20.0 13.9±5.9 42.0±6.2•
heart-statlog 9.3±2.3 – – 11.4±5.0• 17.9±11.1• 13.2±8.2• 13.6±21.1 11.3±2.7• 44.2±5.1•
house-votes 2.9±1.7 – – 3.9±4.0 5.5±3.3• 4.7±4.4• 5.9±14.1 4.1±2.7• 46.5±6.1•
ionosphere 5.2±2.2 – – 7.9±5.7• 10.5±6.9• 8.5±6.3• 10.7±14.6• 8.4±4.3• 48.8±5.1•
kr-vs-kp 4.2±1.8 – – 5.8±4.5 10.6±9.1• 9.6±8.6• 7.2±15.2 7.1±3.9• 45.9±5.8•
letter-ah 5.0±1.9 – – 7.3±4.4• 7.1±3.8• 8.7±4.7• 11.0±10.9• 7.8±3.6• 42.5±6.5•
letter-br 10.9±2.6 – – 15.1±7.3• 13.8±6.7• 12.9±6.8 23.2±17.6• 11.3±3.5 38.3±7.8•
letter-oq 12.0±3.7 – – 13.6±5.8 13.9±6.0 12.3±4.9 23.0±15.6• 13.7±4.9 39.3±8.2•
optdigits 22.7±3.1 – – 25.0±9.3 25.2±8.1 21.4±7.5 46.8±23.9• 25.0±8.0 41.4±7.6•
satimage-12v57 17.1±5.0 – – 20.8±9.2• 22.1±10.3• 21.2±10.0• 37.6±24.3• 18.1±4.9 42.7±5.2•
satimage-2v5 5.7±1.7 – – 6.8±3.2 7.6±4.2• 10.9±7.0• 26.2±28.1• 7.7±3.5• 44.1±4.8•
sick 6.9±2.8 – – 7.5±3.9 10.9±6.0• 11.5±10.0• 8.3±13.6 11.6±6.7• 44.7±8.2•
sonar 11.4±4.2 – – 11.0±4.1 20.6±9.3• 13.9±7.1 20.6±20.7• 14.4±5.9• 43.1±6.4•
spambase 17.5±4.5 – – 18.5±5.0 20.0±8.1 19.0±9.9 28.8±17.0• 16.7±4.6 39.7±6.4•
tic-tac-toe 14.5±3.8 – – 16.1±5.4 17.4±6.5 15.4±6.3 28.0±22.6• 13.6±3.4 39.8±8.2•
vehicle-bo-vs 16.5±4.5 – – 15.7±5.7 16.5±8.2 11.2±5.7� 21.6±20.4 13.2±5.0� 41.9±5.6•
vehicle-b-v 2.8±1.1 – – 3.4±2.1 4.5±1.6• 5.3±7.4 2.8±3.8 4.0±3.9 48.0±5.6•
vote 2.7±1.1 – – 3.2±2.7 5.1±2.6• 5.4±5.2• 6.0±9.8 3.9±2.5• 47.8±6.1•
count of the best 12 – – 2 0 2 3 3 0

PEP: count of direct win – – 17 19.5 18 17.5 16 20

Table 2: The overall performance of the compared methods on 10 multiclass data sets. Number in () denotes the count of the
best (i.e., the number of data sets on which each method achieves the smallest test error/size); the largest numbers are bolded.
Number in {} denotes the count of direct win (i.e., the number of data sets on which PEP has a smaller test error/size than the
corresponding method (1 tie is counted as 0.5 win)), where significant numbers by the sign-test (Demšar 2006) with confidence
level 0.10 are bolded. The win/tie/loss counts by t-test with confidence level 0.05 between PEP and other methods are listed.

PEP Bagging BI RE Kappa CP MD DREP EA
on test error (6) (0), {10}, 8/2/0 (0), {10}, 10/0/0 (0), {9}, 1/9/0 (4), {6}, 2/8/0 (1), {7.5}, 0/10/0 (0), {9.5}, 9/1/0 (0), {9}, 8/2/0 (1), {8.5}, 6/4/0

on size (7) – – (1), {8}, 1/9/0 (1), {8.5}, 8/2/0 (1), {8}, 5/5/0 (0), {10}, 10/0/0 (0), {10}, 6/4/0 (0), {10}, 10/0/0

On Multiclass Classification
We then compare these methods on 10 multiclass UCI data
sets. Note that Kappa, CP, MD and DREP are originally de-
signed for binary classification, we extend them for multi-
class classification by generalizing their “equal” and “un-
equal” tests on multiple classes.

The detailed experiment results are shown in the supple-

mentary material. The overall performance is shown in Table
2 and Figure 1(b), where the compared methods have the
similar performance rank as in binary classification except
DREP. DREP performs much worse in multiclass classifi-
cation than in binary classification, which may be because
its performance is proved only in the binary classification
scenario (Li, Yu, and Zhou 2012).

Pruning bagging base learners with size 100

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Empirical comparison
Pruning bagging base learners with size 100

0

50

100

150

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 e
rr

o
r

PEP

Bag
gi

ng BI
R

E

K
ap

pa
C

P
M

D

D
R

EP
EA

50

128.5

172

85.5 88.5

69 67.5

144

95

0

50

100

150

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 s
iz

e

PEP R
E

K
ap

pa
C

P
M

D

D
R

EP
EA

139

32

56
62

75

9997

(a) on 20 binary data sets

0

20

40

60

80

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 e
rr

o
r

PEP

Bag
gi

ng BI
R

E

K
ap

pa
C

P
M

D

D
R

EP
EA

20.5

75.5

83

32

24.5

30

75.5

60.5

48.5

0

10

20

30

40

50

60

70

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 s
iz

e

PEP R
E

K
ap

pa
C

P
M

D

D
R

EP
EA

15.5

22.5

43.5

30

64

41.5

63

(b) on 10 multiclass data sets

Figure 1: The aggregated rank on the test error and on the
size for each method (the smaller the better).

60 80 100 120 140
40

60

80

100

120

140

160

180

orginal ensemble size

a
g
g
re

g
a
te

d
 r

a
n

k
 o

n
 e

rr
o
r

60 80 100 120 140
20

40

60

80

100

120

140

orginal ensemble size

a
g
g
re

g
a
te

d
 r

a
n

k
 o

n
 s

iz
e

PEP
Bagging
BI
RE
Kappa
CP
MD
DREP
EA

(a) test error (b) size

Figure 2: The aggregated rank of each method pruning the
Bagging of {60, . . . , 140} base classifiers on 20 binary data
sets (the smaller the better).

In Mobile Human Activity Recognition
We then apply PEP to the task of Mobile Human Activity
Recognition (MHAR) using smartphones. As smartphones
have become more and more popular and essential in every-
day life, human body signals can be easily retrieved from
embedded inertial sensors. Learning from these informa-
tion can help us better monitor user health and understand
user behaviors. Specifically, MHAR using smartphones is to
identify the actions carried out by a person according to the
context information gathered by smartphones. Besides the
accuracy of the classifier, it is also important to consider that
smartphones only have limited storage and computation re-
sources for doing predictions. Therefore, ensemble pruning
is particularly appealing in MHAR task.

We employ a lately available MHAR data set, published
in (Anguita et al. 2012). The data set is collected from
30 volunteers wearing the smartphone on the waist per-
formed 6 activities (walking, upstairs, downstairs, stand-
ing, sitting, laying). The embedded 3D-accelerometer and
3D-gyroscope of a Samsung Galaxy S2 smartphone were
used to collect data at a constant rate of 50 Hz. Then the
records build a multiclass classification data set with 10299
instances and 561 attributes. The data set was further ran-
domly partitioned into two parts: 70% as the training set and

PEP MD DREP EACPKappaREBI

-0.02

-0.01

0

0.01

0.02

0.03

0.04

im
pr

ov
em

en
t r

at
io

0.012

-0.004
-0.009

0.016

0.139

0.014

0.040

0.009

-0.513 p
re

ce
n

ta
g
e

o
f

si
ze

 r
ed

u
ct

io
n

(a) test error improvement ratio (b) size reduction

Figure 3: Average performance improvement and size reduc-
tion from the Bagging of 100 base classifiers for the MHAR
task (the larger the better).

30% as the test set. For evaluating the performance of one
pruning method on the MHAR data set, we repeat 30 inde-
pendent runs. In each run, we fix the test set and randomly
split the training set into two parts: 75% as the training set
and 25% as the validation set. Bagging of 100 C4.5 decision
trees are firstly trained on the training set, then pruned by the
pruning methods using the validation set, and finally tested
on the test set.

Figure 3(a) depicts the improvement ratio of the pruning
methods to the test error of the full Bagging, and Figure
3(b) shows the reduction percentage of the number of clas-
sifiers from the full Bagging. It is clear that PEP achieves
the best accuracy, about 3 times more than the runner-up
on the improvement ratio. Meanwhile, PEP has the best the
ensemble size reduction, which saves more than 20% (i.e.,
(17.4-13.8)/17.4) storage space than the runner-up. Further-
more, compared with the previous reported accuracy 89.3%
achieved by the multiclass SVM (Anguita et al. 2012), PEP
achieves a better one 90.4%.

Conclusion
Ensemble pruning can further improve the generalization
performance of an ensemble, while reducing the cost for
storage and running the ensemble model. There are natu-
rally two goals in ensemble pruning, minimizing the error
and minimizing the size. Most previous ensemble pruning
approaches solve objectives that mix the two goals, which
are conflicting when being pushed to the limit. In this work,
we study solving the explicit bi-objective formulation, and
propose a Pareto optimization approach, PEP.

Firstly, we derive theoretical results revealing the advan-
tage of PEP over the ordering-based pruning methods as
well as the methods solving the single-objective using some
heuristic optimization. We then conduct experiments, which
disclose the superiority of PEP over the compared state-of-
the-art pruning methods. Finally we apply PEP in the ap-
plication of mobile human activity recognition, where the
prediction accuracy gets improved while the cost of storage
gets saved.

In the future, we will investigate combining diversity op-
timization into PEP. Moreover, we will investigate new ap-
proaches solving the multiple-objective formulation explic-
itly for other learning tasks.

on error on size

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Empirical comparison
Pruning bagging base learners with size 100

0

50

100

150

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 e
rr

o
r

PEP

Bag
gi

ng BI
R

E

K
ap

pa
C

P
M

D

D
R

EP
EA

50

128.5

172

85.5 88.5

69 67.5

144

95

0

50

100

150

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 s
iz

e

PEP R
E

K
ap

pa
C

P
M

D

D
R

EP
EA

139

32

56
62

75

9997

(a) on 20 binary data sets

0

20

40

60

80

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 e
rr

o
r

PEP

Bag
gi

ng BI
R

E

K
ap

pa
C

P
M

D

D
R

EP
EA

20.5

75.5

83

32

24.5

30

75.5

60.5

48.5

0

10

20

30

40

50

60

70

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 s
iz

e

PEP R
E

K
ap

pa
C

P
M

D

D
R

EP
EA

15.5

22.5

43.5

30

64

41.5

63

(b) on 10 multiclass data sets

Figure 1: The aggregated rank on the test error and on the
size for each method (the smaller the better).

60 80 100 120 140
40

60

80

100

120

140

160

180

orginal ensemble size

a
g
g
re

g
a
te

d
 r

a
n

k
 o

n
 e

rr
o
r

60 80 100 120 140
20

40

60

80

100

120

140

orginal ensemble size

a
g
g
re

g
a
te

d
 r

a
n

k
 o

n
 s

iz
e

PEP
Bagging
BI
RE
Kappa
CP
MD
DREP
EA

(a) test error (b) size

Figure 2: The aggregated rank of each method pruning the
Bagging of {60, . . . , 140} base classifiers on 20 binary data
sets (the smaller the better).

In Mobile Human Activity Recognition
We then apply PEP to the task of Mobile Human Activity
Recognition (MHAR) using smartphones. As smartphones
have become more and more popular and essential in every-
day life, human body signals can be easily retrieved from
embedded inertial sensors. Learning from these informa-
tion can help us better monitor user health and understand
user behaviors. Specifically, MHAR using smartphones is to
identify the actions carried out by a person according to the
context information gathered by smartphones. Besides the
accuracy of the classifier, it is also important to consider that
smartphones only have limited storage and computation re-
sources for doing predictions. Therefore, ensemble pruning
is particularly appealing in MHAR task.

We employ a lately available MHAR data set, published
in (Anguita et al. 2012). The data set is collected from
30 volunteers wearing the smartphone on the waist per-
formed 6 activities (walking, upstairs, downstairs, stand-
ing, sitting, laying). The embedded 3D-accelerometer and
3D-gyroscope of a Samsung Galaxy S2 smartphone were
used to collect data at a constant rate of 50 Hz. Then the
records build a multiclass classification data set with 10299
instances and 561 attributes. The data set was further ran-
domly partitioned into two parts: 70% as the training set and

PEP MD DREP EACPKappaREBI

-0.02

-0.01

0

0.01

0.02

0.03

0.04

im
pr

ov
em

en
t r

at
io

0.012

-0.004
-0.009

0.016

0.139

0.014

0.040

0.009

-0.513 p
re

ce
n

ta
g
e

o
f

si
ze

 r
ed

u
ct

io
n

(a) test error improvement ratio (b) size reduction

Figure 3: Average performance improvement and size reduc-
tion from the Bagging of 100 base classifiers for the MHAR
task (the larger the better).

30% as the test set. For evaluating the performance of one
pruning method on the MHAR data set, we repeat 30 inde-
pendent runs. In each run, we fix the test set and randomly
split the training set into two parts: 75% as the training set
and 25% as the validation set. Bagging of 100 C4.5 decision
trees are firstly trained on the training set, then pruned by the
pruning methods using the validation set, and finally tested
on the test set.

Figure 3(a) depicts the improvement ratio of the pruning
methods to the test error of the full Bagging, and Figure
3(b) shows the reduction percentage of the number of clas-
sifiers from the full Bagging. It is clear that PEP achieves
the best accuracy, about 3 times more than the runner-up
on the improvement ratio. Meanwhile, PEP has the best the
ensemble size reduction, which saves more than 20% (i.e.,
(17.4-13.8)/17.4) storage space than the runner-up. Further-
more, compared with the previous reported accuracy 89.3%
achieved by the multiclass SVM (Anguita et al. 2012), PEP
achieves a better one 90.4%.

Conclusion
Ensemble pruning can further improve the generalization
performance of an ensemble, while reducing the cost for
storage and running the ensemble model. There are natu-
rally two goals in ensemble pruning, minimizing the error
and minimizing the size. Most previous ensemble pruning
approaches solve objectives that mix the two goals, which
are conflicting when being pushed to the limit. In this work,
we study solving the explicit bi-objective formulation, and
propose a Pareto optimization approach, PEP.

Firstly, we derive theoretical results revealing the advan-
tage of PEP over the ordering-based pruning methods as
well as the methods solving the single-objective using some
heuristic optimization. We then conduct experiments, which
disclose the superiority of PEP over the compared state-of-
the-art pruning methods. Finally we apply PEP in the ap-
plication of mobile human activity recognition, where the
prediction accuracy gets improved while the cost of storage
gets saved.

In the future, we will investigate combining diversity op-
timization into PEP. Moreover, we will investigate new ap-
proaches solving the multiple-objective formulation explic-
itly for other learning tasks.

on error on size

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Ensemble Pruning. AAAI’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App 2: Sparse regression
Regression:

Sparse regression (sparsity k): another subset selection problem

argmin
w

X

(x,y)2D

(w>
x� y)2

argmin
w

X

(x,y)2D

(w>
x� y)2 s.t. kwk0  k

kwk0 denotes the number of non-zero elements in w

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

App 2: Sparse regression
Regression:

Sparse regression (sparsity k): another subset selection problem

argmin
w

X

(x,y)2D

(w>
x� y)2

argmin
w

X

(x,y)2D

(w>
x� y)2 s.t. kwk0  k

kwk0 denotes the number of non-zero elements in w

Forward (FR)
Current best approximation ratio: on R2 [Das and Kempe, ICML’11]

Forward-Backward (FoBa), Orthogonal Matching Pursuit (OMP) ...

Greedy methods [Gilbert et al.,2003; Tropp, 2004]

Convex relaxation methods [Tibshirani, 1996; Zou & Hastie, 2005]

1� e��

argmin
w

X

(x,y)2D

(w>
x� y)2 s.t. kwk1  k

Previous methods

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Our approach [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

by Pareto optimization method:
argmin

w

X

(x,y)2D

(w>
x� y)2 s.t. kwk0  k

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Our approach [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

by Pareto optimization method:

sparse regression can be divided into two goals
reduce MSE reduce size

argmin
w

X

(x,y)2D

(w>
x� y)2 s.t. kwk0  k

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Our approach [C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

by Pareto optimization method:

sparse regression can be divided into two goals
reduce MSE reduce size

argmin
w

X

(x,y)2D

(w>
x� y)2 s.t. kwk0  k

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Subset Selection by Pareto Optimization

in S and s
i

= 0 otherwise. We assign two properties for a
solution s:

s.o
1

=

(
+1, s = {0}n, or |s| � 2k

f(s), otherwise
, s.o

2

= |s|.

We further introduce an isolation function I : {0, 1}n ! R
as in (Yu et al., 2012). The isolation function determines if
two solutions are allowed to be compared: they are com-
parable only if they have the same isolation function value.
The implementation of the isolation function is left as a pa-
rameter of the method. The effect of the isolation function
will be clear in the analysis.

As will be introduced later, we need to compare two solu-
tions. For two solutions s and s0, we first judge if they have
the same isolation function value. If not, we say that they
are incomparable. If they have the same isolation func-
tion value, s is “worse” than s0 if s0 has a smaller or equal
value on both the properties; s is “strictly worse” if s0 has a
strictly smaller value in one property, and meanwhile hav-
ing a smaller or equal value in the other property. Other-
wise, we still say they are incomparable.

POSS is described in Algorithm 2. Starting from the so-
lution of an empty set and the archive P containing only
the empty set (line 1), POSS generates new solutions by
randomly flipping bits of an archived solution (in the bi-
nary vector representation), as lines 4 and 5. Newly gen-
erated solutions are compared with the previously archived
solutions (line 6). If the newly generated solution is not
“strictly worse” than any previously archived solution, it
will be archived. Before archiving the newly generated so-
lution in line 8, the archive set P is cleaned by removing
solutions in Q, which are previously archived solutions but
are “worse” than the newly generated solution.

The iteration of POSS repeats for T times. Note that T is
a parameter, which could depend on the available resource
of the user. We will analyze the relationship between the
solution quality and T in later sections, and will use the
theoretically derived T value in the experiments. After the
iterations, the final solution is picked from the archived so-
lutions. We examine every solution in the archive set ac-
cording to Eq. (1), i.e., the solution with the smallest f
value while the constraint on the set size is kept (line 12).

4. POSS for Sparse Regression
In this section, we examine the theoretical performance of
the POSS method for sparse regression. For sparse regres-
sion, the criterion f is implemented as

f(s) = �R2

Z,s.

Note that minimizing �R2

Z,s is equivalent to the original
objective that maximizes R2

Z,s in Eq. (2).

Algorithm 2 POSS
Input: all observation variables V = {X

1

, . . . , X
n

}, a
given criterion f and an integer parameter k 2 [1, n]
Parameter: the number of iterations T and an isolation
function I : {0, 1}n ! R
Output: a subset of V with at most k variables
Process:

1: Let s = {0}n and P = {s}.
2: Let t = 0.
3: while t < T do
4: Select s from P uniformly at random.
5: Generate s0 from s by flipping each bit of s with

probability 1

n

.

6: if @z 2 P such that I(z) = I(s0) and
⇣

(z.o
1

<

s0.o
1

^ z.o
2

 s0.o
2

) or (z.o
1

 s0.o
1

^ z.o
2

<

s0.o
2

)
⌘

then
7: Q = {z 2 P | I(z) = I(s0) ^ s0.o

1

 z.o
1

^
s0.o

2

 z.o
2

}.
8: P = (P\Q) [{s0}.
9: end if

10: t = t+ 1.
11: end while
12: return argmins2P,|s|k

f(s)

We need some notations for the analysis. Let Cov(·, ·) be
the covariance between two random variables, C be the
covariance matrix between all observation variables, i.e.,
C

i,j

= Cov(X
i

, X
j

), and b be the covariance vector be-
tween Z and observation variables, i.e., b

i

= Cov(Z,X
i

).
Let C

S

denote the submatrix of C with row and column
set S, and b

S

denote the subvector of b, containing ele-
ments b

i

with i 2 S. Let Res(Z, S) = Z �
P

i2S

↵
i

X
i

denote the residual of Z with respect to S, which captures
the part of Z not correlated with S (Diekhoff, 1992). The
submodularity ratio presented in Definition 3 is a measure
characterizing how close a set function f is to submodular-
ity. It is easy to see that f is submodular iff �

U,k

(f) � 1

for any U and k. For f being the objective function R2, we
will use �

U,k

shortly in the paper.
Definition 3 (Submodularity Ratio (Das & Kempe, 2011)).
Let f be a non-negative set function. The submodularity
ratio of f with respect to a set U and a parameter k � 1 is

�
U,k

(f) = min

L✓U,S:|S|k,S\L=;

P
x2S

(f(L [{x})� f(L))

f(L [S)� f(L)
.

4.1. On General Sparse Regression

Our first result is the theoretical approximation bound of
POSS for sparse regression in Theorem 1. Let OPT de-
note the optimal function value of Eq. (2). The expected
running time of POSS is the average number of objective

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Our approach
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Subset Selection by Pareto Optimization

in S and s
i

= 0 otherwise. We assign two properties for a
solution s:

s.o
1

=

(
+1, s = {0}n, or |s| � 2k

f(s), otherwise
, s.o

2

= |s|.

We further introduce an isolation function I : {0, 1}n ! R
as in (Yu et al., 2012). The isolation function determines if
two solutions are allowed to be compared: they are com-
parable only if they have the same isolation function value.
The implementation of the isolation function is left as a pa-
rameter of the method. The effect of the isolation function
will be clear in the analysis.

As will be introduced later, we need to compare two solu-
tions. For two solutions s and s0, we first judge if they have
the same isolation function value. If not, we say that they
are incomparable. If they have the same isolation func-
tion value, s is “worse” than s0 if s0 has a smaller or equal
value on both the properties; s is “strictly worse” if s0 has a
strictly smaller value in one property, and meanwhile hav-
ing a smaller or equal value in the other property. Other-
wise, we still say they are incomparable.

POSS is described in Algorithm 2. Starting from the so-
lution of an empty set and the archive P containing only
the empty set (line 1), POSS generates new solutions by
randomly flipping bits of an archived solution (in the bi-
nary vector representation), as lines 4 and 5. Newly gen-
erated solutions are compared with the previously archived
solutions (line 6). If the newly generated solution is not
“strictly worse” than any previously archived solution, it
will be archived. Before archiving the newly generated so-
lution in line 8, the archive set P is cleaned by removing
solutions in Q, which are previously archived solutions but
are “worse” than the newly generated solution.

The iteration of POSS repeats for T times. Note that T is
a parameter, which could depend on the available resource
of the user. We will analyze the relationship between the
solution quality and T in later sections, and will use the
theoretically derived T value in the experiments. After the
iterations, the final solution is picked from the archived so-
lutions. We examine every solution in the archive set ac-
cording to Eq. (1), i.e., the solution with the smallest f
value while the constraint on the set size is kept (line 12).

4. POSS for Sparse Regression
In this section, we examine the theoretical performance of
the POSS method for sparse regression. For sparse regres-
sion, the criterion f is implemented as

f(s) = �R2

Z,s.

Note that minimizing �R2

Z,s is equivalent to the original
objective that maximizes R2

Z,s in Eq. (2).

Algorithm 2 POSS
Input: all observation variables V = {X

1

, . . . , X
n

}, a
given criterion f and an integer parameter k 2 [1, n]
Parameter: the number of iterations T and an isolation
function I : {0, 1}n ! R
Output: a subset of V with at most k variables
Process:

1: Let s = {0}n and P = {s}.
2: Let t = 0.
3: while t < T do
4: Select s from P uniformly at random.
5: Generate s0 from s by flipping each bit of s with

probability 1

n

.

6: if @z 2 P such that I(z) = I(s0) and
⇣

(z.o
1

<

s0.o
1

^ z.o
2

 s0.o
2

) or (z.o
1

 s0.o
1

^ z.o
2

<

s0.o
2

)
⌘

then
7: Q = {z 2 P | I(z) = I(s0) ^ s0.o

1

 z.o
1

^
s0.o

2

 z.o
2

}.
8: P = (P\Q) [{s0}.
9: end if

10: t = t+ 1.
11: end while
12: return argmins2P,|s|k

f(s)

We need some notations for the analysis. Let Cov(·, ·) be
the covariance between two random variables, C be the
covariance matrix between all observation variables, i.e.,
C

i,j

= Cov(X
i

, X
j

), and b be the covariance vector be-
tween Z and observation variables, i.e., b

i

= Cov(Z,X
i

).
Let C

S

denote the submatrix of C with row and column
set S, and b

S

denote the subvector of b, containing ele-
ments b

i

with i 2 S. Let Res(Z, S) = Z �
P

i2S

↵
i

X
i

denote the residual of Z with respect to S, which captures
the part of Z not correlated with S (Diekhoff, 1992). The
submodularity ratio presented in Definition 3 is a measure
characterizing how close a set function f is to submodular-
ity. It is easy to see that f is submodular iff �

U,k

(f) � 1

for any U and k. For f being the objective function R2, we
will use �

U,k

shortly in the paper.
Definition 3 (Submodularity Ratio (Das & Kempe, 2011)).
Let f be a non-negative set function. The submodularity
ratio of f with respect to a set U and a parameter k � 1 is

�
U,k

(f) = min

L✓U,S:|S|k,S\L=;

P
x2S

(f(L [{x})� f(L))

f(L [S)� f(L)
.

4.1. On General Sparse Regression

Our first result is the theoretical approximation bound of
POSS for sparse regression in Theorem 1. Let OPT de-
note the optimal function value of Eq. (2). The expected
running time of POSS is the average number of objective

new
solutionsarchive

ran
do
m

ini
tia

liz
ati

on

evaluation
& selection

reproduction

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages

Is POSS as good as the previously best method (FR) ?

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages

Is POSS as good as the previously best method (FR) ?
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Subset Selection by Pareto Optimization

function (i.e., R2) evaluations, the most time-consuming
step, which is also the average number of iterations T since
it only needs to perform one objective evaluation for the
newly generated solution s0 in each iteration.
Theorem 1. For sparse regression, POSS with E[T] 
2ek2n and I(·) = 0 (i.e., a constant function) finds a set S
of variables with |S|  k and R2

Z,S

� (1� e��;,k
) ·OPT .

The proof relies on the property of the objective function
R2 in Lemma 1, that for any subset of variables, there al-
ways exists another variable, the inclusion of which can
bring an improvement on R2 proportional to the current
distance to the optimum. Lemma 1 is extracted from the
proof of Theorem 3.2 in (Das & Kempe, 2011).
Lemma 1. For any S ✓ V , there exists one variable ˆX 2
V � S such that

R2

Z,S[{ ˆ

X} �R2

Z,S

�
�;,k
k

(OPT �R2

Z,S

).

Proof. Let S⇤
k

be the optimal set of variables of Eq. (2), i.e.,
R2

Z,S

⇤
k
= OPT . Let ¯S = S⇤

k

� S and S0
= {Res(X,S) |

X 2 ¯S}. Using Lemmas 2.3 and 2.4 in (Das & Kempe,
2008), we can easily derive that R2

Z,S[¯

S

= R2

Z,S

+R2

Z,S

0 .
Because R2

Z,S

is increasing with S and S⇤
k

✓ S [¯S, we
have R2

Z,S[¯

S

� R2

Z,S

⇤
k
= OPT . Thus, R2

Z,S

0 � OPT �
R2

Z,S

. By Definition 3, |S0| = | ¯S|  k and R2

Z,; = 0,
X

X

02S

0
R2

Z,X

0 � �;,kR
2

Z,S

0 � �;,k(OPT �R2

Z,S

).

Let ˆX 0
= argmax

X

02S

0 R2

Z,X

0 . Then, we have

R2

Z,

ˆ

X

0 �
�;,k
|S0| (OPT �R2

Z,S

) �
�;,k
k

(OPT �R2

Z,S

).

Let ˆX 2 ¯S correspond to ˆX 0, i.e., Res(ˆX,S) = ˆX 0. Thus,

R2

Z,S[{ ˆ

X} �R2

Z,S

= R2

Z,

ˆ

X

0 �
�;,k
k

(OPT �R2

Z,S

).

Proof of Theorem 1. Since the isolation function is a con-
stant function, all solutions are allowed to be compared and
we can ignore it. Let J

max

denote the maximum value of
j 2 [0, k] such that in the archive set P , there exists a solu-
tion s with |s|  j and R2

Z,s � (1 � (1 � �;,k
k

)

j

) · OPT .
That is, J

max

= max{j 2 [0, k] | 9s 2 P, |s| 
j ^ R2

Z,s � (1 � (1 � �;,k
k

)

j

) · OPT}. We then analyze
the expected iterations until J

max

= k, which implies that
there exists one solution s in P satisfying that |s|  k and
R2

Z,s � (1� (1� �;,k
k

)

k

) ·OPT � (1� e��;,k
) ·OPT .

The initial value of J
max

is 0, since POSS starts from {0}n.
Assume that currently J

max

= i < k. Let s be a cor-
responding solution with the value i, i.e., |s|  i and

R2

Z,s � (1� (1� �;,k
k

)

i

) ·OPT . It is easy to see that J
max

cannot decrease because cleaning s from P (lines 7 and
8 of Algorithm 2) implies that s is “worse” than a newly
generated solution s0, which must have a smaller size and
a larger R2 value. By Lemma 1, we know that flipping one
specific 0 bit of s (i.e., adding a specific variable into S)
can generate a new solution s0, which satisfies that

R2

Z,s0 �R2

Z,s �
�;,k
k

(OPT �R2

Z,s).

Then, we have

R2

Z,s0 � (1�
�;,k
k

)R2

Z,s +
�;,k
k

·OPT

� (1� (1�
�;,k
k

)

i+1

) ·OPT.

Since |s0| = |s| + 1  i + 1, s0 will be included into P ;
otherwise, from line 6 of Algorithm 2, s0 must be “strictly
worse” than one solution in P , and this implies that J

max

has already been larger than i, which contradicts with the
assumption J

max

= i. After including s0, J
max

� i+1. Let
P
max

denote the largest size of P during the optimization
of POSS. Thus, J

max

can increase by at least 1 in one itera-
tion with probability at least 1

P

max

· 1
n

(1� 1

n

)

n�1 � 1

enP

max

,
where 1

P

max

is a lower bound on the probability of selecting
s in line 4 of Algorithm 2 and 1

n

(1 � 1

n

)

n�1 is the proba-
bility of flipping a specific bit of s and keeping other bits
unchanged in line 5. Then, it needs at most enP

max

ex-
pected iterations to increase J

max

by at least 1. Thus, after
k · enP

max

expected iterations, J
max

must have reached k.

By the procedure of POSS, we know that the solutions
maintained in P must be incomparable. Thus, each value
of one property can correspond to at most one solution in
P . Because the solutions with |s| � 2k have +1 value
on the first property, they must be excluded from P . Thus,
|s| 2 {0, 1, . . . , 2k � 1}, which implies that P

max

 2k.
Hence, the expected number of iterations E[T] for finding
the desired solution is at most 2ek2n. ⇤
Comparing with the approximation guarantee of FR, (1 �
e��SFR,k

) · OPT (Das & Kempe, 2011), it is easy to see
that �;,k � �

S

FR
,k

from Definition 3. Thus POSS, with the
simplest configuration of the isolation function, can do at
least as well as FR on any sparse regression problem, and
thus achieves the best previous approximation guarantee.
We next investigate whether POSS can be strictly better
than FR.

4.2. On The Exponential Decay Subclass

Our second result is on a subclass of sparse regression,
called Exponential Decay as in Definition 4. In this sub-
class, the observation variables can be ordered in a line
such that their covariances are decreasing exponentially
with the distance.

✓ Yes, POSS can achieve the same approximation ratio

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages

Is POSS as good as the previously best method (FR) ?
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Subset Selection by Pareto Optimization

function (i.e., R2) evaluations, the most time-consuming
step, which is also the average number of iterations T since
it only needs to perform one objective evaluation for the
newly generated solution s0 in each iteration.
Theorem 1. For sparse regression, POSS with E[T] 
2ek2n and I(·) = 0 (i.e., a constant function) finds a set S
of variables with |S|  k and R2

Z,S

� (1� e��;,k
) ·OPT .

The proof relies on the property of the objective function
R2 in Lemma 1, that for any subset of variables, there al-
ways exists another variable, the inclusion of which can
bring an improvement on R2 proportional to the current
distance to the optimum. Lemma 1 is extracted from the
proof of Theorem 3.2 in (Das & Kempe, 2011).
Lemma 1. For any S ✓ V , there exists one variable ˆX 2
V � S such that

R2

Z,S[{ ˆ

X} �R2

Z,S

�
�;,k
k

(OPT �R2

Z,S

).

Proof. Let S⇤
k

be the optimal set of variables of Eq. (2), i.e.,
R2

Z,S

⇤
k
= OPT . Let ¯S = S⇤

k

� S and S0
= {Res(X,S) |

X 2 ¯S}. Using Lemmas 2.3 and 2.4 in (Das & Kempe,
2008), we can easily derive that R2

Z,S[¯

S

= R2

Z,S

+R2

Z,S

0 .
Because R2

Z,S

is increasing with S and S⇤
k

✓ S [¯S, we
have R2

Z,S[¯

S

� R2

Z,S

⇤
k
= OPT . Thus, R2

Z,S

0 � OPT �
R2

Z,S

. By Definition 3, |S0| = | ¯S|  k and R2

Z,; = 0,
X

X

02S

0
R2

Z,X

0 � �;,kR
2

Z,S

0 � �;,k(OPT �R2

Z,S

).

Let ˆX 0
= argmax

X

02S

0 R2

Z,X

0 . Then, we have

R2

Z,

ˆ

X

0 �
�;,k
|S0| (OPT �R2

Z,S

) �
�;,k
k

(OPT �R2

Z,S

).

Let ˆX 2 ¯S correspond to ˆX 0, i.e., Res(ˆX,S) = ˆX 0. Thus,

R2

Z,S[{ ˆ

X} �R2

Z,S

= R2

Z,

ˆ

X

0 �
�;,k
k

(OPT �R2

Z,S

).

Proof of Theorem 1. Since the isolation function is a con-
stant function, all solutions are allowed to be compared and
we can ignore it. Let J

max

denote the maximum value of
j 2 [0, k] such that in the archive set P , there exists a solu-
tion s with |s|  j and R2

Z,s � (1 � (1 � �;,k
k

)

j

) · OPT .
That is, J

max

= max{j 2 [0, k] | 9s 2 P, |s| 
j ^ R2

Z,s � (1 � (1 � �;,k
k

)

j

) · OPT}. We then analyze
the expected iterations until J

max

= k, which implies that
there exists one solution s in P satisfying that |s|  k and
R2

Z,s � (1� (1� �;,k
k

)

k

) ·OPT � (1� e��;,k
) ·OPT .

The initial value of J
max

is 0, since POSS starts from {0}n.
Assume that currently J

max

= i < k. Let s be a cor-
responding solution with the value i, i.e., |s|  i and

R2

Z,s � (1� (1� �;,k
k

)

i

) ·OPT . It is easy to see that J
max

cannot decrease because cleaning s from P (lines 7 and
8 of Algorithm 2) implies that s is “worse” than a newly
generated solution s0, which must have a smaller size and
a larger R2 value. By Lemma 1, we know that flipping one
specific 0 bit of s (i.e., adding a specific variable into S)
can generate a new solution s0, which satisfies that

R2

Z,s0 �R2

Z,s �
�;,k
k

(OPT �R2

Z,s).

Then, we have

R2

Z,s0 � (1�
�;,k
k

)R2

Z,s +
�;,k
k

·OPT

� (1� (1�
�;,k
k

)

i+1

) ·OPT.

Since |s0| = |s| + 1  i + 1, s0 will be included into P ;
otherwise, from line 6 of Algorithm 2, s0 must be “strictly
worse” than one solution in P , and this implies that J

max

has already been larger than i, which contradicts with the
assumption J

max

= i. After including s0, J
max

� i+1. Let
P
max

denote the largest size of P during the optimization
of POSS. Thus, J

max

can increase by at least 1 in one itera-
tion with probability at least 1

P

max

· 1
n

(1� 1

n

)

n�1 � 1

enP

max

,
where 1

P

max

is a lower bound on the probability of selecting
s in line 4 of Algorithm 2 and 1

n

(1 � 1

n

)

n�1 is the proba-
bility of flipping a specific bit of s and keeping other bits
unchanged in line 5. Then, it needs at most enP

max

ex-
pected iterations to increase J

max

by at least 1. Thus, after
k · enP

max

expected iterations, J
max

must have reached k.

By the procedure of POSS, we know that the solutions
maintained in P must be incomparable. Thus, each value
of one property can correspond to at most one solution in
P . Because the solutions with |s| � 2k have +1 value
on the first property, they must be excluded from P . Thus,
|s| 2 {0, 1, . . . , 2k � 1}, which implies that P

max

 2k.
Hence, the expected number of iterations E[T] for finding
the desired solution is at most 2ek2n. ⇤
Comparing with the approximation guarantee of FR, (1 �
e��SFR,k

) · OPT (Das & Kempe, 2011), it is easy to see
that �;,k � �

S

FR
,k

from Definition 3. Thus POSS, with the
simplest configuration of the isolation function, can do at
least as well as FR on any sparse regression problem, and
thus achieves the best previous approximation guarantee.
We next investigate whether POSS can be strictly better
than FR.

4.2. On The Exponential Decay Subclass

Our second result is on a subclass of sparse regression,
called Exponential Decay as in Definition 4. In this sub-
class, the observation variables can be ordered in a line
such that their covariances are decreasing exponentially
with the distance.

✓ Yes, POSS can achieve the same approximation ratio

Can POSS be better ?

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical advantages

Is POSS as good as the previously best method (FR) ?
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Subset Selection by Pareto Optimization

function (i.e., R2) evaluations, the most time-consuming
step, which is also the average number of iterations T since
it only needs to perform one objective evaluation for the
newly generated solution s0 in each iteration.
Theorem 1. For sparse regression, POSS with E[T] 
2ek2n and I(·) = 0 (i.e., a constant function) finds a set S
of variables with |S|  k and R2

Z,S

� (1� e��;,k
) ·OPT .

The proof relies on the property of the objective function
R2 in Lemma 1, that for any subset of variables, there al-
ways exists another variable, the inclusion of which can
bring an improvement on R2 proportional to the current
distance to the optimum. Lemma 1 is extracted from the
proof of Theorem 3.2 in (Das & Kempe, 2011).
Lemma 1. For any S ✓ V , there exists one variable ˆX 2
V � S such that

R2

Z,S[{ ˆ

X} �R2

Z,S

�
�;,k
k

(OPT �R2

Z,S

).

Proof. Let S⇤
k

be the optimal set of variables of Eq. (2), i.e.,
R2

Z,S

⇤
k
= OPT . Let ¯S = S⇤

k

� S and S0
= {Res(X,S) |

X 2 ¯S}. Using Lemmas 2.3 and 2.4 in (Das & Kempe,
2008), we can easily derive that R2

Z,S[¯

S

= R2

Z,S

+R2

Z,S

0 .
Because R2

Z,S

is increasing with S and S⇤
k

✓ S [¯S, we
have R2

Z,S[¯

S

� R2

Z,S

⇤
k
= OPT . Thus, R2

Z,S

0 � OPT �
R2

Z,S

. By Definition 3, |S0| = | ¯S|  k and R2

Z,; = 0,
X

X

02S

0
R2

Z,X

0 � �;,kR
2

Z,S

0 � �;,k(OPT �R2

Z,S

).

Let ˆX 0
= argmax

X

02S

0 R2

Z,X

0 . Then, we have

R2

Z,

ˆ

X

0 �
�;,k
|S0| (OPT �R2

Z,S

) �
�;,k
k

(OPT �R2

Z,S

).

Let ˆX 2 ¯S correspond to ˆX 0, i.e., Res(ˆX,S) = ˆX 0. Thus,

R2

Z,S[{ ˆ

X} �R2

Z,S

= R2

Z,

ˆ

X

0 �
�;,k
k

(OPT �R2

Z,S

).

Proof of Theorem 1. Since the isolation function is a con-
stant function, all solutions are allowed to be compared and
we can ignore it. Let J

max

denote the maximum value of
j 2 [0, k] such that in the archive set P , there exists a solu-
tion s with |s|  j and R2

Z,s � (1 � (1 � �;,k
k

)

j

) · OPT .
That is, J

max

= max{j 2 [0, k] | 9s 2 P, |s| 
j ^ R2

Z,s � (1 � (1 � �;,k
k

)

j

) · OPT}. We then analyze
the expected iterations until J

max

= k, which implies that
there exists one solution s in P satisfying that |s|  k and
R2

Z,s � (1� (1� �;,k
k

)

k

) ·OPT � (1� e��;,k
) ·OPT .

The initial value of J
max

is 0, since POSS starts from {0}n.
Assume that currently J

max

= i < k. Let s be a cor-
responding solution with the value i, i.e., |s|  i and

R2

Z,s � (1� (1� �;,k
k

)

i

) ·OPT . It is easy to see that J
max

cannot decrease because cleaning s from P (lines 7 and
8 of Algorithm 2) implies that s is “worse” than a newly
generated solution s0, which must have a smaller size and
a larger R2 value. By Lemma 1, we know that flipping one
specific 0 bit of s (i.e., adding a specific variable into S)
can generate a new solution s0, which satisfies that

R2

Z,s0 �R2

Z,s �
�;,k
k

(OPT �R2

Z,s).

Then, we have

R2

Z,s0 � (1�
�;,k
k

)R2

Z,s +
�;,k
k

·OPT

� (1� (1�
�;,k
k

)

i+1

) ·OPT.

Since |s0| = |s| + 1  i + 1, s0 will be included into P ;
otherwise, from line 6 of Algorithm 2, s0 must be “strictly
worse” than one solution in P , and this implies that J

max

has already been larger than i, which contradicts with the
assumption J

max

= i. After including s0, J
max

� i+1. Let
P
max

denote the largest size of P during the optimization
of POSS. Thus, J

max

can increase by at least 1 in one itera-
tion with probability at least 1

P

max

· 1
n

(1� 1

n

)

n�1 � 1

enP

max

,
where 1

P

max

is a lower bound on the probability of selecting
s in line 4 of Algorithm 2 and 1

n

(1 � 1

n

)

n�1 is the proba-
bility of flipping a specific bit of s and keeping other bits
unchanged in line 5. Then, it needs at most enP

max

ex-
pected iterations to increase J

max

by at least 1. Thus, after
k · enP

max

expected iterations, J
max

must have reached k.

By the procedure of POSS, we know that the solutions
maintained in P must be incomparable. Thus, each value
of one property can correspond to at most one solution in
P . Because the solutions with |s| � 2k have +1 value
on the first property, they must be excluded from P . Thus,
|s| 2 {0, 1, . . . , 2k � 1}, which implies that P

max

 2k.
Hence, the expected number of iterations E[T] for finding
the desired solution is at most 2ek2n. ⇤
Comparing with the approximation guarantee of FR, (1 �
e��SFR,k

) · OPT (Das & Kempe, 2011), it is easy to see
that �;,k � �

S

FR
,k

from Definition 3. Thus POSS, with the
simplest configuration of the isolation function, can do at
least as well as FR on any sparse regression problem, and
thus achieves the best previous approximation guarantee.
We next investigate whether POSS can be strictly better
than FR.

4.2. On The Exponential Decay Subclass

Our second result is on a subclass of sparse regression,
called Exponential Decay as in Definition 4. In this sub-
class, the observation variables can be ordered in a line
such that their covariances are decreasing exponentially
with the distance.

✓ Yes, POSS can achieve the same approximation ratio

Can POSS be better ?
✓ Yes, POSS can solve exact solutions on problem subclasses,

while FR cannot

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Subset Selection by Pareto Optimization

Definition 4 (Exponential Decay (Das & Kempe, 2008)).
The variables X

i

are associated with points y
1

 y
2


. . .  y

n

, and C
i,j

= a|yi�yj | for some constant a 2 (0, 1).

Since we have shown that POSS with a constant isola-
tion function is generally good, we prove below that the
POSS method with a proper isolation function can be even
better: it is strictly better than FR on sparse regression
with Exponential Decay variables, as POSS finds the op-
timal solutions (i.e., Theorem 2). The isolation function
I(s 2 {0, 1}n) = min{i | s

i

= 1} outputs the minimum
index of a solution where the bit is 1 (i.e., the variable is se-
lected); this implies that two solutions are comparable only
if they have the same minimum index for bit 1.

Theorem 2. For the Exponential Decay subclass of sparse
regression, POSS with E[T] 2 O(k2n2

log n) and I(s 2
{0, 1}n) = min{i | s

i

= 1} can find the optimal solution.

The proof of Theorem 2 utilizes the dynamic programming
property of the problem, as in Lemma 2.

Lemma 2. (Das & Kempe, 2008) Let R2

(v, j) denote the
maximum R2

Z,S

value by choosing v variables, including
necessarily X

j

, from X
j

, . . . , X
n

. That is, R2

(v, j) =

max{R2

Z,S

| S ✓ {X
j

, . . . , X
n

}, X
j

2 S, |S| = v}.
Then, the following recursive relation holds:

R2

(v + 1, j) = max

j+1in

⇣
R2

(v, i) + b2
j

+ (b
j

� b
i

)

2

a2|yi�yj |

1� a2|yi�yj |
� 2b

j

b
i

a|yi�yj |

1 + a|yi�yj |

⌘
,

where the term in
��

is the R2 value by adding the variable
X

j

into the subset corresponding to R2

(v, i).

Proof of Theorem 2. We divide the optimization process
into k + 1 phases, where the i-th (1  i  k) phase starts
after the (i � 1)-th phase has finished. We define that the
i-th phase finishes when for each solution corresponding to
R2

(i, j) (1  j  n � i + 1), there exists one solution in
the archive P which is “better” than it. Here, a solution s
is “better” than s0 is equivalent to that s0 is “worse” than s.
Let ⇠

i

denote the iterations since phase i � 1 has finished,
until phase i is completed.

Starting from the solution {0}n, the 0-th phase has finished.
Then, we consider ⇠

i

(i � 1). In this phase, from Lemma
2, we know that a solution “better” than a corresponding
solution of R2

(i, j) can be generated by selecting a spe-
cific one from the solutions “better” than R2

(i � 1, j +

1), . . . , R2

(i � 1, n) and flipping its j-th bit, which hap-
pens with probability at least 1

P

max

· 1
n

(1� 1

n

)

n�1 � 1

enP

max

.
Thus, if we have found L desired solutions in the i-th phase,
the probability of finding a new desired solution in the next
iteration is at least (n� i+1�L) · 1

enP

max

, where n� i+1

is the total number of desired solutions to find in the i-th

phase. Then, we can have

E[⇠
i

] 
X

n�i

L=0

enP
max

n� i+ 1� L
2 O(n log nP

max

).

Therefore, the expected number of iterations E[T] is
O(kn log nP

max

) until the k-th phase finishes, which
implies that the optimal solution which corresponds to
max

1jn

R2

(k, j) has been found. Note that P
max


2kn, because the incomparable property of the maintained
solutions by POSS ensures that there exists at most one so-
lution in P for each combination of |s| 2 {0, 1, . . . , 2k�1}
and I(s) 2 {1, 2, . . . , n}. Thus, E[T] for finding the opti-
mal solution is O(k2n2

log n). ⇤
Then, we analyze FR (Algorithm 1) for this special class.
We show below that FR can be blocked from finding the
optimal solutions by giving a simple example.

Example 1. X
1

= Y
1

, X
i

= r
i

X
i�1

+ Y
i

, where r
i

2
(0, 1), and Y

i

are independent random variables with ex-
pectation 0 such that each X

i

has variance 1.

For i < j, Cov(X
i

, X
j

) =

Q
j

k=i+1

r
k

. Then, it is easy
to verify that Example 1 belongs to the Exponential Decay
class by letting y

1

= 0 and y
i

=

P
i

k=2

log

a

r
k

for i � 2.

Proposition 1. For Example 1 with n = 3, r
2

= 0.03, r
3

=

0.5, Cov(Y
1

, Z) = Cov(Y
2

, Z) = � and Cov(Y
3

, Z) =

0.505�, FR cannot find the optimal solution for k = 2.

Proof. The covariances between X
i

and Z are b
1

= �,
b
2

=0.03b
1

+ �=1.03� and b
3

=0.5b
2

+ 0.505�=1.02�.
Since X

i

and Z have expectation 0 and variance 1, R2

Z,S

can be simply represented as bT
S

C�1

S

b
S

(Johnson & Wich-
ern, 2007). We then calculate the R2 value as follows:

R2

Z,X

1

= �2, R2

Z,X

2

= 1.0609�2, R2

Z,X

3

= 1.0404�2;

R2

Z,{X
1

,X

2

} = 2.0009�2, R2

Z,{X
1

,X

3

} = 2.0103�2,

R2

Z,{X
2

,X

3

} = 1.4009�2;R2

Z,{X
1

,X

2

,X

3

} = 2.3409�2.

The optimal solution for k = 2 is {X
1

, X
3

}. FR first se-
lects X

2

since R2

Z,X

2

is the largest, then selects X
1

since
R2

Z,{X
2

,X

1

} > R2

Z,{X
2

,X

3

}; thus produces a local optimal
solution {X

1

, X
2

}.

It is also easy to verify that other two previous methods
OMP (Tropp, 2004) and FoBa (Zhang, 2011a) cannot find
the optimal solution for this example, due to their greedy
nature.

5. Empirical Study
In this section, we conducted experiments on 12 data sets
in Table 1 to compare POSS with the following greedy and

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Empirical comparison

select 8 features, report R2 (the larger the better), average over 100
runs

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Subset Selection by Pareto Optimization

Table 1. The data sets.

data set #inst #feat data set #inst #feat
housing 506 13 coil2000 9000 86
eunite2001 367 16 mushrooms 8124 112
svmguide3 1284 21 clean1 476 166
ionosphere 351 34 w5a 9888 300
sonar 208 60 gisette 7000 5000
triazines 186 60 farm-ads 4143 54877

convex relaxation methods for sparse regression:1
• FR (Miller, 2002) iteratively adds one variable with the
largest improvement on R2.
• OMP (Tropp, 2004) iteratively adds one variable that
mostly correlates with the predictor variable residual.
• FoBa (Zhang, 2011a) is based on OMP but deletes
one variable adaptively when beneficial. Set parameter
⌫ = 0.5, the solution path length is five times as long as
the maximum sparsity level (i.e., 5 ⇥ k), and the last ac-
tive set containing k variables is used as the final selection
(Zhang, 2011a).
• L1 (Tibshirani, 1996) uses the Lasso method in Mat-
lab, which replaces the `

0

norm constraint with the `
1

norm
constraint.
For POSS, we use I(·) = 0 since it is generally good, and
the number of iterations T is set to be b2ek2nc as suggested
by Theorem 1. To evaluate how far these methods are from
the optimum, we also compute the optimal subset by ex-
haustive enumeration. Exhaustive enumeration is denoted
as OPT. Note that OPT is fully computed only for the data
sets with n < 60.

To assess each method on each data set, we repeat the fol-
lowing process 100 times. The data set is randomly and
evenly split into a training set and a test set. Sparse regres-
sion is built on the training set, and evaluated on the test set.
We report the average training and test R2 values over the
100 repeats. Note that all variables have been normalized
to have expectation 0 and variance 1.

5.1. On Optimization Performance

Table 2 lists the training R2 for k = 8, which reveals the
optimization quality of the methods. By the t-test (Demšar,
2006) with significance level 0.05, POSS is shown signifi-
cantly better than all the compared methods on all data sets.
We also calculate the rank of each method on each data set
as in (Demšar, 2006), shown in the “average rank” row of
Table 2. We can observe that both FR and FoBa are better
than OMP, which are consistent with the previous results
in (Das & Kempe, 2011) and (Zhang, 2011a), respectively.
L1 performs the worst, as previously observed in (Das &
Kempe, 2011; Zhang, 2011a).

1The data sets are from http://archive.ics.uci.edu/ml/ and
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/. Some are
binary classification data, but we use them for regression.

We plot the performance curves on two data sets for k  8

in Figure 1. For the sonar data set, OPT is calculated only
for k  5. We can observe that POSS tightly follows OPT,
and has a clear advantage over the rest methods. The FR,
FoBa and OMP methods have close performances, while
are much better than L1.

Considering the running time (in the number of objective
function evaluations), OPT does exhaustive search, thus
needs

�
n

k

�
� n

k

k

k time, which could be unacceptable for a
slightly large data set. FR, FoBa and OMP are greedy-like
approaches, thus are efficient and the running time are all
in the order of kn. POSS finds the solutions closest to those
of OPT, taking 2ek2n time. Although POSS is slower by a
factor of k than the greedy-like approaches, the difference
would be small when k is a small constant.

Since the 2ek2n time is a theoretical upper bound for POSS
being as good as FR, we empirically examine how tight
this bound is. By selecting FR as the baseline, we plot the
curve of the R2 value over the running time for POSS on
the two largest data sets gisette and farm-ads, as shown in
Figure 2. We do not split the training and test set, and the
curve for POSS is the average of 30 independent runs. The
x-axis is in kn, the running time of FR. We can observe
that POSS takes about only 14% and 23% of the theoretical
time to achieve a better performance, respectively on the
two data sets. This implies that POSS can be more efficient
in practice than in the theoretical analysis.

OPT POSS FR FoBa OMP L1

2 4 6 8

0.16

0.18

0.20

0.22

0.24

0.26

0.28

k

R
2

2 4 6 8
0.25

0.30

0.35

0.40

0.45

0.50

0.55

k

R
2

(a) on svmguide3 (b) on sonar

Figure 1. The training R2 curves (the larger the better)

10 20 30 40

0.64

0.66

0.68

0.70

0.72

Running time in kn

R
2

POSS FR

6kn
2ek

2
n

=43kn

10 20 30 40
0.39

0.40

0.41

0.42

Running time in kn

R
2

POSS FR

10kn

2ek
2
n

=43kn

(a) on gisette (b) on farm-ads

Figure 2. The performance v.s. the running time of POSS.

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Empirical comparison

select 8 features, report R2 (the larger the better), average over 100
runs

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Subset Selection by Pareto Optimization

Table 2. The training R2 value (mean±std.) of the compared methods on 12 data sets for k = 8. In each data set, ‘•/�’ denote
respectively that POSS is significantly better/worse than the corresponding method by the t-test (Demšar, 2006) with confidence level
0.05. The average rank denotes the average ranking (computed as in (Demšar, 2006)) of each method on the data sets.

Data set OPT POSS FR FoBa OMP L1
housing .7437±.0297 .7437±.0297 .7429±.0300• .7423±.0301• .7415±.0300• .7230±.0330•
eunite2001 .8484±.0132 .8482±.0132 .8348±.0143• .8442±.0144• .8349±.0150• .8183±.0247•
svmguide3 .2705±.0255 .2701±.0257 .2615±.0260• .2601±.0279• .2557±.0270• .2247±.0241•
ionosphere .5995±.0326 .5990±.0329 .5920±.0352• .5929±.0346• .5921±.0353• .5173±.0408•
sonar – .5365±.0410 .5171±.0440• .5138±.0432• .5112±.0425• .3309±.0652•
triazines – .4301±.0603 .4150±.0592• .4107±.0600• .4073±.0591• .2665±.0691•
coil2000 – .0627±.0076 .0624±.0076• .0619±.0075• .0619±.0075• .0379±.0076•
mushrooms – .9912±.0020 .9909±.0021• .9909±.0022• .9909±.0022• .8191±.0891•
clean1 – .4368±.0300 .4169±.0299• .4145±.0309• .4132±.0315• .2058±.0437•
w5a – .3376±.0267 .3319±.0247• .3341±.0258• .3313±.0246• .1066±.0347•
gisette – .7265±.0098 .7001±.0116• .6747±.0145• .6731±.0134• .4471±.0236•
farm-ads – .4240±.0093 .4215±.0093• .4190±.0106• .4190±.0106• .2942±.0212•

POSS: win/tie/loss – 12/0/0 12/0/0 12/0/0 12/0/0
average rank 1 2.5 2.83 3.67 5

5.2. On Generalization

When testing sparse regression on the test data, it has been
known that the sparsity alone may be not a good complex-
ity measure (Zhang, 2011a), thus better optimization does
not always lead to better generalization performance. We
also observe this in Figure 3. We can observe that, on
svmguide3, test R2 is consistent with the training R2 in Fig-
ure 1(a), however on sonar, better training R2 (as in Figure
1(b)) leads to worse test R2, which may be due to the small
number of instances making it prone to overfitting.

As suggested in (Zhang, 2011a), other regularization terms
may be necessary. We add the `

2

norm regularization into
the objective function, i.e.,

RSS
Z,S

= min↵2R

|S| E
h
(Z�

X
i2S

↵
i

X
i

)

2

i
+ �|↵|2

2

.

The optimization is now argmin

S✓V

RSS
Z,S

s.t. |S|  k.
We then test all the compared methods to solve this opti-
mization problem with � = 0.5 on sonar. As plotted in
Figure 4, we can observe that POSS still does the best op-
timization on the training RSS, and by introducing the `

2

norm, it leads to the best generalization performance in R2.

6. Discussion
We have shown that POSS works well for sparse regres-
sion both theoretically and empirically. It is then a ques-
tion whether POSS works also well for other subset selec-
tion problems. We then examine the dictionary selection
problem (Krause & Cevher, 2010) presented in Definition
5, which generalizes the sparse regression problem to esti-
mate multiple predictor variables.

Definition 5 (Dictionary Selection). Given all observation
variables V = {X

1

, . . . , X
n

}, multiple predictor variables
{Z

1

, . . . , Z
m

} and two positive integers k and d, define the

2 4 6 8

0.14

0.16

0.18

0.20

0.22

k

R
2

2 4 6 8
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

k

R
2

(a) on svmguide3 (b) on sonar
Figure 3. The test R2 curves (the larger the better). Using the
same legend of Figure 1.

2 4 6 8

0.64

0.66

0.68

0.70

0.72

k

R
S
S

2 4 6 8

0.18

0.20

0.22

0.24

0.26

k

R
2

(a) on training set
(the smaller the better)

(b) on test set
(the larger the better)

Figure 4. Sparse regression with `2 regularization on sonar. Us-
ing the same legend of Figure 1.

average squared multiple correlation of a subset S ✓ V as

F (S) =
X

m

i=1

max

Q✓S,|Q|d

R2

Zi,Q
.

The dictionary selection problem is to find a set S of at most
k variables such that

argmax

S✓V

F (S) s.t. |S|  k. (3)

We investigate the POSS with a constant isolation function
for the dictionary selection in Eq. (3). For that, the criterion
of the subset selection is implemented as

f(s) = �F (s) = �
X

m

i=1

max

Q✓S,|Q|d

R2

Zi,Q
.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Subset Selection by Pareto Optimization

Table 1. The data sets.

data set #inst #feat data set #inst #feat
housing 506 13 coil2000 9000 86
eunite2001 367 16 mushrooms 8124 112
svmguide3 1284 21 clean1 476 166
ionosphere 351 34 w5a 9888 300
sonar 208 60 gisette 7000 5000
triazines 186 60 farm-ads 4143 54877

convex relaxation methods for sparse regression:1
• FR (Miller, 2002) iteratively adds one variable with the
largest improvement on R2.
• OMP (Tropp, 2004) iteratively adds one variable that
mostly correlates with the predictor variable residual.
• FoBa (Zhang, 2011a) is based on OMP but deletes
one variable adaptively when beneficial. Set parameter
⌫ = 0.5, the solution path length is five times as long as
the maximum sparsity level (i.e., 5 ⇥ k), and the last ac-
tive set containing k variables is used as the final selection
(Zhang, 2011a).
• L1 (Tibshirani, 1996) uses the Lasso method in Mat-
lab, which replaces the `

0

norm constraint with the `
1

norm
constraint.
For POSS, we use I(·) = 0 since it is generally good, and
the number of iterations T is set to be b2ek2nc as suggested
by Theorem 1. To evaluate how far these methods are from
the optimum, we also compute the optimal subset by ex-
haustive enumeration. Exhaustive enumeration is denoted
as OPT. Note that OPT is fully computed only for the data
sets with n < 60.

To assess each method on each data set, we repeat the fol-
lowing process 100 times. The data set is randomly and
evenly split into a training set and a test set. Sparse regres-
sion is built on the training set, and evaluated on the test set.
We report the average training and test R2 values over the
100 repeats. Note that all variables have been normalized
to have expectation 0 and variance 1.

5.1. On Optimization Performance

Table 2 lists the training R2 for k = 8, which reveals the
optimization quality of the methods. By the t-test (Demšar,
2006) with significance level 0.05, POSS is shown signifi-
cantly better than all the compared methods on all data sets.
We also calculate the rank of each method on each data set
as in (Demšar, 2006), shown in the “average rank” row of
Table 2. We can observe that both FR and FoBa are better
than OMP, which are consistent with the previous results
in (Das & Kempe, 2011) and (Zhang, 2011a), respectively.
L1 performs the worst, as previously observed in (Das &
Kempe, 2011; Zhang, 2011a).

1The data sets are from http://archive.ics.uci.edu/ml/ and
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/. Some are
binary classification data, but we use them for regression.

We plot the performance curves on two data sets for k  8

in Figure 1. For the sonar data set, OPT is calculated only
for k  5. We can observe that POSS tightly follows OPT,
and has a clear advantage over the rest methods. The FR,
FoBa and OMP methods have close performances, while
are much better than L1.

Considering the running time (in the number of objective
function evaluations), OPT does exhaustive search, thus
needs

�
n

k

�
� n

k

k

k time, which could be unacceptable for a
slightly large data set. FR, FoBa and OMP are greedy-like
approaches, thus are efficient and the running time are all
in the order of kn. POSS finds the solutions closest to those
of OPT, taking 2ek2n time. Although POSS is slower by a
factor of k than the greedy-like approaches, the difference
would be small when k is a small constant.

Since the 2ek2n time is a theoretical upper bound for POSS
being as good as FR, we empirically examine how tight
this bound is. By selecting FR as the baseline, we plot the
curve of the R2 value over the running time for POSS on
the two largest data sets gisette and farm-ads, as shown in
Figure 2. We do not split the training and test set, and the
curve for POSS is the average of 30 independent runs. The
x-axis is in kn, the running time of FR. We can observe
that POSS takes about only 14% and 23% of the theoretical
time to achieve a better performance, respectively on the
two data sets. This implies that POSS can be more efficient
in practice than in the theoretical analysis.

OPT POSS FR FoBa OMP L1

2 4 6 8

0.16

0.18

0.20

0.22

0.24

0.26

0.28

k

R
2

2 4 6 8
0.25

0.30

0.35

0.40

0.45

0.50

0.55

k

R
2

(a) on svmguide3 (b) on sonar

Figure 1. The training R2 curves (the larger the better)

10 20 30 40

0.64

0.66

0.68

0.70

0.72

Running time in kn

R
2

POSS FR

6kn
2ek

2
n

=43kn

10 20 30 40
0.39

0.40

0.41

0.42

Running time in kn

R
2

POSS FR

10kn

2ek
2
n

=43kn

(a) on gisette (b) on farm-ads

Figure 2. The performance v.s. the running time of POSS.

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Empirical comparison

select 8 features, report R2 (the larger the better), average over 100
runs

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Subset Selection by Pareto Optimization

Table 2. The training R2 value (mean±std.) of the compared methods on 12 data sets for k = 8. In each data set, ‘•/�’ denote
respectively that POSS is significantly better/worse than the corresponding method by the t-test (Demšar, 2006) with confidence level
0.05. The average rank denotes the average ranking (computed as in (Demšar, 2006)) of each method on the data sets.

Data set OPT POSS FR FoBa OMP L1
housing .7437±.0297 .7437±.0297 .7429±.0300• .7423±.0301• .7415±.0300• .7230±.0330•
eunite2001 .8484±.0132 .8482±.0132 .8348±.0143• .8442±.0144• .8349±.0150• .8183±.0247•
svmguide3 .2705±.0255 .2701±.0257 .2615±.0260• .2601±.0279• .2557±.0270• .2247±.0241•
ionosphere .5995±.0326 .5990±.0329 .5920±.0352• .5929±.0346• .5921±.0353• .5173±.0408•
sonar – .5365±.0410 .5171±.0440• .5138±.0432• .5112±.0425• .3309±.0652•
triazines – .4301±.0603 .4150±.0592• .4107±.0600• .4073±.0591• .2665±.0691•
coil2000 – .0627±.0076 .0624±.0076• .0619±.0075• .0619±.0075• .0379±.0076•
mushrooms – .9912±.0020 .9909±.0021• .9909±.0022• .9909±.0022• .8191±.0891•
clean1 – .4368±.0300 .4169±.0299• .4145±.0309• .4132±.0315• .2058±.0437•
w5a – .3376±.0267 .3319±.0247• .3341±.0258• .3313±.0246• .1066±.0347•
gisette – .7265±.0098 .7001±.0116• .6747±.0145• .6731±.0134• .4471±.0236•
farm-ads – .4240±.0093 .4215±.0093• .4190±.0106• .4190±.0106• .2942±.0212•

POSS: win/tie/loss – 12/0/0 12/0/0 12/0/0 12/0/0
average rank 1 2.5 2.83 3.67 5

5.2. On Generalization

When testing sparse regression on the test data, it has been
known that the sparsity alone may be not a good complex-
ity measure (Zhang, 2011a), thus better optimization does
not always lead to better generalization performance. We
also observe this in Figure 3. We can observe that, on
svmguide3, test R2 is consistent with the training R2 in Fig-
ure 1(a), however on sonar, better training R2 (as in Figure
1(b)) leads to worse test R2, which may be due to the small
number of instances making it prone to overfitting.

As suggested in (Zhang, 2011a), other regularization terms
may be necessary. We add the `

2

norm regularization into
the objective function, i.e.,

RSS
Z,S

= min↵2R

|S| E
h
(Z�

X
i2S

↵
i

X
i

)

2

i
+ �|↵|2

2

.

The optimization is now argmin

S✓V

RSS
Z,S

s.t. |S|  k.
We then test all the compared methods to solve this opti-
mization problem with � = 0.5 on sonar. As plotted in
Figure 4, we can observe that POSS still does the best op-
timization on the training RSS, and by introducing the `

2

norm, it leads to the best generalization performance in R2.

6. Discussion
We have shown that POSS works well for sparse regres-
sion both theoretically and empirically. It is then a ques-
tion whether POSS works also well for other subset selec-
tion problems. We then examine the dictionary selection
problem (Krause & Cevher, 2010) presented in Definition
5, which generalizes the sparse regression problem to esti-
mate multiple predictor variables.

Definition 5 (Dictionary Selection). Given all observation
variables V = {X

1

, . . . , X
n

}, multiple predictor variables
{Z

1

, . . . , Z
m

} and two positive integers k and d, define the

2 4 6 8

0.14

0.16

0.18

0.20

0.22

k

R
2

2 4 6 8
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

k

R
2

(a) on svmguide3 (b) on sonar
Figure 3. The test R2 curves (the larger the better). Using the
same legend of Figure 1.

2 4 6 8

0.64

0.66

0.68

0.70

0.72

k

R
S
S

2 4 6 8

0.18

0.20

0.22

0.24

0.26

k

R
2

(a) on training set
(the smaller the better)

(b) on test set
(the larger the better)

Figure 4. Sparse regression with `2 regularization on sonar. Us-
ing the same legend of Figure 1.

average squared multiple correlation of a subset S ✓ V as

F (S) =
X

m

i=1

max

Q✓S,|Q|d

R2

Zi,Q
.

The dictionary selection problem is to find a set S of at most
k variables such that

argmax

S✓V

F (S) s.t. |S|  k. (3)

We investigate the POSS with a constant isolation function
for the dictionary selection in Eq. (3). For that, the criterion
of the subset selection is implemented as

f(s) = �F (s) = �
X

m

i=1

max

Q✓S,|Q|d

R2

Zi,Q
.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Subset Selection by Pareto Optimization

Table 1. The data sets.

data set #inst #feat data set #inst #feat
housing 506 13 coil2000 9000 86
eunite2001 367 16 mushrooms 8124 112
svmguide3 1284 21 clean1 476 166
ionosphere 351 34 w5a 9888 300
sonar 208 60 gisette 7000 5000
triazines 186 60 farm-ads 4143 54877

convex relaxation methods for sparse regression:1
• FR (Miller, 2002) iteratively adds one variable with the
largest improvement on R2.
• OMP (Tropp, 2004) iteratively adds one variable that
mostly correlates with the predictor variable residual.
• FoBa (Zhang, 2011a) is based on OMP but deletes
one variable adaptively when beneficial. Set parameter
⌫ = 0.5, the solution path length is five times as long as
the maximum sparsity level (i.e., 5 ⇥ k), and the last ac-
tive set containing k variables is used as the final selection
(Zhang, 2011a).
• L1 (Tibshirani, 1996) uses the Lasso method in Mat-
lab, which replaces the `

0

norm constraint with the `
1

norm
constraint.
For POSS, we use I(·) = 0 since it is generally good, and
the number of iterations T is set to be b2ek2nc as suggested
by Theorem 1. To evaluate how far these methods are from
the optimum, we also compute the optimal subset by ex-
haustive enumeration. Exhaustive enumeration is denoted
as OPT. Note that OPT is fully computed only for the data
sets with n < 60.

To assess each method on each data set, we repeat the fol-
lowing process 100 times. The data set is randomly and
evenly split into a training set and a test set. Sparse regres-
sion is built on the training set, and evaluated on the test set.
We report the average training and test R2 values over the
100 repeats. Note that all variables have been normalized
to have expectation 0 and variance 1.

5.1. On Optimization Performance

Table 2 lists the training R2 for k = 8, which reveals the
optimization quality of the methods. By the t-test (Demšar,
2006) with significance level 0.05, POSS is shown signifi-
cantly better than all the compared methods on all data sets.
We also calculate the rank of each method on each data set
as in (Demšar, 2006), shown in the “average rank” row of
Table 2. We can observe that both FR and FoBa are better
than OMP, which are consistent with the previous results
in (Das & Kempe, 2011) and (Zhang, 2011a), respectively.
L1 performs the worst, as previously observed in (Das &
Kempe, 2011; Zhang, 2011a).

1The data sets are from http://archive.ics.uci.edu/ml/ and
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/. Some are
binary classification data, but we use them for regression.

We plot the performance curves on two data sets for k  8

in Figure 1. For the sonar data set, OPT is calculated only
for k  5. We can observe that POSS tightly follows OPT,
and has a clear advantage over the rest methods. The FR,
FoBa and OMP methods have close performances, while
are much better than L1.

Considering the running time (in the number of objective
function evaluations), OPT does exhaustive search, thus
needs

�
n

k

�
� n

k

k

k time, which could be unacceptable for a
slightly large data set. FR, FoBa and OMP are greedy-like
approaches, thus are efficient and the running time are all
in the order of kn. POSS finds the solutions closest to those
of OPT, taking 2ek2n time. Although POSS is slower by a
factor of k than the greedy-like approaches, the difference
would be small when k is a small constant.

Since the 2ek2n time is a theoretical upper bound for POSS
being as good as FR, we empirically examine how tight
this bound is. By selecting FR as the baseline, we plot the
curve of the R2 value over the running time for POSS on
the two largest data sets gisette and farm-ads, as shown in
Figure 2. We do not split the training and test set, and the
curve for POSS is the average of 30 independent runs. The
x-axis is in kn, the running time of FR. We can observe
that POSS takes about only 14% and 23% of the theoretical
time to achieve a better performance, respectively on the
two data sets. This implies that POSS can be more efficient
in practice than in the theoretical analysis.

OPT POSS FR FoBa OMP L1

2 4 6 8

0.16

0.18

0.20

0.22

0.24

0.26

0.28

k

R
2

2 4 6 8
0.25

0.30

0.35

0.40

0.45

0.50

0.55

k

R
2

(a) on svmguide3 (b) on sonar

Figure 1. The training R2 curves (the larger the better)

10 20 30 40

0.64

0.66

0.68

0.70

0.72

Running time in kn

R
2

POSS FR

6kn
2ek

2
n

=43kn

10 20 30 40
0.39

0.40

0.41

0.42

Running time in kn

R
2

POSS FR

10kn

2ek
2
n

=43kn

(a) on gisette (b) on farm-ads

Figure 2. The performance v.s. the running time of POSS.

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Empirical comparison

Comparison optimization performance with different sparsities

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Subset Selection by Pareto Optimization

Table 1. The data sets.

data set #inst #feat data set #inst #feat
housing 506 13 coil2000 9000 86
eunite2001 367 16 mushrooms 8124 112
svmguide3 1284 21 clean1 476 166
ionosphere 351 34 w5a 9888 300
sonar 208 60 gisette 7000 5000
triazines 186 60 farm-ads 4143 54877

convex relaxation methods for sparse regression:1
• FR (Miller, 2002) iteratively adds one variable with the
largest improvement on R2.
• OMP (Tropp, 2004) iteratively adds one variable that
mostly correlates with the predictor variable residual.
• FoBa (Zhang, 2011a) is based on OMP but deletes
one variable adaptively when beneficial. Set parameter
⌫ = 0.5, the solution path length is five times as long as
the maximum sparsity level (i.e., 5 ⇥ k), and the last ac-
tive set containing k variables is used as the final selection
(Zhang, 2011a).
• L1 (Tibshirani, 1996) uses the Lasso method in Mat-
lab, which replaces the `

0

norm constraint with the `
1

norm
constraint.
For POSS, we use I(·) = 0 since it is generally good, and
the number of iterations T is set to be b2ek2nc as suggested
by Theorem 1. To evaluate how far these methods are from
the optimum, we also compute the optimal subset by ex-
haustive enumeration. Exhaustive enumeration is denoted
as OPT. Note that OPT is fully computed only for the data
sets with n < 60.

To assess each method on each data set, we repeat the fol-
lowing process 100 times. The data set is randomly and
evenly split into a training set and a test set. Sparse regres-
sion is built on the training set, and evaluated on the test set.
We report the average training and test R2 values over the
100 repeats. Note that all variables have been normalized
to have expectation 0 and variance 1.

5.1. On Optimization Performance

Table 2 lists the training R2 for k = 8, which reveals the
optimization quality of the methods. By the t-test (Demšar,
2006) with significance level 0.05, POSS is shown signifi-
cantly better than all the compared methods on all data sets.
We also calculate the rank of each method on each data set
as in (Demšar, 2006), shown in the “average rank” row of
Table 2. We can observe that both FR and FoBa are better
than OMP, which are consistent with the previous results
in (Das & Kempe, 2011) and (Zhang, 2011a), respectively.
L1 performs the worst, as previously observed in (Das &
Kempe, 2011; Zhang, 2011a).

1The data sets are from http://archive.ics.uci.edu/ml/ and
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/. Some are
binary classification data, but we use them for regression.

We plot the performance curves on two data sets for k  8

in Figure 1. For the sonar data set, OPT is calculated only
for k  5. We can observe that POSS tightly follows OPT,
and has a clear advantage over the rest methods. The FR,
FoBa and OMP methods have close performances, while
are much better than L1.

Considering the running time (in the number of objective
function evaluations), OPT does exhaustive search, thus
needs

�
n

k

�
� n

k

k

k time, which could be unacceptable for a
slightly large data set. FR, FoBa and OMP are greedy-like
approaches, thus are efficient and the running time are all
in the order of kn. POSS finds the solutions closest to those
of OPT, taking 2ek2n time. Although POSS is slower by a
factor of k than the greedy-like approaches, the difference
would be small when k is a small constant.

Since the 2ek2n time is a theoretical upper bound for POSS
being as good as FR, we empirically examine how tight
this bound is. By selecting FR as the baseline, we plot the
curve of the R2 value over the running time for POSS on
the two largest data sets gisette and farm-ads, as shown in
Figure 2. We do not split the training and test set, and the
curve for POSS is the average of 30 independent runs. The
x-axis is in kn, the running time of FR. We can observe
that POSS takes about only 14% and 23% of the theoretical
time to achieve a better performance, respectively on the
two data sets. This implies that POSS can be more efficient
in practice than in the theoretical analysis.

OPT POSS FR FoBa OMP L1

2 4 6 8

0.16

0.18

0.20

0.22

0.24

0.26

0.28

k

R
2

2 4 6 8
0.25

0.30

0.35

0.40

0.45

0.50

0.55

k
R

2

(a) on svmguide3 (b) on sonar

Figure 1. The training R2 curves (the larger the better)

10 20 30 40

0.64

0.66

0.68

0.70

0.72

Running time in kn

R
2

POSS FR

6kn
2ek

2
n

=43kn

10 20 30 40
0.39

0.40

0.41

0.42

Running time in kn

R
2

POSS FR

10kn

2ek
2
n

=43kn

(a) on gisette (b) on farm-ads

Figure 2. The performance v.s. the running time of POSS.

[C. Qian, Y. Yu and Z.-H. Zhou. Pareto
Optimization for Subset Selection. NIPS’15]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Extension: parallel Pareto optimization

Random
solution

ar
ch

iv
e

P

pick a
solution

new
solution

ar
ch

iv
e

P

pick a
solution

new
solution

faster?

1. randomly generate a solution,
and put it into the archive P;

2. loop
| 2.1 pick a solution randomly from P;
| 2.2 randomly change it to make a new one;
| 2.3 if the new one is not ``strictly worse”
| | 2.3.1 put it into P;
| | 2.3.2 remove worse solutions from P;
3. when terminates, select the best feasible

solution from P.

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Parallel POSS

Random
solution

ar
ch

iv
e

P

pick a
solution

new
solution

ar
ch

iv
e

P

pick a
solution

new
solution

Random
solution

ar
ch

iv
e

P

pick a
solution

new
solution

ar
ch

iv
e

P

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Parallel POSS

Random
solution

P

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

P
P

P
P

P
P

P
P

P

lock lock

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Parallel POSS

Random
solution

P

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

P
P

P
P

P
P

P
P

P

lock lock

possible difference: POSS: x -> x’ -> x’‘ PPOSS:
x -> x’
x -> x’
x -> x’

can the parallelization preserve the effectiveness?

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Parallel POSS
Random
solution

ar
ch

iv
e

P

pick a
solution

new
solution

ar
ch

iv
e

P

pick a
solution

new
solution

Random
solution

P

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

P
P

P
P

P
P

P
P

P

When the number of processors is less than the number of variables,
the number of iterations can be reduced linearly w.r.t. the number of
processors

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Parallel POSS
Random
solution

ar
ch

iv
e

P

pick a
solution

new
solution

ar
ch

iv
e

P

pick a
solution

new
solution

Random
solution

P

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

P
P

P
P

P
P

P
P

P

With increasing number of processors, the number of iterations can be
continuously reduced, eventually to a constant

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Parallel POSS

operation lock

tim
e

With a good approximation guarantee, the runtime decreases
nearly linearly w.r.t. the number of processors

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Lock-free version

Random
solution

P

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

pick a
solution

new
solution

P
P

P
P

P
P

P
P

P
no lock no lock

PPOSS-asy

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Experiments
the asynchronous version of PPOSS

PPOSS (blue line): achieve speedup around 8 when the number of
cores is 10; the !" values are stable
PPOSS-asy (red line): achieve better speedup (avoid the lock cost);
the !" values are slightly worse (the noise from lock-free)

the best previous algorithm [Das & Kempe, ICML’11]

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Experiments
Compare the speedup as well as the solution quality measured by !"
values with different number of cores

[C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel
Pareto Optimization for Subset Selection. IJCAI’16]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

References for Pareto optimization
•Yang Yu, Xin Yao, and Zhi-Hua Zhou. On the approximation ability of evolutionary

optimization with application to minimum set cover. Artificial Intelligence,
2012, 180-181:20-33.

•Chao Qian, Yang Yu and Zhi-Hua Zhou. Pareto ensemble pruning. In: Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI'15), Austin,
TX, 2015, pp.2935-2941.

•Chao Qian, Yang Yu and Zhi-Hua Zhou. On constrained Boolean Pareto
optimization. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI'15), Buenos Aires, Argentina, 2015, pp.
389-395.

•Chao Qian, Yang Yu and Zhi-Hua Zhou. Subset selection by Pareto optimization. In:
Advances in Neural Information Processing Systems 28 (NIPS'15) ,
Montreal, Canada, 2015.

•Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang and Zhi-Hua Zhou. Parallel Pareto
optimization for subset selection. In: Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI'16), New York, NY, 2016

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Outline

Subset selection problem
and Pareto optimization

Local Lipschitz continuous problem
and classification-based optimization

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Local Lipschitz continuous functions

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

x 2 X , if X = {0, 1}n, then there exist positive constants

�
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2

H  f(x)� f(x⇤
)  L

1

kx� x⇤k�1

H ;

if X is a compact continuous domains, then there exist posi-

tive constants �
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2
2

 f(x)� f(x⇤
)  L

1

kx� x⇤k�1
2

.

Let F�1,L1,�2,L2

L (✓ F) denote the function class that satis-

fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x⇤. Note that we can have
classification algorithms with the convergence rate of the
generalization error eO(

1

m) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
where m is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate e

⇥(

1

m).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f 2
F�1,L1,�2,L2

L , 0 < � < 1 and 0 < ✏  L
1

(

n
2

)

�1
, for a

classification-based optimization algorithm using a classi-

fication algorithm with convergence rate

e
⇥(

1

m), under the

conditions that error-target dependence ✓ < 1 and shrink-

ing rate � > 0, its (✏,�)-query complexity belongs to

poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

COROLLARY 2
In compact continuous domains X , given f 2 F�1,L1,�2,L2

L ,

0 < � < 1 and ✏ > 0, for a classification-based optimization

algorithm using a classification algorithm with convergence

rate

e
⇥(

1

m), under the conditions that error-target depen-

dence ✓ < 1 and shrinking rate � > 0, its (✏,�)-query com-

plexity belongs to poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
⌘-Packing Number and ⌘-Covering Number (Definition 5).
Recall that D✏ = {x 2 X | f(x)�f(x⇤

)  ✏} for any ✏ > 0.
Let ↵0

t = ↵t � f(x⇤
) and we assume that ↵0

t > 0.

DEFINITION 5 (⌘-Packing Number and ⌘-Covering Num-
ber)
⌘-Packing Number is the largest Np � 0 such that, there ex-

ists C
1

> 0, for all ✏ > 0, the maximal number of disjoint

`
2

-balls of radius ⌘✏ contained in D✏ with center in D✏ is

not less than C
1

✏�Np
; ⌘-Covering Number is the smallest

Nc � 0 such that, there exists C
2

> 0, for all ✏ > 0, the

minimal number of `
2

-balls of radius ⌘✏ with center in X
covering D✏ is not larger than C

2

✏�Nc
.

COROLLARY 3
In compact continuous domains X , given f 2 F satisfyingPT

t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
, where Np and Nc are its ⌘-

Packing and ⌘-Covering numbers, respectively, 0 < � < 1

and ✏ > 0, for a classification-based optimization algorithm

using the classification algorithms with convergence rate

e
⇥(

1

m) , under the conditions that error-target dependence

✓ < 1 and shrinking rate � > 0, its (✏,�)-query complexity

belongs to poly(

1

✏ , n) · ln 1

� .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np  Nc. Because if we
let V (D✏) and V (⌘✏) denote the volume of D✏ and `

2

ball of radius ⌘✏ in Rn respectively, then it holds that
C

1

✏�Np · V (⌘✏)  V (D✏)  C
2

✏�Nc · V (⌘✏). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

PT
t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold ↵t (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.

binary space:

continuous space:

x 2 X , if X = {0, 1}n, then there exist positive constants

�
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2

H  f(x)� f(x⇤
)  L

1

kx� x⇤k�1

H ;

if X is a compact continuous domains, then there exist posi-

tive constants �
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2
2

 f(x)� f(x⇤
)  L

1

kx� x⇤k�1
2

.

Let F�1,L1,�2,L2

L (✓ F) denote the function class that satis-

fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x⇤. Note that we can have
classification algorithms with the convergence rate of the
generalization error eO(

1

m) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
where m is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate e

⇥(

1

m).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f 2
F�1,L1,�2,L2

L , 0 < � < 1 and 0 < ✏  L
1

(

n
2

)

�1
, for a

classification-based optimization algorithm using a classi-

fication algorithm with convergence rate

e
⇥(

1

m), under the

conditions that error-target dependence ✓ < 1 and shrink-

ing rate � > 0, its (✏,�)-query complexity belongs to

poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

COROLLARY 2
In compact continuous domains X , given f 2 F�1,L1,�2,L2

L ,

0 < � < 1 and ✏ > 0, for a classification-based optimization

algorithm using a classification algorithm with convergence

rate

e
⇥(

1

m), under the conditions that error-target depen-

dence ✓ < 1 and shrinking rate � > 0, its (✏,�)-query com-

plexity belongs to poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
⌘-Packing Number and ⌘-Covering Number (Definition 5).
Recall that D✏ = {x 2 X | f(x)�f(x⇤

)  ✏} for any ✏ > 0.
Let ↵0

t = ↵t � f(x⇤
) and we assume that ↵0

t > 0.

DEFINITION 5 (⌘-Packing Number and ⌘-Covering Num-
ber)
⌘-Packing Number is the largest Np � 0 such that, there ex-

ists C
1

> 0, for all ✏ > 0, the maximal number of disjoint

`
2

-balls of radius ⌘✏ contained in D✏ with center in D✏ is

not less than C
1

✏�Np
; ⌘-Covering Number is the smallest

Nc � 0 such that, there exists C
2

> 0, for all ✏ > 0, the

minimal number of `
2

-balls of radius ⌘✏ with center in X
covering D✏ is not larger than C

2

✏�Nc
.

COROLLARY 3
In compact continuous domains X , given f 2 F satisfyingPT

t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
, where Np and Nc are its ⌘-

Packing and ⌘-Covering numbers, respectively, 0 < � < 1

and ✏ > 0, for a classification-based optimization algorithm

using the classification algorithms with convergence rate

e
⇥(

1

m) , under the conditions that error-target dependence

✓ < 1 and shrinking rate � > 0, its (✏,�)-query complexity

belongs to poly(

1

✏ , n) · ln 1

� .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np  Nc. Because if we
let V (D✏) and V (⌘✏) denote the volume of D✏ and `

2

ball of radius ⌘✏ in Rn respectively, then it holds that
C

1

✏�Np · V (⌘✏)  V (D✏)  C
2

✏�Nc · V (⌘✏). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

PT
t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold ↵t (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Local Lipschitz continuous functions

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

x 2 X , if X = {0, 1}n, then there exist positive constants

�
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2

H  f(x)� f(x⇤
)  L

1

kx� x⇤k�1

H ;

if X is a compact continuous domains, then there exist posi-

tive constants �
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2
2

 f(x)� f(x⇤
)  L

1

kx� x⇤k�1
2

.

Let F�1,L1,�2,L2

L (✓ F) denote the function class that satis-

fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x⇤. Note that we can have
classification algorithms with the convergence rate of the
generalization error eO(

1

m) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
where m is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate e

⇥(

1

m).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f 2
F�1,L1,�2,L2

L , 0 < � < 1 and 0 < ✏  L
1

(

n
2

)

�1
, for a

classification-based optimization algorithm using a classi-

fication algorithm with convergence rate

e
⇥(

1

m), under the

conditions that error-target dependence ✓ < 1 and shrink-

ing rate � > 0, its (✏,�)-query complexity belongs to

poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

COROLLARY 2
In compact continuous domains X , given f 2 F�1,L1,�2,L2

L ,

0 < � < 1 and ✏ > 0, for a classification-based optimization

algorithm using a classification algorithm with convergence

rate

e
⇥(

1

m), under the conditions that error-target depen-

dence ✓ < 1 and shrinking rate � > 0, its (✏,�)-query com-

plexity belongs to poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
⌘-Packing Number and ⌘-Covering Number (Definition 5).
Recall that D✏ = {x 2 X | f(x)�f(x⇤

)  ✏} for any ✏ > 0.
Let ↵0

t = ↵t � f(x⇤
) and we assume that ↵0

t > 0.

DEFINITION 5 (⌘-Packing Number and ⌘-Covering Num-
ber)
⌘-Packing Number is the largest Np � 0 such that, there ex-

ists C
1

> 0, for all ✏ > 0, the maximal number of disjoint

`
2

-balls of radius ⌘✏ contained in D✏ with center in D✏ is

not less than C
1

✏�Np
; ⌘-Covering Number is the smallest

Nc � 0 such that, there exists C
2

> 0, for all ✏ > 0, the

minimal number of `
2

-balls of radius ⌘✏ with center in X
covering D✏ is not larger than C

2

✏�Nc
.

COROLLARY 3
In compact continuous domains X , given f 2 F satisfyingPT

t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
, where Np and Nc are its ⌘-

Packing and ⌘-Covering numbers, respectively, 0 < � < 1

and ✏ > 0, for a classification-based optimization algorithm

using the classification algorithms with convergence rate

e
⇥(

1

m) , under the conditions that error-target dependence

✓ < 1 and shrinking rate � > 0, its (✏,�)-query complexity

belongs to poly(

1

✏ , n) · ln 1

� .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np  Nc. Because if we
let V (D✏) and V (⌘✏) denote the volume of D✏ and `

2

ball of radius ⌘✏ in Rn respectively, then it holds that
C

1

✏�Np · V (⌘✏)  V (D✏)  C
2

✏�Nc · V (⌘✏). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

PT
t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold ↵t (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.

x

⇤

binary space:

continuous space:

x 2 X , if X = {0, 1}n, then there exist positive constants

�
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2

H  f(x)� f(x⇤
)  L

1

kx� x⇤k�1

H ;

if X is a compact continuous domains, then there exist posi-

tive constants �
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2
2

 f(x)� f(x⇤
)  L

1

kx� x⇤k�1
2

.

Let F�1,L1,�2,L2

L (✓ F) denote the function class that satis-

fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x⇤. Note that we can have
classification algorithms with the convergence rate of the
generalization error eO(

1

m) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
where m is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate e

⇥(

1

m).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f 2
F�1,L1,�2,L2

L , 0 < � < 1 and 0 < ✏  L
1

(

n
2

)

�1
, for a

classification-based optimization algorithm using a classi-

fication algorithm with convergence rate

e
⇥(

1

m), under the

conditions that error-target dependence ✓ < 1 and shrink-

ing rate � > 0, its (✏,�)-query complexity belongs to

poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

COROLLARY 2
In compact continuous domains X , given f 2 F�1,L1,�2,L2

L ,

0 < � < 1 and ✏ > 0, for a classification-based optimization

algorithm using a classification algorithm with convergence

rate

e
⇥(

1

m), under the conditions that error-target depen-

dence ✓ < 1 and shrinking rate � > 0, its (✏,�)-query com-

plexity belongs to poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
⌘-Packing Number and ⌘-Covering Number (Definition 5).
Recall that D✏ = {x 2 X | f(x)�f(x⇤

)  ✏} for any ✏ > 0.
Let ↵0

t = ↵t � f(x⇤
) and we assume that ↵0

t > 0.

DEFINITION 5 (⌘-Packing Number and ⌘-Covering Num-
ber)
⌘-Packing Number is the largest Np � 0 such that, there ex-

ists C
1

> 0, for all ✏ > 0, the maximal number of disjoint

`
2

-balls of radius ⌘✏ contained in D✏ with center in D✏ is

not less than C
1

✏�Np
; ⌘-Covering Number is the smallest

Nc � 0 such that, there exists C
2

> 0, for all ✏ > 0, the

minimal number of `
2

-balls of radius ⌘✏ with center in X
covering D✏ is not larger than C

2

✏�Nc
.

COROLLARY 3
In compact continuous domains X , given f 2 F satisfyingPT

t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
, where Np and Nc are its ⌘-

Packing and ⌘-Covering numbers, respectively, 0 < � < 1

and ✏ > 0, for a classification-based optimization algorithm

using the classification algorithms with convergence rate

e
⇥(

1

m) , under the conditions that error-target dependence

✓ < 1 and shrinking rate � > 0, its (✏,�)-query complexity

belongs to poly(

1

✏ , n) · ln 1

� .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np  Nc. Because if we
let V (D✏) and V (⌘✏) denote the volume of D✏ and `

2

ball of radius ⌘✏ in Rn respectively, then it holds that
C

1

✏�Np · V (⌘✏)  V (D✏)  C
2

✏�Nc · V (⌘✏). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

PT
t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold ↵t (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Local Lipschitz continuous functions

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

x 2 X , if X = {0, 1}n, then there exist positive constants

�
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2

H  f(x)� f(x⇤
)  L

1

kx� x⇤k�1

H ;

if X is a compact continuous domains, then there exist posi-

tive constants �
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2
2

 f(x)� f(x⇤
)  L

1

kx� x⇤k�1
2

.

Let F�1,L1,�2,L2

L (✓ F) denote the function class that satis-

fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x⇤. Note that we can have
classification algorithms with the convergence rate of the
generalization error eO(

1

m) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
where m is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate e

⇥(

1

m).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f 2
F�1,L1,�2,L2

L , 0 < � < 1 and 0 < ✏  L
1

(

n
2

)

�1
, for a

classification-based optimization algorithm using a classi-

fication algorithm with convergence rate

e
⇥(

1

m), under the

conditions that error-target dependence ✓ < 1 and shrink-

ing rate � > 0, its (✏,�)-query complexity belongs to

poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

COROLLARY 2
In compact continuous domains X , given f 2 F�1,L1,�2,L2

L ,

0 < � < 1 and ✏ > 0, for a classification-based optimization

algorithm using a classification algorithm with convergence

rate

e
⇥(

1

m), under the conditions that error-target depen-

dence ✓ < 1 and shrinking rate � > 0, its (✏,�)-query com-

plexity belongs to poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
⌘-Packing Number and ⌘-Covering Number (Definition 5).
Recall that D✏ = {x 2 X | f(x)�f(x⇤

)  ✏} for any ✏ > 0.
Let ↵0

t = ↵t � f(x⇤
) and we assume that ↵0

t > 0.

DEFINITION 5 (⌘-Packing Number and ⌘-Covering Num-
ber)
⌘-Packing Number is the largest Np � 0 such that, there ex-

ists C
1

> 0, for all ✏ > 0, the maximal number of disjoint

`
2

-balls of radius ⌘✏ contained in D✏ with center in D✏ is

not less than C
1

✏�Np
; ⌘-Covering Number is the smallest

Nc � 0 such that, there exists C
2

> 0, for all ✏ > 0, the

minimal number of `
2

-balls of radius ⌘✏ with center in X
covering D✏ is not larger than C

2

✏�Nc
.

COROLLARY 3
In compact continuous domains X , given f 2 F satisfyingPT

t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
, where Np and Nc are its ⌘-

Packing and ⌘-Covering numbers, respectively, 0 < � < 1

and ✏ > 0, for a classification-based optimization algorithm

using the classification algorithms with convergence rate

e
⇥(

1

m) , under the conditions that error-target dependence

✓ < 1 and shrinking rate � > 0, its (✏,�)-query complexity

belongs to poly(

1

✏ , n) · ln 1

� .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np  Nc. Because if we
let V (D✏) and V (⌘✏) denote the volume of D✏ and `

2

ball of radius ⌘✏ in Rn respectively, then it holds that
C

1

✏�Np · V (⌘✏)  V (D✏)  C
2

✏�Nc · V (⌘✏). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

PT
t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold ↵t (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.

x

⇤

binary space:

continuous space:

x 2 X , if X = {0, 1}n, then there exist positive constants

�
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2

H  f(x)� f(x⇤
)  L

1

kx� x⇤k�1

H ;

if X is a compact continuous domains, then there exist posi-

tive constants �
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2
2

 f(x)� f(x⇤
)  L

1

kx� x⇤k�1
2

.

Let F�1,L1,�2,L2

L (✓ F) denote the function class that satis-

fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x⇤. Note that we can have
classification algorithms with the convergence rate of the
generalization error eO(

1

m) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
where m is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate e

⇥(

1

m).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f 2
F�1,L1,�2,L2

L , 0 < � < 1 and 0 < ✏  L
1

(

n
2

)

�1
, for a

classification-based optimization algorithm using a classi-

fication algorithm with convergence rate

e
⇥(

1

m), under the

conditions that error-target dependence ✓ < 1 and shrink-

ing rate � > 0, its (✏,�)-query complexity belongs to

poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

COROLLARY 2
In compact continuous domains X , given f 2 F�1,L1,�2,L2

L ,

0 < � < 1 and ✏ > 0, for a classification-based optimization

algorithm using a classification algorithm with convergence

rate

e
⇥(

1

m), under the conditions that error-target depen-

dence ✓ < 1 and shrinking rate � > 0, its (✏,�)-query com-

plexity belongs to poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
⌘-Packing Number and ⌘-Covering Number (Definition 5).
Recall that D✏ = {x 2 X | f(x)�f(x⇤

)  ✏} for any ✏ > 0.
Let ↵0

t = ↵t � f(x⇤
) and we assume that ↵0

t > 0.

DEFINITION 5 (⌘-Packing Number and ⌘-Covering Num-
ber)
⌘-Packing Number is the largest Np � 0 such that, there ex-

ists C
1

> 0, for all ✏ > 0, the maximal number of disjoint

`
2

-balls of radius ⌘✏ contained in D✏ with center in D✏ is

not less than C
1

✏�Np
; ⌘-Covering Number is the smallest

Nc � 0 such that, there exists C
2

> 0, for all ✏ > 0, the

minimal number of `
2

-balls of radius ⌘✏ with center in X
covering D✏ is not larger than C

2

✏�Nc
.

COROLLARY 3
In compact continuous domains X , given f 2 F satisfyingPT

t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
, where Np and Nc are its ⌘-

Packing and ⌘-Covering numbers, respectively, 0 < � < 1

and ✏ > 0, for a classification-based optimization algorithm

using the classification algorithms with convergence rate

e
⇥(

1

m) , under the conditions that error-target dependence

✓ < 1 and shrinking rate � > 0, its (✏,�)-query complexity

belongs to poly(

1

✏ , n) · ln 1

� .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np  Nc. Because if we
let V (D✏) and V (⌘✏) denote the volume of D✏ and `

2

ball of radius ⌘✏ in Rn respectively, then it holds that
C

1

✏�Np · V (⌘✏)  V (D✏)  C
2

✏�Nc · V (⌘✏). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

PT
t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold ↵t (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.

A branch-and-bound method, optimistic optimization, can be proved to be
efficient for this problem [Munos, Foundation and Trends in Machine Learning’14]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

A general model-based optimization
Input:

> 0: Approximation level
T ∈ N+: Number ofiterations
m0, . . . ,mT ∈ N+: Number of samples
λ ∈ [0, 1]: Balancing parameters
L: Learning algorithm
T : Distribution transformation of hypothesis

Procedure:
1: Collect S0 = {x1, . . . , xm0} by i.i.d. sampling from the

uniform distribution overX
2: x̃ = argminx∈S0

f(x)
3: Initialize the hypothesish0

4: T0 = ∅
5: for t = 1 to T do
6: ConstructTt = {(x1, y1), . . . , (xmt−1 , ymt−1)},

where xi ∈ St−1 and yi = f(xi)
7: ht = L(Tt, Tt−1, ht−1, t), the learning step
8: Initialize St from Tt

9: for i = 1 tomt do

10: Sample xi from
Tht , with probabilityλ
UX , with probability1− λ

11: St = St ∪ {xi}
12: end for
13: x̃ = argminx∈St∪{x̃} f(x)
14: end for
15: return x̃

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

A general model-based optimization

Start with random solutions

Evaluate solutions

Learn a model

Sample new solutions:

from the model and
from the whole solutions space
with a balancing probability

Record the best-so-far solution

Return the best-so-far solution

Input:
> 0: Approximation level

T ∈ N+: Number ofiterations
m0, . . . ,mT ∈ N+: Number of samples
λ ∈ [0, 1]: Balancing parameters
L: Learning algorithm
T : Distribution transformation of hypothesis

Procedure:
1: Collect S0 = {x1, . . . , xm0} by i.i.d. sampling from the

uniform distribution overX
2: x̃ = argminx∈S0

f(x)
3: Initialize the hypothesish0

4: T0 = ∅
5: for t = 1 to T do
6: ConstructTt = {(x1, y1), . . . , (xmt−1 , ymt−1)},

where xi ∈ St−1 and yi = f(xi)
7: ht = L(Tt, Tt−1, ht−1, t), the learning step
8: Initialize St from Tt

9: for i = 1 tomt do

10: Sample xi from
Tht , with probabilityλ
UX , with probability1− λ

11: St = St ∪ {xi}
12: end for
13: x̃ = argminx∈St∪{x̃} f(x)
14: end for
15: return x̃

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

A general model-based optimization

Optimization performance measure

Consider any functions F over compact solution spaces with bounded
value range

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

A general model-based optimization

Optimization performance measure

timization testing functions and machine learning tasks in-
cluding spectral clustering and classification with Ramp
loss. The experiment results show that RACOS is superior
to the compared methods.

The rest of this paper is organized in five sections, se-
quentially presenting the background, the theoretical study,
the proposed RACOS algorithm, the empirical results, and
the conclusion.

Background
This paper considers the general minimization problems in
continuous and finite discrete domains. Let X denote a so-
lution space that is a compact subset of Rn, and f : X ! R
denote a minimization problem. Assume that there exist
x⇤, x0 2 X such that f(x⇤

) = minx2X f(x) and f(x0
) =

maxx2X f(x). Let F denote the set of all functions that sat-
isfy this assumption. Given f 2 F , the minimization prob-
lem is to find a solution x⇤ 2 X s.t. 8x 2 X : f(x⇤

) 
f(x). For derivative-free optimization algorithms, we as-
sume that only an objective function f 2 F is accessible
to the algorithm for evaluating solutions. Other information
of f such as derivatives should be unknown to the algorithm.

For the purpose of theoretical analysis, given f 2 F , let
Mf and Mf be its known lower and upper bounds, respec-
tively. For a subset D ✓ X , let #D =

R
x2X

I[x 2 D] dx (or
#D =

P
x2X I[x 2 D] for finite discrete domains), where

I[·] is the indicator function. Define |D| = #D/#X and
thus |D| 2 [0, 1]. Let D↵ = {x 2 X | f(x)  ↵} for
↵ 2 [Mf ,Mf], and D✏ = {x 2 X | f(x) � f(x⇤

)  ✏}
for ✏ > 0.

A hypothesis (or a classifier) h is a function mapping
the solution space X to {�1,+1}. Let H ✓ {h : X !
{�1,+1}} be a hypothesis space consisting of candidate
hypotheses h. Let Dh = {x 2 X |h(x) = +1} for hy-
pothesis h 2 H, i.e., the positive class region represented by
h. Denote UX and UDh the uniform distribution over X and
Dh, respectively, and denote Th the distribution defined on
Dh induced by h. Let sign[v] be the sign function returning
1 if v � 0 and �1 otherwise.

A simplified classification-based optimization (Yu and
Qian 2014) is presented in Algorithm 1. It starts from a set
of uniformly generated solutions (line 1), and then a cycle
(lines 3 to 11) is followed. In each iteration, the algorithm
queries the objective function to assess the generated solu-
tions, and forms a binary classification data set Bt (line 4),
where a threshold ↵t is used to label the solutions as positive
and negative according to sign[↵t � f(x)]. In the classifica-
tion phase (line 7), a binary classifier is trained on Bt, in or-
der to approximate the region D↵t = {x 2 X | f(x)  ↵t}.
During the sampling step (line 8), solutions are generated
by invoking the Sampling sub-procedure. We specify the
Sampling(h,�) as that, it samples with probability � from
UDh (the uniform distribution over the positive region classi-
fied by h), and with the remaining probability from UX (the
uniform distribution over X). Throughout the procedure, the
best-so-far solutions are recorded (line 1 and line 11), and
the best one will be returned as the output solution (line 12).
Note that an efficient sampling from arbitrary region is non-

Algorithm 1 classification-based optimization
Input:

f : Objective function to be minimized;
C: A binary classification algorithm;
� 2 [0, 1]: Balancing parameter;
↵
1

> . . . > ↵T : Threshold for labeling;
T 2 N+: Number of iterations;
m 2 N+: Sample size in each iteration;
Sampling: Sampling sub-procedure.

Procedure:
1: Collect S

0

= {x
1

, . . . , xm} by i.i.d. sampling from UX

2: Let x̃ = argminx2S0
f(x)

3: for t = 1 to T do
4: Construct Bt = {(x

1

, y
1

), . . . , (xm, ym)},
where xi 2 St�1

and yi = sign[↵t � f(xi)]

5: Let St = ;
6: for i = 1 to m do
7: ht = C(Bt), where ht 2 H
8: xi = Sampling(ht,�), and let St = St [{xi}
9: end for

10: x̃ = argminx2St[{x̃} f(x)
11: end for
12: return x̃ and f(x̃)

trivial, such as the sampling in the Bayesian optimization
methods (Brochu, Cora, and De Freitas 2010). In our latter
proposed learning algorithm, the region will be a rectangle,
and thus the sampling is straightforward.

The simplicity of classification-based optimization admits
a general performance bound on the query complexity (Defi-
nition 1) (Yu and Qian 2014), which counts the total number
of calls to the objective function by an algorithm A before it
finds a solution that reaches the approximation level ✏, with
high probability.

DEFINITION 1 ((✏,�)-Query Complexity)
Given f 2 F , an algorithm A, 0 < � < 1 and ✏ > 0, the

(✏,�)-query complexity is the number of calls to f such that,

with probability at least 1 � �, A finds at least one solution

x̃ 2 X ✓ Rn
satisfying

f(x̃)� f(x⇤
)  ✏,

where f(x⇤
) = minx2X f(x).

Lemma 1 and Lemma 2 are simplified from (Yu and Qian
2014). In order to be self-contained, their proofs are included
in the appendix1. For the lemmas, let Dt = �UDht

+ (1 �
�)UX be the sampling distribution at iteration t, RDt de-
note the generalization error of ht 2 H with respect to the
target function under distribution Dt, and DKL denote the
Kullback-Leibler (KL) divergence between two probability
distributions. Combining the two lemmas results in a gen-
eral and explicit query complexity upper bound of any algo-
rithm following the classification-based optimization frame-
work for any f 2 F .

1The appendix presenting all the proofs can be found in the
webpage of the author http://cs.nju.edu.cn/yuy

The number of evaluations until an (additive) approximate solution
is found with a probability

Consider any functions F over compact solution spaces with bounded
value range

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical characterization

 be the area of the target solutions
 be the success probability by sampling from the model at
iteration t
 be the sample size required to have success probability

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

Given f ∈ F , 0 < δ < 1 and > 0, the (,δ)-query com-
plexity of a classification-based optimization algorithm is
upper bounded by

O max
1

(1− λ)|D |+ λPrh
ln

1

δ
,

T

t=1

mPrht
,

wherePrh = 1
T

T
t=1 Prht

We can bound the query complexity:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theoretical characterization

 be the area of the target solutions
 be the success probability by sampling from the model at
iteration t
 be the sample size required to have success probability

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

Given f ∈ F , 0 < δ < 1 and > 0, the (,δ)-query com-
plexity of a classification-based optimization algorithm is
upper bounded by

O max
1

(1− λ)|D |+ λPrh
ln

1

δ
,

T

t=1

mPrht
,

wherePrh = 1
T

T
t=1 Prht

We can bound the query complexity:

unknown due to unspecified
model learning

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification model

from positive and negative examples

classify the space into two classes:
{positive, negative}

positive

negative

RDt  ˆRDt +

r
8

m
(d log

2em

d
+ log

4

⌘
)

with bounded generalization error

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification-base optimization

Model: classifier
Sampling: uniformly from positive area
Update: learn a new classifier

new
solutionsmodel

ran
do
m

ini
tia

liz
ati

on

update

problem-independent
sampling

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification-base optimization

Model: classifier
Sampling: uniformly from positive area
Update: learn a new classifier

new
solutionsmodel

ran
do
m

ini
tia

liz
ati

on

update

problem-independent
sampling

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification-base optimization

Model: classifier
Sampling: uniformly from positive area
Update: learn a new classifier

new
solutionsmodel

ran
do
m

ini
tia

liz
ati

on

update

problem-independent
sampling

positive negative negativenegative negative

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification-base optimization

Model: classifier : bounded error
Sampling: uniformly from positive area
Update: learn a new classifier

new
solutionsmodel

ran
do
m

ini
tia

liz
ati

on

update

problem-independent
sampling

positive negative negativenegative negative

↵

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification-based optimization
Background

This paper considers the general minimization problems in
continuous and finite discrete domains. Let X denote a so-
lution space that is a compact subset of Rn, and f : X ! R
denote a minimization problem. Assume that there exist
x⇤, x0 2 X such that f(x⇤

) = minx2X f(x) and f(x0
) =

maxx2X f(x). Let F denote the set of all functions that sat-
isfy this assumption. Given f 2 F , the minimization prob-
lem is to find a solution x⇤ 2 X s.t. 8x 2 X : f(x⇤

) 
f(x). For derivative-free optimization algorithms, we as-
sume that only an objective function f 2 F is accessible
to the algorithm for evaluating solutions. Other information
of f such as derivatives should be unknown to the algorithm.

For the purpose of theoretical analysis, given f 2 F , let
Mf and Mf be its known lower and upper bounds, respec-
tively. For a subset D ✓ X , let #D =

R
x2X

I[x 2 D] dx (or
#D =

P
x2X I[x 2 D] for finite discrete domains), where

I[·] is the indicator function. Define |D| = #D/#X and
thus |D| 2 [0, 1]. Let D↵ = {x 2 X | f(x)  ↵} for
↵ 2 [Mf ,Mf], and D✏ = {x 2 X | f(x) � f(x⇤

)  ✏}
for ✏ > 0.

A hypothesis (or a classifier) h is a function mapping
the solution space X to {�1,+1}. Let H ✓ {h : X !
{�1,+1}} be a hypothesis space consisting of candidate
hypotheses h. Let Dh = {x 2 X |h(x) = +1} for hy-
pothesis h 2 H, i.e., the positive class region represented by
h. Denote UX and UDh the uniform distribution over X and
Dh, respectively, and denote Th the distribution defined on
Dh induced by h. Let sign[v] be the sign function returning
1 if v � 0 and �1 otherwise.

A simplified classification-based optimization (Yu and
Qian 2014) is presented in Algorithm 1. It starts from a set
of uniformly generated solutions (line 1), and then a cycle
(lines 3 to 11) is followed. In each iteration, the algorithm
queries the objective function to assess the generated solu-
tions, and forms a binary classification data set Bt (line 4),
where a threshold ↵t is used to label the solutions as positive
and negative according to sign[↵t � f(x)]. In the classifica-
tion phase (line 7), a binary classifier is trained on Bt, in or-
der to approximate the region D↵t = {x 2 X | f(x)  ↵t}.
During the sampling step (line 8), solutions are generated
by invoking the Sampling sub-procedure. We specify the
Sampling(h,�) as that, it samples with probability � from
UDh (the uniform distribution over the positive region classi-
fied by h), and with the remaining probability, from UX (the
uniform distribution over X). Throughout the procedure, the
best-so-far solutions are recorded (line 1 and line 10), and
the best one will be returned as the output solution (line 11).
Note that an efficient sampling from arbitrary region is non-
trivial, such as the sampling in the Bayesian optimization
methods (Brochu, Cora, and De Freitas 2010). In our latter
proposed learning algorithm, the region will be a rectangle,
and thus the sampling is straightforward.

The simplicity of classification-based optimization admits
a general performance bound on the query complexity (Defi-
nition 1) (Yu and Qian 2014), which counts the total number
of calls to the objective function by an algorithm A before it
finds a solution that reaches the approximation level ✏.

Algorithm 1 classification-based optimization
Input:

f : Objective function to be minimized;
C: A binary classification algorithm;
� 2 [0, 1]: Balancing parameter;
↵
1

> . . . > ↵T : Threshold for labeling;
T 2 N+: Number of iterations;
m 2 N+: Sampled size;
Sampling: Sampling subprocedure.

Procedure:
1: Collect S

0

= {x
1

, . . . , xm} by i.i.d. sampling from UX ;
2: let x̃ = argminx2S0

f(x);
3: for t = 1 to T do
4: Construct Bt = {(x

1

, y
1

), . . . , (xm, ym)},
where xi 2 St�1

and yi = sign[↵t � f(xi)]

5: Let St = ;
6: for i = 1 to m do
7: ht = C(Bt), where ht 2 H
8: xi = Sampling(ht,�), and let St = St [{xi}
9: end for

10: x̃ = argminx2St[{x̃} f(x)
11: end for
12: return x̃ and f(x̃)

DEFINITION 1 ((✏,�)-Query Complexity)
Given f 2 F , an algorithm A, 0 < � < 1 and ✏ > 0, the

(✏,�)-query complexity is the number of calls to f such that,

with probability at least 1 � �, A finds at least one solution

x̃ 2 X ✓ Rn
satisfying f(x̃) � f(x⇤

)  ✏, where f(x⇤
) =

minx2X f(x).

Lemma 1 and Lemma 2 are simplified from (Yu and Qian
2014). In order to be self-contained, their proofs are in-
cluded in the supplementary material. For the lemmas, let
Dt = �UDht

+ (1 � �)UX is the sampling distribution at
iteration t, RDt denote the generalization error of ht 2 H
with respect to the target function under distribution Dt,
and DKL denote the Kullback-Leibler (KL) divergence be-
tween two probability distributions. Combining the two lem-
mas results in a general and explicit query complexity upper
bound of any algorithm following the classification-based
optimization framework for any f 2 F .

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

Start with random solutions

Evaluate solutions
and prepare training data

Learn a classification model

Sample a new solution:

Record the best-so-far solution

Return the best-so-far solution

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theorem

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Theorem

LEMMA 1
Given f 2 F , 0 < � < 1 and ✏ > 0, the (✏,�)-query com-

plexity of a classification-based optimization algorithm is

upper bounded by

O

max

⇢
1

(1� �)|D✏|+ �Prh
ln

1

�
,

TX

t=1

mPrht

�!
,

where Prh =

1

T

PT
t=1

Prht =

1

T

PT
t=1

R
D✏

UDht
(x) dx

(or Prh =

1

T

PT
t=1

P
x2D✏

UDht
(x) for finite discrete

domains) is the average success probability of sampling

from the learned positive region of ht, and mPrht
is the

sample size required to realize the success probability Prht .

LEMMA 2
Given f 2 F , ✏ > 0, the average success probability of

sampling from the distributions induced by the learned hy-

potheses of any classification-based optimization algorithm

Prh is lower bounded by

Prh � 1

T

TX

t=1

|D✏|� 2

RDt

DKL(DtkUX)

|D↵t |+ RDt

DKL(DtkUX)

,

where

RDt

DKL(DtkUX)

= RDt +#X
q

1

2

DKL(DtkUX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
� = 0. Now, we only consider that 0 < �  1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |D✏|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f 2 F 0 ✓ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly(

1

✏ ,
1

� , n), i.e., f is ef-
ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller ✓ in-
dicates that they are more independent, and when ✓ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target ✓-Dependence)
The error-target dependence ✓ � 0 of a classification-based

optimization algorithm is its infimum such that, for any ✏ >
0 and any t,

|D✏| · |D↵t�Dht |� ✓|D✏|
 |D✏ \ (D↵t�Dht)|

 |D✏| · |D↵t�Dht |+ ✓|D✏|,
where the operator� is the symmetric difference of two sets

defined as A
1

�A
2

= (A
1

[A
2

)� (A
1

\A
2

). It character-

izes, when sampling a solution x from UX , the dependence

between the random variable that whether x 2 D↵t�Dht

and the random variable that whether x 2 D✏.

Definition 3 characterizes how large the positive region of
the classifier. The smaller � indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (�-Shrinking Rate)
The shrinking rate �> 0 of a classification-based optimiza-

tion algorithm is its infimum such that |Dht |  �|D↵t | for

all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f 2 F , 0 < � < 1 and ✏ > 0, if a classification-based

optimization algorithm has error-target ✓-dependence and �-

shrinking rate, its (✏,�)-query complexity is upper bounded

O

0

@ 1

|D✏|

(1� �) +

�

�T

TX

t=1

1�Q ·RDt � ✓

|D↵t |

!�1

ln

1

�

1

A ,

where Q = 1/(1� �).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target ✓-dependence and the �-shrinking
rate are two important factors. It can be observed that the
smaller ✓ and �, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ✓ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence ✓ < 1 and shrink-
ing rate � > 0. For finite discrete domains, we consider
X = {0, 1}n and let kx � ykH denote the Hamming dis-
tance between x, y 2 {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f 2 F , let x⇤

be a global minimum of f , for all

smaller θ the better: the classifier should be highly randomized
smaller γ the better: the learnt positive area should be small

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Corollaries

On local Lipschitz
continuous functions

x

⇤

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Corollaries

On local Lipschitz
continuous functions

x 2 X , if X = {0, 1}n, then there exist positive constants

�
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2

H  f(x)� f(x⇤
)  L

1

kx� x⇤k�1

H ;

if X is a compact continuous domains, then there exist posi-

tive constants �
1

,�
2

, L
1

, L
2

such that

L
2

kx� x⇤k�2
2

 f(x)� f(x⇤
)  L

1

kx� x⇤k�1
2

.

Let F�1,L1,�2,L2

L (✓ F) denote the function class that satis-

fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x⇤. Note that we can have
classification algorithms with the convergence rate of the
generalization error eO(

1

m) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
where m is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate e

⇥(

1

m).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f 2
F�1,L1,�2,L2

L , 0 < � < 1 and 0 < ✏  L
1

(

n
2

)

�1
, for a

classification-based optimization algorithm using a classi-

fication algorithm with convergence rate

e
⇥(

1

m), under the

conditions that error-target dependence ✓ < 1 and shrink-

ing rate � > 0, its (✏,�)-query complexity belongs to

poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

COROLLARY 2
In compact continuous domains X , given f 2 F�1,L1,�2,L2

L ,

0 < � < 1 and ✏ > 0, for a classification-based optimization

algorithm using a classification algorithm with convergence

rate

e
⇥(

1

m), under the conditions that error-target depen-

dence ✓ < 1 and shrinking rate � > 0, its (✏,�)-query com-

plexity belongs to poly(

1

✏ , n,
1

�1
,�

2

, lnL
1

, ln 1

L2
) · ln 1

� .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
⌘-Packing Number and ⌘-Covering Number (Definition 5).
Recall that D✏ = {x 2 X | f(x)�f(x⇤

)  ✏} for any ✏ > 0.
Let ↵0

t = ↵t � f(x⇤
) and we assume that ↵0

t > 0.

DEFINITION 5 (⌘-Packing Number and ⌘-Covering Num-
ber)
⌘-Packing Number is the largest Np � 0 such that, there ex-

ists C
1

> 0, for all ✏ > 0, the maximal number of disjoint

`
2

-balls of radius ⌘✏ contained in D✏ with center in D✏ is

not less than C
1

✏�Np
; ⌘-Covering Number is the smallest

Nc � 0 such that, there exists C
2

> 0, for all ✏ > 0, the

minimal number of `
2

-balls of radius ⌘✏ with center in X
covering D✏ is not larger than C

2

✏�Nc
.

COROLLARY 3
In compact continuous domains X , given f 2 F satisfyingPT

t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
, where Np and Nc are its ⌘-

Packing and ⌘-Covering numbers, respectively, 0 < � < 1

and ✏ > 0, for a classification-based optimization algorithm

using the classification algorithms with convergence rate

e
⇥(

1

m) , under the conditions that error-target dependence

✓ < 1 and shrinking rate � > 0, its (✏,�)-query complexity

belongs to poly(

1

✏ , n) · ln 1

� .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np  Nc. Because if we
let V (D✏) and V (⌘✏) denote the volume of D✏ and `

2

ball of radius ⌘✏ in Rn respectively, then it holds that
C

1

✏�Np · V (⌘✏)  V (D✏)  C
2

✏�Nc · V (⌘✏). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

PT
t=1

(↵0
t)

Nc�n 2 ⌦

�
✏Np�n

�
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold ↵t (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.

classification-based optimization is efficient for local Lipschitz functions

x

⇤

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification model design

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification model design

Considerations
1. a classifier with a
 samplable positive area

learn an axis-parallel region
Implementation:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification model design

Considerations:
1. a classifier with a
 samplable positive area
2. smaller θ -> less dependent

learn an axis-parallel region

with randomness

Implementation:

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification model design

Considerations:
1. a classifier with a
 samplable positive area
2. smaller θ -> less dependent
3. smaller γ -> small positive area

learn an axis-parallel region

with randomness
as small as possible

Implementation:

randomized coordinate shrinking classification (RACOS)

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Classification model design

Algorithm 2 The randomized coordinate shrinking classifi-
cation algorithm for X = {0, 1}n or [0, 1]n

Input:
t: Current iteration number;
Bt: Solution set in iteration t;
X: Solution space ({0, 1}n or [0, 1]n);
I: Index set of coordinates;
M 2 N+: Maximum number of uncertain coordinates.

Procedure:
1: B+

t = the positive solutions in Bt

2: B�
t = Bt �B+

t

3: Randomly select x
+

= (x(1)

+

, . . . , x(n)
+

) from B+

t
4: Let Dht = X , I = {1, . . . , n}
5: while 9x 2 B�

t s.t. ht(x) = +1 do
6: if X = {0, 1}n then
7: k = randomly selected index from the index set I
8: Dht = Dht �{x 2 X |x(k) 6= x(k)

+

}, I = I�{k}
9: end if

10: if X = [0, 1]n then
11: k = randomly selected index from the index set I
12: x�

= randomly selected solution from B�
t

13: if x(k)
+

� x(k)
� then

14: r = uniformly sampled value in (x(k)
� , x(k)

+

)

15: Dht = Dht � {x 2 X |x(k) < r}
16: else
17: r = uniformly sampled value in (x(k)

+

, x(k)
�)

18: Dht = Dht � {x 2 X |x(k) > r}
19: end if
20: end if
21: end while
22: while #I > M do
23: k = randomly selected index from the index set I
24: Dht = Dht � {x 2 X |x(k) 6= x(k)

+

}, I = I � {k}
25: end while
26: return ht

Experiments

We use the same fixed parameters for RACOS in all the
following experiments: in Algorithm 1 we set � = 0.95,
m = 100, and ↵t is set so that only the best solution is pos-
itive, and in Algorithm 2 we set M = 1.

On Testing Functions
We first empirically test RACOS on two benchmark testing
functions: the convex Sphere function defined as
f(x) =

Pn
i=1

(xi � 0.2)2,
and the highly non-convex Ackley function defined as

f(x) = �20e

⇣
� 1

5

p
1
n

Pn
i=1 (xi�0.2)2

⌘

�e(
1
n

Pn
i=1 cos 2⇡xi)

+ e+ 20.
The functions are minimized within the solution space X =

[0, 1]n, of which the minimum values are 0.
RACOS is compared with simultaneous optimistic op-

timization (SOO) algorithm (Munos 2011; 2014), ran-
dom embedding Bayesian optimization (REMBO) algo-
rithm (Wang et al. 2013), and covariance matrix adaptation
evolution strategy (CMA-ES) algorithm (Hansen, Müller,
and Koumoutsakos 2003), where the implementations are
by their authors. To study the scalability w.r.t. the solution
space dimensions n, we choose n be to 10, 100, 500, 1000,
and set the maximum number of function evaluations to be
30n for all algorithms. To study the convergence rate w.r.t.
the number of function evaluations, we choose n = 500, and
set the total number of function evaluations from 5⇥ 10

3 to
2 ⇥ 10

5 for the Sphere function and 5 ⇥ 10

3 to 5 ⇥ 10

4 for
the Ackley function. Each algorithm is repeated 30 times in-
dependently. The mean of the achieved objective values are
shown in Figure 1.

Figure 1 (a) and (b) show that RACOS has the lowest
growing rate as the dimension increases, indicating that
RACOS has a better scalability than the compared algo-
rithms; (c) and (d) show that RACOS reduces the objective
function value with the highest rate, indicating that it con-
verges consistently faster than the others.

On Clustering
We then study on a clustering task: consider clustering a
dataset V = {v

1

, . . . , vn} into two groups, {A
1

, A
2

}. A na-
ture solution space is the discrete domain X = {0, 1}n for
the bipartition. The optimization task is to minimize inter-
cluster similarity:
f(A

1

, A
2

) =

P
2

i
1

#Ai

P
p2Ai,q /2Ai

Wp,q over X ,
where Wp,q = exp (�kvp � vqk2

2

/�2

) is the similarity be-
tween vp and vq . This is also known as the RatioCut prob-
lem, and it is NP-hard.

RACOS is compared with unnormalized spectral cluster-
ing (USC) algorithm (Von Luxburg 2007) which is a clas-
sical approximate algorithm for the RatioCut problem, ge-

(a) on Sphere function (b) on Ackley function (c) on Sphere function (d) on Ackley function

Figure 1: Comparing the scalability with 30n evaluations in (a) & (b), and the convergence rate with n = 500 in (c) & (d).

learn an axis-
parallel region
with randomness

as small as possible

randomized coordinate shrinking
classification algorithm (RACOS)

for discrete domain

for continuous domain

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Experiments

RACOS: a classification-based optimization algorithm

SOO: a branch-and-bound algorithm
REMBO: a Bayesian optimization algorithm
CMAES: an evolutionary algorithm

test cases
clustering tasks
classification tasks

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On clustering

V = {v1, . . . , vn}clustering a dataset

f(A1, A2) =
2X

i

1

#Ai

X

p2Ai,q /2Ai

Wp,q

Wp,q = exp (�kvp � vqk22/�2
)similarity between two instances

normalized min-cut
(NP-hard)

solution: binary vector representing the bipartition

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On clustering

Table 1: Comparing the achieved objective values of the algorithms (mean ± standard derivation). In each column, an entry
is bolded if its mean value is the best (smallest); and an entry is marked with bullet if it is significantly worse than the best
algorithm by t-test with confidence level 5%. The last column counts the win/tie/loss of the algorithm to RACOS.

Algorithm Sonar Heart Ionosphere Breast Cancer German w/t/l to RACOS
USC 3.91±0.00• 79.67±0.00• 54.21±0.00• 200.62±0.00• 239.00±0.00• 0 / 0 / 5
GA 3.14±0.74 57.31±0.46 55.71±3.74• 189.52±1.26 205.61±1.80• 0 / 3 / 2
RLS 4.07±0.82• 58.81±0.45• 58.74±2.81• 192.63±1.62• 207.36±2.11• 0 / 0 / 5
UMDA 7.40±2.26• 58.76±1.02• 61.77±4.54• 193.58±3.56• 212.83±1.08• 0 / 0 / 5
CE 8.00±1.35• 58.75±1.39• 63.71±3.41• 188.76±3.77 209.57±1.96• 0 / 1 / 4
RACOS 2.88±0.63 57.45±0.89 50.01±2.80 187.55±3.01 192.11±2.51 - / - / -

(a) on Adult, s = �1 (b) on Adult, s = 0 (c) on USPS+N, s = �1 (d) on USPS+N, s = 0

Figure 2: Comparing the achieved objective function values against the parameter C of the classification with Ramp loss.

netic algorithm (GA) (Golberg 1989) (using the bit-wise
mutation with probability 1/n and one-bit crossover with
probability 0.5), randomized local search (RLS) (Neumann
and Wegener 2007), univariate marginal distribution algo-
rithm (UMDA) (Mühlenbein 1997) and cross-entropy (CE)
method (de Boer et al. 2005) with the recommended param-
eters in their references. Five binary UCI datasets (Blake,
Keogh, and Merz 1998) are employed: Sonar, Heart, Iono-
sphere, Breast Cancer and German, with 208, 270, 351, 683
and 1000 instances, respectively. All features are normalized
into [�1, 1]. We set the total number of calls to the objective
function of GA, RLS, UMDA, CE and RACOS to be 30n.
Each algorithm is repeated 30 times independently on each
dataset. Table 1 reports the achieved objective values.

Table 1 shows that, by t-test with confidence level 5%,
RACOS is never worse than the others, is always better than
USC, RLS, UMDA, and have significant wins to GA and
CE. The results imply that the performance of RACOS is not
only superior to the compared methods, but also stable.

On Classification with Ramp Loss
We finally study on a classification task with Ramp
loss (Collobert et al. 2006). The Ramp loss is defined as
Rs(z) = H

1

(z) � Hs(z) with s < 1, where Hs(z) =

max{0, s�z} is the Hinge loss with s being the Hinge point.
The task is to find a vector w and a scalar b to minimize
f(w, b) = 1

2

kwk2
2

+ C
PL

` Rs

�
y`(w>v` + b)

�
,

where v` is the training instance and y` 2 {�1,+1} is its
label. This objective function is similar to that of support
vector machines (SVM) (Vapnik 2000) but the loss function
of SVM is the Hinge loss. Due to the convexity of the Hinge
loss, the number of support vectors increases linearly with
the number of training instances in SVM, which is unde-

sired with respect to scalability. While this problem can be
relieved by using the Ramp loss (Collobert et al. 2006).

RACOS is compared with SOO, REMBO, CMA-ES, and
the concave-convex procedure (CCCP) (Yuille and Ran-
garajan 2001) which is a gradient-based non-convex op-
timization approach for objective functions that can be
decomposed into convex sub-function plus concave sub-
function. We employ two binary class UCI datasets, Adult
and USPS+N (0 v.s. rest), that are used in (Collobert et
al. 2006). The feature dimension of which are 123 and
256, respectively. All features are normalized into [0, 1] or
[�1, 1]. Since we focus on the optimization performance,
we compare the results on the training set. Since there are
two hyper-parameters in the optimization formulation, i.e.,
C and s, to study the effectiveness of RACOS under dif-
ferent hyper-parameters, we test s 2 {�1, 0} and C 2
{0.1, 0.5, 1, 2, 5, 10}. We set the total number of calls to the
objective function to be 40n for all algorithms except for
CCCP, while CCCP runs until it converges. Each algorithm
is repeated 30 times independently. The achieved objective
values are reported in Figure 2.

As shown in Figure 2, compared with SOO, REMBO,
and CMA-ES, RACOS has the best performance in all situa-
tions. Notice that the smaller the C is, the closer the objec-
tive function is to convexity, therefore, the optimization dif-
ficulty increases with C. On USPS+N, we can observe that
CCCP has the best performance when the objective func-
tion is very close to convexity (C is very small), since it is
a gradient-based method. However, CCCP does not fit well
to high non-convexity. It can be further observed that the ad-
vantage of RACOS increases as C increases in all situations.
This implies that RACOS is suitable for complex tasks.

results with 30n evaluations
repeat 30 times independently
t-test with confidence level 5%

data sets: Sonar, Heart, Ionosphere, Breast Cancer, German
instances: 208, 270, 351, 683,
1000

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On classification with Ramp loss

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On classification with Ramp loss

f(w, b) =
1

2

kwk22 + C
LX

`

max{0, 1� y`(w
>v` + b)}

the loss function for linear SVM

1

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On classification with Ramp loss

f(w, b) =
1

2

kwk22 + C
LX

`

max{0, 1� y`(w
>v` + b)}

the loss function for linear SVM

1

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On classification with Ramp loss

f(w, b) =
1

2

kwk22 + C
LX

`

max{0, 1� y`(w
>v` + b)}

the loss function for linear SVM

1

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On classification with Ramp loss

f(w, b) =
1

2

kwk22 + C
LX

`

max{0, 1� y`(w
>v` + b)}

the loss function for linear SVM

the loss function using Ramp loss

f(w, b) =
1

2

kwk22

+ C
LX

`

⇣
max{0, 1� y`(w

>v` + b)}�max{0, s� y`(w
>v` + b)}

⌘

1s

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On classification with Ramp loss

f(w, b) =
1

2

kwk22 + C
LX

`

max{0, 1� y`(w
>v` + b)}

the loss function for linear SVM

the loss function using Ramp loss

f(w, b) =
1

2

kwk22

+ C
LX

`

⇣
max{0, 1� y`(w

>v` + b)}�max{0, s� y`(w
>v` + b)}

⌘

1s

previous solution: CCCP[Yuille and Rangarajan, NIPS’01]

• relax the concave part to be linear
• gradient decent

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On classification with Ramp loss

Table 1: Comparing the achieved objective values of the algorithms (mean ± standard derivation). In each column, an entry
is bolded if its mean value is the best (smallest); and an entry is marked with bullet if it is significantly worse than the best
algorithm by t-test with confidence level 5%. The last column counts the win/tie/loss of the algorithm to RACOS.

Algorithm Sonar Heart Ionosphere Breast Cancer German w/t/l to RACOS
USC 3.91±0.00• 79.67±0.00• 54.21±0.00• 200.62±0.00• 239.00±0.00• 0 / 0 / 5
GA 3.14±0.74 57.31±0.46 55.71±3.74• 189.52±1.26 205.61±1.80• 0 / 3 / 2
RLS 4.07±0.82• 58.81±0.45• 58.74±2.81• 192.63±1.62• 207.36±2.11• 0 / 0 / 5
UMDA 7.40±2.26• 58.76±1.02• 61.77±4.54• 193.58±3.56• 212.83±1.08• 0 / 0 / 5
CE 8.00±1.35• 58.75±1.39• 63.71±3.41• 188.76±3.77 209.57±1.96• 0 / 1 / 4
RACOS 2.88±0.63 57.45±0.89 50.01±2.80 187.55±3.01 192.11±2.51 - / - / -

0 2 4 6 8 100

0.5

0. 1

1.5

2.0

2.5

C

SOO
REMBO
CMA-ES
CCCP
RACOS

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

x 105

(a) on Adult, s = �1

0 2 4 6 8 100
0. 1

2.0
0. 3

4.0
5.0
6.0
7.0
8.0
9.0

C

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

x 104

SOO
REMBO
CMA-ES
CCCP
RACOS

(b) on Adult, s = 0 (c) on USPS+N, s = �1
(d) on USPS+N, s = 0

Figure 2: Comparing the achieved objective function values against the parameter C of the classification with Ramp loss.

netic algorithm (GA) (Golberg 1989) (using the bit-wise
mutation with probability 1/n and one-bit crossover with
probability 0.5), randomized local search (RLS) (Neumann
and Wegener 2007), univariate marginal distribution algo-
rithm (UMDA) (Mühlenbein 1997) and cross-entropy (CE)
method (de Boer et al. 2005) with the recommended param-
eters in their references. Five binary UCI datasets (Blake,
Keogh, and Merz 1998) are employed: Sonar, Heart, Iono-
sphere, Breast Cancer and German, with 208, 270, 351, 683
and 1000 instances, respectively. All features are normalized
into [�1, 1]. We set the total number of calls to the objective
function of GA, RLS, UMDA, CE and RACOS to be 30n.
Each algorithm is repeated 30 times independently on each
dataset. Table 1 reports the achieved objective values.

Table 1 shows that, by t-test with confidence level 5%,
RACOS is never worse than the others, is always better than
USC, RLS, UMDA, and have significant wins to GA and
CE. The results imply that the performance of RACOS is not
only superior to the compared methods, but also stable.

On Classification with Ramp Loss
We finally study on a classification task with Ramp
loss (Collobert et al. 2006). The Ramp loss is defined as
Rs(z) = H

1

(z) � Hs(z) with s < 1, where Hs(z) =

max{0, s�z} is the Hinge loss with s being the Hinge point.
The task is to find a vector w and a scalar b to minimize
f(w, b) = 1

2

kwk2
2

+ C
PL

` Rs

�
y`(w>v` + b)

�
,

where v` is the training instance and y` 2 {�1,+1} is its
label. This objective function is similar to that of support
vector machines (SVM) (Vapnik 2000) but the loss function
of SVM is the Hinge loss. Due to the convexity of the Hinge
loss, the number of support vectors increases linearly with
the number of training instances in SVM, which is unde-

sired with respect to scalability. While this problem can be
relieved by using the Ramp loss (Collobert et al. 2006).

RACOS is compared with SOO, REMBO, CMA-ES, and
the concave-convex procedure (CCCP) (Yuille and Ran-
garajan 2001) which is a gradient-based non-convex op-
timization approach for objective functions that can be
decomposed into convex sub-function plus concave sub-
function. We employ two binary class UCI datasets, Adult
and USPS+N (0 v.s. rest), that are used in (Collobert et
al. 2006). The feature dimension of which are 123 and
256, respectively. All features are normalized into [0, 1] or
[�1, 1]. Since we focus on the optimization performance,
we compare the results on the training set. Since there are
two hyper-parameters in the optimization formulation, i.e.,
C and s, to study the effectiveness of RACOS under dif-
ferent hyper-parameters, we test s 2 {�1, 0} and C 2
{0.1, 0.5, 1, 2, 5, 10}. We set the total number of calls to the
objective function to be 40n for all algorithms except for
CCCP, while CCCP runs until it converges. Each algorithm
is repeated 30 times independently. The achieved objective
values are reported in Figure 2.

As shown in Figure 2, compared with SOO, REMBO,
and CMA-ES, RACOS has the best performance in all situa-
tions. Notice that the smaller the C is, the closer the objec-
tive function is to convexity, therefore, the optimization dif-
ficulty increases with C. On USPS+N, we can observe that
CCCP has the best performance when the objective func-
tion is very close to convexity (C is very small), since it is
a gradient-based method. However, CCCP does not fit well
to high non-convexity. It can be further observed that the ad-
vantage of RACOS increases as C increases in all situations.
This implies that RACOS is suitable for complex tasks.

Table 1: Comparing the achieved objective values of the algorithms (mean ± standard derivation). In each column, an entry
is bolded if its mean value is the best (smallest); and an entry is marked with bullet if it is significantly worse than the best
algorithm by t-test with confidence level 5%. The last column counts the win/tie/loss of the algorithm to RACOS.

Algorithm Sonar Heart Ionosphere Breast Cancer German w/t/l to RACOS
USC 3.91±0.00• 79.67±0.00• 54.21±0.00• 200.62±0.00• 239.00±0.00• 0 / 0 / 5
GA 3.14±0.74 57.31±0.46 55.71±3.74• 189.52±1.26 205.61±1.80• 0 / 3 / 2
RLS 4.07±0.82• 58.81±0.45• 58.74±2.81• 192.63±1.62• 207.36±2.11• 0 / 0 / 5
UMDA 7.40±2.26• 58.76±1.02• 61.77±4.54• 193.58±3.56• 212.83±1.08• 0 / 0 / 5
CE 8.00±1.35• 58.75±1.39• 63.71±3.41• 188.76±3.77 209.57±1.96• 0 / 1 / 4
RACOS 2.88±0.63 57.45±0.89 50.01±2.80 187.55±3.01 192.11±2.51 - / - / -

(a) on Adult, s = �1 (b) on Adult, s = 0

0 2 4 6 8 100

0.5

0. 1

1.5

0. 2

C

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

x 104

SOO
REMBO
CMA-ES
CCCP
RACOS

(c) on USPS+N, s = �1

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1.0

1.2

C

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

x 104

SOO
REMBO
CMA-ES
CCCP
RACOS

(d) on USPS+N, s = 0

Figure 2: Comparing the achieved objective function values against the parameter C of the classification with Ramp loss.

netic algorithm (GA) (Golberg 1989) (using the bit-wise
mutation with probability 1/n and one-bit crossover with
probability 0.5), randomized local search (RLS) (Neumann
and Wegener 2007), univariate marginal distribution algo-
rithm (UMDA) (Mühlenbein 1997) and cross-entropy (CE)
method (de Boer et al. 2005) with the recommended param-
eters in their references. Five binary UCI datasets (Blake,
Keogh, and Merz 1998) are employed: Sonar, Heart, Iono-
sphere, Breast Cancer and German, with 208, 270, 351, 683
and 1000 instances, respectively. All features are normalized
into [�1, 1]. We set the total number of calls to the objective
function of GA, RLS, UMDA, CE and RACOS to be 30n.
Each algorithm is repeated 30 times independently on each
dataset. Table 1 reports the achieved objective values.

Table 1 shows that, by t-test with confidence level 5%,
RACOS is never worse than the others, is always better than
USC, RLS, UMDA, and have significant wins to GA and
CE. The results imply that the performance of RACOS is not
only superior to the compared methods, but also stable.

On Classification with Ramp Loss
We finally study on a classification task with Ramp
loss (Collobert et al. 2006). The Ramp loss is defined as
Rs(z) = H

1

(z) � Hs(z) with s < 1, where Hs(z) =

max{0, s�z} is the Hinge loss with s being the Hinge point.
The task is to find a vector w and a scalar b to minimize
f(w, b) = 1

2

kwk2
2

+ C
PL

` Rs

�
y`(w>v` + b)

�
,

where v` is the training instance and y` 2 {�1,+1} is its
label. This objective function is similar to that of support
vector machines (SVM) (Vapnik 2000) but the loss function
of SVM is the Hinge loss. Due to the convexity of the Hinge
loss, the number of support vectors increases linearly with
the number of training instances in SVM, which is unde-

sired with respect to scalability. While this problem can be
relieved by using the Ramp loss (Collobert et al. 2006).

RACOS is compared with SOO, REMBO, CMA-ES, and
the concave-convex procedure (CCCP) (Yuille and Ran-
garajan 2001) which is a gradient-based non-convex op-
timization approach for objective functions that can be
decomposed into convex sub-function plus concave sub-
function. We employ two binary class UCI datasets, Adult
and USPS+N (0 v.s. rest), that are used in (Collobert et
al. 2006). The feature dimension of which are 123 and
256, respectively. All features are normalized into [0, 1] or
[�1, 1]. Since we focus on the optimization performance,
we compare the results on the training set. Since there are
two hyper-parameters in the optimization formulation, i.e.,
C and s, to study the effectiveness of RACOS under dif-
ferent hyper-parameters, we test s 2 {�1, 0} and C 2
{0.1, 0.5, 1, 2, 5, 10}. We set the total number of calls to the
objective function to be 40n for all algorithms except for
CCCP, while CCCP runs until it converges. Each algorithm
is repeated 30 times independently. The achieved objective
values are reported in Figure 2.

As shown in Figure 2, compared with SOO, REMBO,
and CMA-ES, RACOS has the best performance in all situa-
tions. Notice that the smaller the C is, the closer the objec-
tive function is to convexity, therefore, the optimization dif-
ficulty increases with C. On USPS+N, we can observe that
CCCP has the best performance when the objective func-
tion is very close to convexity (C is very small), since it is
a gradient-based method. However, CCCP does not fit well
to high non-convexity. It can be further observed that the ad-
vantage of RACOS increases as C increases in all situations.
This implies that RACOS is suitable for complex tasks.

n=124

n=257

with 40n evaluations

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Extension 1: High-dimensional optimization

high-dim

>=1000

low-dim

~100

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Extension 1: High-dimensional optimization

high-dim

>=1000

low-dim

~100

derivative-free optimization methods are hard to scale:
too slow to calculate in high-dimensions
too slow to converge in high-dimensions

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

high-dim in ML

10 billion

Extension 1: High-dimensional optimization

high-dim

>=1000

low-dim

~100

derivative-free optimization methods are hard to scale:
too slow to calculate in high-dimensions
too slow to converge in high-dimensions

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

high-dim in ML

10 billion

Extension 1: High-dimensional optimization

high-dim

>=1000

low-dim

~100

single machine

>1 million
linear model

derivative-free optimization methods are hard to scale:
too slow to calculate in high-dimensions
too slow to converge in high-dimensions

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Random embedding

min
x2X

f(x)X ✓ RD

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Random embedding

min
x2X

f(x)

Y ✓ Rd

X ✓ RD

separate the search space and the evaluation space

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Random embedding

min
x2X

f(x)
x

yY ✓ Rd

X ✓ RD

separate the search space and the evaluation space

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Random embedding

min
x2X

f(x)
x

yY ✓ Rd

X ✓ RD

d
D

A =

separate the search space and the evaluation space

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Random embedding

min
x2X

f(x)
x

yY ✓ Rd

X ✓ RD

d
D

A =
each element is randomly sampled
from, e.g., a Gaussian distribution

separate the search space and the evaluation space

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Random embedding

min
x2X

f(x)
x

yY ✓ Rd

X ✓ RD

d
D

A =

min
y2Y

f(Ay)

each element is randomly sampled
from, e.g., a Gaussian distribution

separate the search space and the evaluation space

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Problems with a low effective dimension

Effective dimension:

after some linear rotation

A function f : RD ! R is said to have effective dimension de with de < D, if

there exists a linear subspace V ✓ RD
with dimension de such that for all x 2

RD
, we have f(x) = f(xe + xc) = f(xe), where xe 2 V ✓ RD

, xc 2 V? ✓ RD

and V?
denotes the orthogonal complement of V . [Wang et al., IJCAI’13]

dim1 dim2 dim3 dim4 dim5 ...

ef
fe

ct
iv
en

es
s

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

RE + low effective dimension

Given a function f : RD ! R with effective dimension de, and a random ma-

trix A 2 RD⇥d
with independent entries sampled from N where d � de,

then, with probability 1, for any x 2 RD
, there exists a y 2 Rd

such that

f(x) = f(Ay).

the optimal solution is not out of the search space

9y⇤ 2 Rd such that f(Ay

⇤) = f(x⇤)

[Wang et al., IJCAI’13]

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Random embedding is good for problems with low
effective dimensions

What if a problem has no low effective dimension ?

dim1 dim2 dim3 dim4 dim5 ...

ef
fe

ct
iv
en

es
s

dim1 dim2 dim3 dim4 dim5 ...

ef
fe

ct
iv
en

es
s

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Extend the problems

effective dimension -> ε-effective dimension

after some linear rotation

For any " > 0, a function f : RD ! R is said to have an "-effective subspace

V", if there exists a linear subspace V" ✓ RD
s.t. for all x 2 RD

, we have

|f(x) � f(x")|  ", where x" 2 V" is the orthogonal projection of x onto V".

Let V" denote the collection of all the "-effective subspaces of f , and dim(V)
denote the dimension of a linear subspace V .

We define the optimal "-effective dimension of f as d" = minV"2V" dim(V").

dim1 dim2 dim3 dim4 dim5 ...

ef
fe

ct
iv
en

es
s

✏

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

RE revisit

The embedding gap:
Given a function f : RD ! R with optimal "-effective dimension d", and any

random matrix A 2 RD⇥d
(d � d") with independent entries sampled from

N , then, with probability 1, for any x 2 RD
, there exists y 2 Rd

such that

|f(x)� f(Ay)|  2"

Random embedding can be applied !

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

RE revisit

The embedding gap:
Given a function f : RD ! R with optimal "-effective dimension d", and any

random matrix A 2 RD⇥d
(d � d") with independent entries sampled from

N , then, with probability 1, for any x 2 RD
, there exists y 2 Rd

such that

|f(x)� f(Ay)|  2"

This gap cannot be compensated by optimization

f(Aỹ)� f(x⇤) = f(Aỹ)� inf
y2Rd

f(Ay) + inf
y2Rd

f(Ay)� f(x⇤)

 ✓ + 2✏

optimization gap + embedding gap

Random embedding can be applied !

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Sequential random embedding (SRE)

x = Ay = A

(1)
y1 +A

(2)
y2 +A

(3)
y3 . . .

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Sequential random embedding (SRE)

http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/28

� To improve the simple regret
z reduce the embedding gap while keeping the approximation gap almost

unaffected

� Optimization with Sequential Random Embeddings (SRE)
z Firstly, generate a random matrix , solve with

some derivative-free method. Let and ;
z Secondly, generate a random matrix , solve .

Update the current solution ;
z In the following steps, it acts like the second step that performs the

optimization.

� The intuition of working principles behind SRE

Each step could reduce the residue between the current solution and the
optimal solution in the random subspace.

4. Our Work: Optimization with SRE

Sequential random embedding

x = Ay = A

(1)
y1 +A

(2)
y2 +A

(3)
y3 . . .

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Sequential random embedding (SRE)
http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/30

� Theoretical property of SRE
z Assumption 1: functions with optimal -effective dimension

z Assumption 2: Local Holder Continuity

z Assumption 3:

SRE could reduce the embedding gap strictly in each step.

Since approximation gap is almost unaffected, SRE could
improve the simple regret in each step.

4. Our Work: Optimization with SRE

is the orthonormal projection of onto the subspace

Theoretical property:

kx⇤ � x̃ik > kx⇤ � x̃i+1k

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Experiments
http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/

5. Our Work: Empirical Study

31

� On two optimization testing functions
z Sphere function and Ackley function:10-dim

z they are embedded in a D-dimensional space with optimal value 0

z set

z compared methods:
� Random Search, CMAES, RACOS

� RE-IMGPO, RE-CMAES, RE-RACOS

� SRE-IMGPO, SRE-CMAES, SRE-RACOS

http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/

5. Our Work: Empirical Study

31

� On two optimization testing functions
z Sphere function and Ackley function:10-dim

z they are embedded in a D-dimensional space with optimal value 0

z set

z compared methods:
� Random Search, CMAES, RACOS

� RE-IMGPO, RE-CMAES, RE-RACOS

� SRE-IMGPO, SRE-CMAES, SRE-RACOS

Synthetic functions: extend to high-dim by adding variables with small
effect

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

On scalability over D
http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/

5. Our Work: Empirical Study

34

� On two optimization testing functions
z on scalability

minimized within the solution space X = [�1, 1]D. We set
Y = [�1, 1]d,↵ 2 [�1, 1]. Each algorithm is run 30 times
independently, and the average performance is reported.
On the number of random embeddings m. We first study
the effect of SRE iteration number m, i.e., the number of se-
quential random embeddings. We choose D = 10000, set the
total number of function evaluations n = 10000 and the sub-
space size d = 10, and choose the number of sequential ran-
dom embeddings m = {1, 2, 5, 8, 10, 20}. When m = 1, al-
gorithms with SRE degenerate into algorithms with RE. The
achieved objective function values are shown in Figure 1.

� � �� �� ��
1XPEHU�RI�UDQGRP�HPEHGGLQJV�P

�

���

���

���

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H 65(�,0*32

65(�&0$(6
65(�5$&26

(a) on Sphere function

� � �� �� ��
�1XPEHU�RI�UDQGRP�HPEHGGLQJV�P

�

���

�

���

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H 65(�,0*32�

65(�&0$(6�
65(�5$&26

(b) on Ackley function

Figure 1: On the effect of the number of random embeddings
m.

Figure 1 (a) and (b) show that, if the total number of func-
tion evaluations is fixed, we should choose a compromised
value for m. Because if m is large then the budget for each
step of SRE is limited, and if m is small then the steps in SRE
is limited, and both of them can lead to unsatisfied optimiza-
tion performance.
On subspace dimension d. To study how low-dimensional
size d affects optimization performance, we only adopt the
algorithms with SRE (SRE-IMGPO, SRE-CMAES, SRE-
RACOS). We choose D = 10000, set the total num-
ber of function evaluations n = 10000, choose d =

{1, 5, 8, 10, 12, 15, 20}, and set the number of sequential ran-
dom embeddings m = 5. The achieved objective function
values are shown in Figure 2.

� � �� �� ��
6XEVSDFH�GLPHQVLRQ�G

�

���

���

���

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H 65(�,0*32�

65(�&0$(6�
65(�5$&26

(a) on Sphere function

� � �� �� ��
6XEVSDFH�GLPHQVLRQ�G

�

���

�

���

�

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H 65(�,0*32�

65(�&0$(6�
65(�5$&26

(b) on Ackley function

Figure 2: On the effect of the subspace dimension d.

Figure 2 (a) and (b) show that, for algorithms with SRE, in
most cases the closer the d to d" the better the optimization
performance, indicating that a good estimate of the optimal
"-effective dimension is desirable. Besides, we can observe
that, even if d < d" = 10 but close to d", the performances
of algorithms with SRE are still satisfied.
On scalability. We then study the scalability w.r.t.
the solution space dimensions D, we choose D =

{100, 500, 1000, 5000, 10000}, set the total number of func-
tion evaluations n = 10000 for all algorithms, set d = 10 for
algorithms with RE and SRE, and set the number of sequen-
tial random embeddings m = 5 for algorithms with SRE. The
achieved objective function values are shown in Figure 3.

65(�,0*32�
65(�&0$(6�
65(�5$&26�

5DQGRP�VHDUFK�
&0$(6�
5$&26

5(�,0*32�
5(�&0$(6�
5(�5$&26

��� �������
�

����

���

����

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H

���
���

���

���

���

�

'LPHQVLRQ�'

(a) on Sphere function

��� �������
�

���

���

���

���

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H

�

���

�

���

�

'LPHQVLRQ�'

(b) on Ackley function

Figure 3: Comparing the scalability with n = 10000 function
evaluations.

Figure 3 (a) and (b) show that the algorithms with SRE
have the lowest growing rate, while the algorithms without
RE have the highest growing rate as the dimension increases,
indicating that SRE can scale the derivative-free algorithms
to high-dimensional problems better than the compared algo-
rithms.
On convergence rate. To study the convergence rate w.r.t.
the number of function evaluations, we set D = 10000,
and set the total number of function evaluations n =

{2000, 4000, 6000, 8000, 10000}, set low-dimensional size
d = 10 for RE as well as SRE, and set m = 5 for SRE. The
achieved objective function values are shown in Figure 4.

���� ���� ���� ���� �����
1XPEHU�RI�IXQFWLRQ�HYDOXDWLRQV

����

���

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H

(a) on Sphere function

���� ���� ���� ���� �����
1XPEHU�RI�IXQFWLRQ�HYDOXDWLRQV

����

���

2
EM
HF
WLY
H�
IX
QF
WLR
Q�
YD
OX
H

(b) on Ackley function

Figure 4: Comparing the convergence rate with D = 10000.
The Y-axis is in log-scale. The legend is shared with Figure 3.

Figure 4 (a) and (b) show that, in most cases, algorithms
with SRE reduce the objective function value with the highest
rate, while the algorithms without RE reduce the objective
function value with the lowest rate, indicating that algorithms
with SRE converge faster in general than the others.

On Classification with Ramp Loss
We finally study on a classification task with Ramp loss [Col-
lobert et al., 2006]. The Ramp loss is defined as Rs(z) =

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Applications in classification

f(w, b) =
1

2

kwk22 + C
LX

`

max{0, 1� y`(w
>v` + b)}

the loss function for linear SVM

1s

previous solution: CCCP[Yuille and Rangarajan, NIPS’01]

• relax the concave part to be linear
• gradient decent

the loss function using Ramp loss

f(w, b) =
1

2

kwk22

+ C
LX

`

⇣
max{0, 1� y`(w

>v` + b)}�max{0, s� y`(w
>v` + b)}

⌘

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Results
http://lamda.nju.edu.cn

http://lamda.nju.edu.cn/qianh/

5. Our Work: Empirical Study

38

� On classification with Ramp loss

D=10,000 D=5,000 D=20,000 D=100,000

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

References for classification-based optimization

•Yang Yu, Hong Qian, and Yi-Qi Hu. Derivative-free optimization via classification.
In: Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI'16), Phoenix, AZ, 2016.

•Hong Qian, Yang Yu. Scaling simultaneous optimistic optimization for high-
dimensional non-convex functions with low effective dimensions. In: Proceedings
of the 30th AAAI Conference on Artificial Intelligence (AAAI'16), Phoenix,
AZ, 2016.

•Hong Qian, Yi-Qi Hu and Yang Yu. Derivative-free optimization of high-dimensional
non-convex functions by sequential random embeddings. In: Proceedings of the
24th International Joint Conference on Artificial Intelligence (IJCAI'16),
New York, NY, 2016.

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

Conclusion

Subset selection problem
and Pareto optimization

Local Lipschitz continuous problem
and classification-based optimization

‣ can be shown to be the currently best approximation algo.
‣ extension: parallel version
‣ useful in ensemble selection, sparse regression, etc.

‣ shown to be efficient for local Lipschitz continuous problems
‣ extension: high-dimensional optimization
‣ extension: sequential optimization (unpublished)
‣ useful in robust classification, reinforcement learning, etc.

CIS-Webminar: Yang Yu, Towards Evolutionary Approximate Optimization for Machine Learning .nju.edu.cn

yuy@nju.edu.cn
http://cs.nju.edu.cn/yuy

THANK YOU!

mailto:yuy@nju.edu.cn
mailto:yuy@nju.edu.cn

