

Artificial Intelligence, CS, Nanjing University Spring, 2015, Yang Yu

# Lecture 10: Uncertainty 1

http://cs.nju.edu.cn/yuy/course\_ai15.ashx



#### Previously...



#### Search

Path-based search Iterative improvement search

Logic

Propositional Logic First Order Logic (FOL)



### Probability

#### Uncertianty



Let action  $A_t$  = leave for airport t minutes before flight Will  $A_t$  get me there on time?

Problems:

1) partial observability (road state, other drivers' plans, etc.)

- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

1) risks falsehood: " $A_{25}$  will get me there on time"

or 2) leads to conclusions that are too weak for decision making:

" $A_{25}$  will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)$ 

# Methods for handling uncertainty



Default or nonmonotonic logic:

Assume my car does not have a flat tire

Assume  $A_{25}$  works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

#### Rules with fudge factors:

 $A_{25} \mapsto_{0.3} AtAirportOnTime$   $Sprinkler \mapsto_{0.99} WetGrass$  $WetGrass \mapsto_{0.7} Rain$ 

Issues: Problems with combination, e.g., Sprinkler causes Rain??

#### Probability

Given the available evidence,

 $A_{25}$  will get me there on time with probability 0.04 Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

# Probability



Probabilistic assertions summarize effects of

laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

#### Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge e.g.,  $P(A_{25}|{\rm no\ reported\ accidents})=0.06$ 

These are **not** claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence: e.g.,  $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$ 

(Analogous to logical entailment status  $KB \models \alpha$ , not truth.)

#### Making decisions under uncertainty

Suppose I believe the following:

 $P(A_{25} \text{ gets me there on time}|...) = 0.04$  $P(A_{90} \text{ gets me there on time}|...) = 0.70$  $P(A_{120} \text{ gets me there on time}|...) = 0.95$  $P(A_{1440} \text{ gets me there on time}|...) = 0.9999$ 

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc. Utility theory is used to represent and infer preferences Decision theory = utility theory + probability theory



### **Probability basics**

Begin with a set  $\Omega$ —the sample space e.g., 6 possible rolls of a die.  $\omega \in \Omega$  is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment  $P(\omega)$  for every  $\omega \in \Omega$  s.t.

$$\begin{array}{l} 0 \leq P(\omega) \leq 1 \\ \Sigma_{\omega} P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6 \end{array}$$

An event A is any subset of  $\Omega$ 

 $P(A) = \sum_{\{\omega \in A\}} P(\omega)$ 

E.g., P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2



#### Random variables



A random variable is a function from sample points to some range, e.g., the reals or Booleans

e.g., Odd(1) = true.

P induces a probability distribution for any r.v. X:

 $P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$ 

e.g., P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

#### Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B: event  $a = \text{set of sample points where } A(\omega) = true$ event  $\neg a = \text{set of sample points where } A(\omega) = false$ event  $a \wedge b = \text{points where } A(\omega) = true$  and  $B(\omega) = true$ 

Often in AI applications, the sample points are **defined** by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

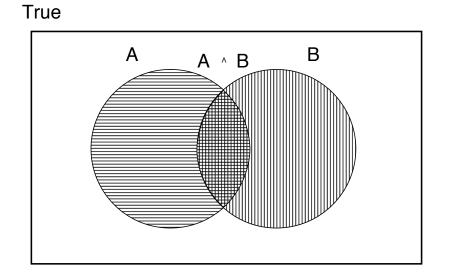
With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or  $a \land \neg b$ . Proposition = disjunction of atomic events in which it is true e.g.,  $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$  $\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$ 



# Why use probability?

The definitions imply that certain logically related events must have related probabilities

 $\mathsf{E.g.,}\ P(a \lor b) = P(a) + P(b) - P(a \land b)$ 



de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

# Syntax for propositions



Propositional or Boolean random variables e.g., *Cavity* (do I have a cavity?) *Cavity* = *true* is a proposition, also written *cavity* 

Discrete random variables (finite or infinite) e.g., Weather is one of  $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

#### Prior probability

Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:  $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$  (normalized, i.e., sums to 1)

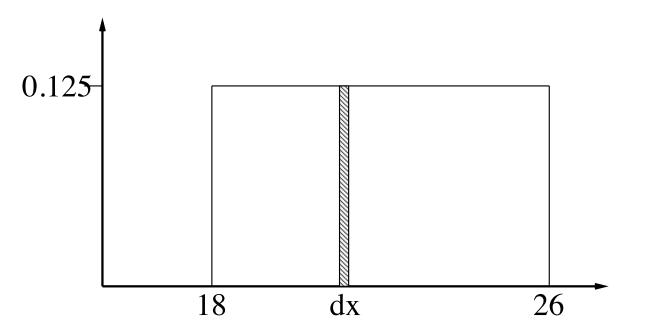
Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)  $\mathbf{P}(Weather, Cavity) = a \ 4 \times 2$  matrix of values:

| Weather =      | sunny | rain | cloudy | snow |
|----------------|-------|------|--------|------|
| Cavity = true  | 0.144 | 0.02 | 0.016  | 0.02 |
| Cavity = false | 0.576 | 0.08 | 0.064  | 0.08 |

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

#### Probability for continuous variables

Express distribution as a parameterized function of value: P(X = x) = U[18, 26](x) = uniform density between 18 and 26



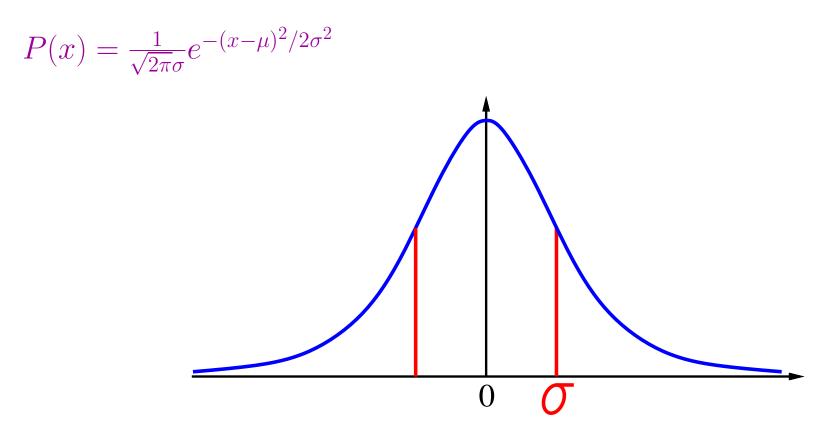
Here P is a density; integrates to 1. P(X = 20.5) = 0.125 really means

 $\lim_{dx \to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$ 



#### Gaussian density





# **Conditional probability**

Conditional or posterior probabilities e.g., P(cavity|toothache) = 0.8i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

(Notation for conditional distributions:

 $\mathbf{P}(Cavity|Toothache) = 2$ -element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1Note: the less specific belief **remains valid** after more evidence arrives, but is not always **useful** 

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8This kind of inference, sanctioned by domain knowledge, is crucial



# **Conditional probability**

Definition of conditional probability:

 $P(a|b) = \frac{P(a \wedge b)}{P(b)} \text{ if } P(b) \neq 0$ 

Product rule gives an alternative formulation:  $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$ 

A general version holds for whole distributions, e.g.,  $\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$ (View as a 4 × 2 set of equations, **not** matrix mult.)

Chain rule is derived by successive application of product rule:  $\mathbf{P}(X_1, \dots, X_n) = \mathbf{P}(X_1, \dots, X_{n-1}) \ \mathbf{P}(X_n | X_1, \dots, X_{n-1})$   $= \mathbf{P}(X_1, \dots, X_{n-2}) \ \mathbf{P}(X_{n_1} | X_1, \dots, X_{n-2}) \ \mathbf{P}(X_n | X_1, \dots, X_{n-1})$   $= \dots$   $= \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1})$ 





Start with the joint distribution:

|               | toothache |              | ¬ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |

For any proposition  $\phi,$  sum the atomic events where it is true:  $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$ 



Start with the joint distribution:

|               | toothache |              | ¬ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |

For any proposition  $\phi,$  sum the atomic events where it is true:  $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$ 

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2



Start with the joint distribution:

|               | toothache |              | ⊐ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |

For any proposition  $\phi,$  sum the atomic events where it is true:  $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$ 

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$ 



Start with the joint distribution:

|               | toothache |              | ¬ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

### Normalization

|               | toothache |              | ¬ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |



#### Denominator can be viewed as a normalization constant $\boldsymbol{\alpha}$

 $\mathbf{P}(Cavity|toothache) = \alpha \, \mathbf{P}(Cavity,toothache)$ 

- $= \alpha \left[ \mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch) \right]$
- $= \alpha \left[ \langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right]$
- $= \alpha \left< 0.12, 0.08 \right> = \left< 0.6, 0.4 \right>$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

# Inference by enumeration, contd.

Let  $\mathbf{X}$  be all the variables. Typically, we want the posterior joint distribution of the query variables  $\mathbf{Y}$ given specific values  $\mathbf{e}$  for the evidence variables  $\mathbf{E}$ 

Let the hidden variables be  $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$ 

Then the required summation of joint entries is done by summing out the hidden variables:

 $\mathbf{P}(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})$ 

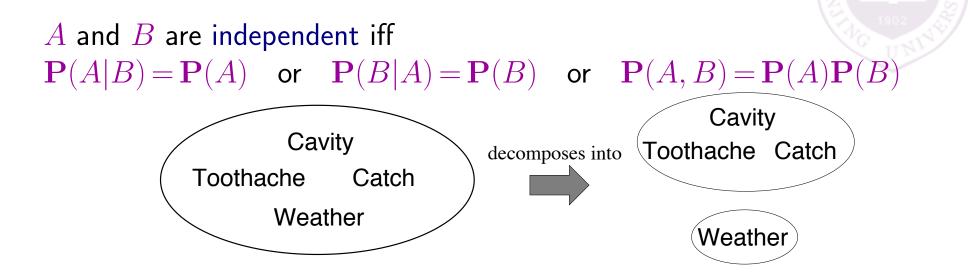
The terms in the summation are joint entries because  $\mathbf{Y}$ ,  $\mathbf{E}$ , and  $\mathbf{H}$  together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity  $O(d^n)$  where d is the largest arity
- 2) Space complexity  $O(d^n)$  to store the joint distribution
- 3) How to find the numbers for  $O(d^n)$  entries???



### Independence



 $\begin{aligned} \mathbf{P}(Toothache, Catch, Cavity, Weather) \\ &= \mathbf{P}(Toothache, Catch, Cavity) \mathbf{P}(Weather) \end{aligned}$ 

32 entries reduced to 12; for n independent biased coins,  $2^n \rightarrow n$ 

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

### **Conditional independence**



 $\mathbf{P}(Toothache, Cavity, Catch)$  has  $2^3 - 1 = 7$  independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2)  $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$ 

 $Catch \text{ is conditionally independent of } Toothache \text{ given } Cavity: \\ \mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity) \\$ 

Equivalent statements:

$$\begin{split} \mathbf{P}(Toothache|Catch,Cavity) &= \mathbf{P}(Toothache|Cavity) \\ \mathbf{P}(Toothache,Catch|Cavity) &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \end{split}$$

# **Conditional independence**



Write out full joint distribution using chain rule:

 $\mathbf{P}(Toothache, Catch, Cavity)$ 

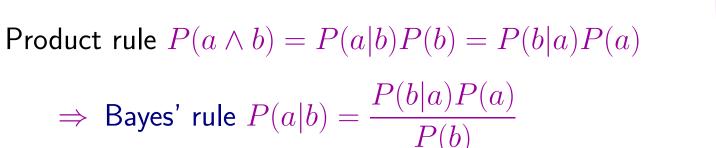
- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch,Cavity)$
- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

#### **Bayes' Rule**



or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause | Effect) = \frac{P(Effect | Cause) P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!



# Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity | toothache \wedge catch)$ 

- $= \ \alpha \ \mathbf{P}(toothache \wedge catch|Cavity) \mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i \mathbf{P}(Effect_i | Cause)$ 



Total number of parameters is **linear** in n



#### Bayesian networks



A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

a set of nodes, one per variable

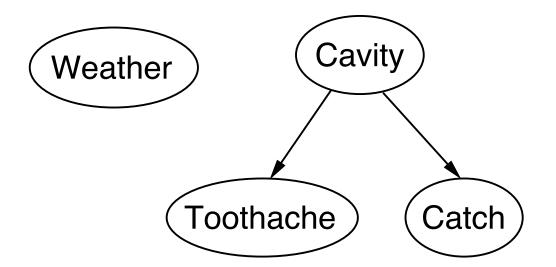
- a directed, acyclic graph (link  $\approx$  "directly influences")
- a conditional distribution for each node given its parents:  $\mathbf{P}(X_i | Parents(X_i))$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over  $X_i$  for each combination of parent values





Topology of network encodes conditional independence assertions:



*Weather* is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

#### Example

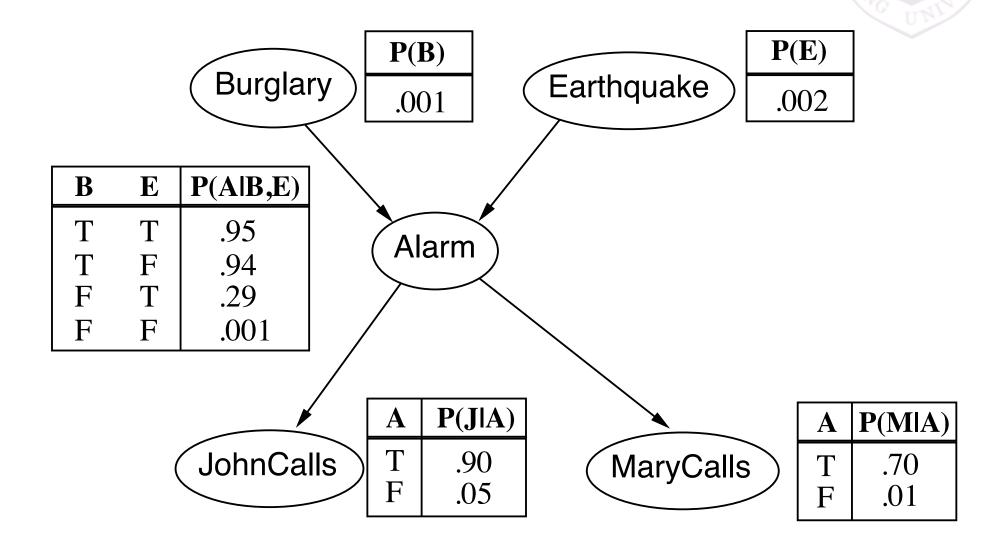


I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: *Burglar*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls* Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

#### Example



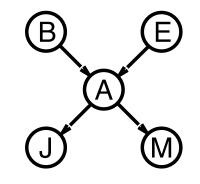
A CPT for Boolean  $X_i$  with k Boolean parents has  $2^k$  rows for the combinations of parent values

Each row requires one number p for  $X_i = true$ (the number for  $X_i = false$  is just 1 - p)

If each variable has no more than k parents, the complete network requires  $O(n\cdot 2^k)$  numbers

I.e., grows linearly with n, vs.  $O(2^n)$  for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs.  $2^5 - 1 = 31$ )





# **Global semantics**

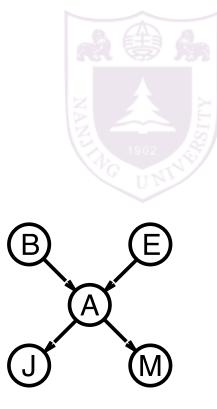
"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

 $P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$ 

e.g.,  $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$ 

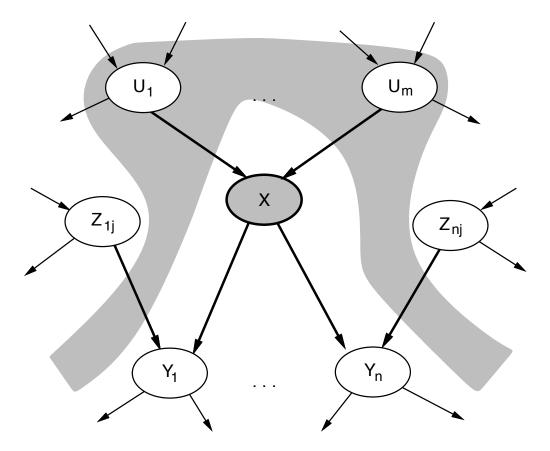
- $= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$
- $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

 $\approx 0.00063$ 



#### Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

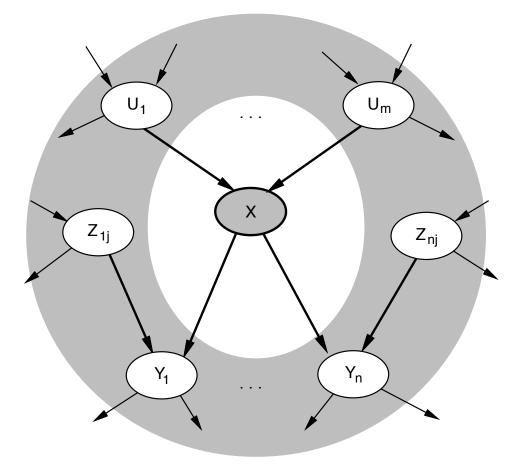


Theorem: Local semantics  $\Leftrightarrow$  global semantics



#### Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents





#### **Constructing Bayesian networks**



Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

 Choose an ordering of variables X<sub>1</sub>,..., X<sub>n</sub>
For i = 1 to n add X<sub>i</sub> to the network select parents from X<sub>1</sub>,..., X<sub>i-1</sub> such that P(X<sub>i</sub>|Parents(X<sub>i</sub>)) = P(X<sub>i</sub>|X<sub>1</sub>, ..., X<sub>i-1</sub>)

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)} \\ = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$$



Suppose we choose the ordering M, J, A, B, E

