

Artificial Intelligence, CS, Nanjing University Spring, 2015, Yang Yu

Lecture 3: Search 2

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

function TREE-SEARCH(problem, fringe) returns a solution, or failurefringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)loop doif fringe is empty then return failurenode \leftarrow REMOVE-FRONT(fringe)if GOAL-TEST(problem, STATE(node)) then return nodefringe \leftarrow INSERTALL(EXPAND(node, problem), fringe)

note the time of goaltest: expanding time not generating time

function EXPAND(node, problem) returns a set of nodes $successors \leftarrow$ the empty set for each action, result in SUCCESSOR-FN(problem, STATE[node]) do $s \leftarrow$ a new NODE PARENT-NODE[s] \leftarrow node; ACTION[s] \leftarrow action; STATE[s] \leftarrow result PATH-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action, s) DEPTH[s] \leftarrow DEPTH[node] + 1 add s to successors return successors

Informed Search Strategies

best-first search: *f* but what is best?

uniform cost search: cost function *g* heuristic function: *h*

initial state

current state

goal state

Example: *h*_{SLD}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Greedy search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = {\rm straight-line\ distance\ from\ }n$ to Bucharest

Greedy search expands the node that appears to be closest to goal

Properties

NAN-LING UNITED

<u>Complete</u>?? No-can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt → Complete in finite space with repeated-state checking <u>Time</u>?? O(b^m), but a good heuristic can give dramatic improvement <u>Space</u>?? O(b^m)—keeps all nodes in memory Optimal?? No

A* search

NANHAR UNITED

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

$$g(n) = \text{cost so far to reach } n$$

 $h(n) = \text{estimated cost to goal from } n$
 $f(n) = \text{estimated total cost of path through } n$ to goal

A* search uses an admissible heuristic i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \geq 0$, so h(G) = 0 for any goal G.)

E.g., $h_{SLD}(n)$ never overestimates the actual road distance Theorem: A^{*} search is optimal

A* is optimal: Admissible and consistency

Admissible: never over estimate the cost

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic

why?

Since $f(G_2) > f(n)$, A^{*} will never select G_2 for expansion

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic

why?

Lemma: A^* expands nodes in order of increasing f value^{*}

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

A* is optimal: Admissible and consistency

Admissible is not the best condition

A heuristic is consistent if

 $h(n) \le c(n, a, n') + h(n')$

If h is consistent, we have

f(n') = g(n') + h(n')= g(n) + c(n, a, n') + h(n') $\geq g(n) + h(n)$ = f(n) $c(n,a,n') | h(n) \\ h(n') \\ G$

I.e., f(n) is nondecreasing along any path.

Proof is similar with that of admissible

E.g., for the 8-puzzle:

 $h_1(n) =$ number of misplaced tiles $h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

2

5

8

4

7

3

6

$$\frac{h_1(S)}{h_2(S)} = ?? 6$$

$$\frac{h_2(S)}{h_2(S)} = ?? 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

 $\begin{array}{l} d = 14 \ \ {\rm IDS} = {\rm 3,473,941 \ nodes} \\ {\rm A}^*(h_1) = {\rm 539 \ nodes} \\ {\rm A}^*(h_2) = {\rm 113 \ nodes} \\ d = 24 \ \ {\rm IDS} \approx {\rm 54,000,000,000 \ nodes} \\ {\rm A}^*(h_1) = {\rm 39,135 \ nodes} \\ {\rm A}^*(h_2) = {\rm 1,641 \ nodes} \end{array}$

Given any admissible heuristics h_a , h_b ,

 $h(n) = \max(h_a(n), h_b(n))$

is also admissible and dominates h_a , h_b

why?

Admissible heuristics from relaxed problem

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Beyond Classical Search

Iterative-improvement search

a higher level perspective of optimization

 $\max_{x \in X} \quad \text{objective-function}(x)$

Different with path search

Uniform-cost, A* --> path search

path search v.s. iterative improvement search

by A*: search the path one-step by one-step

by iterative improvement: improve a path

Hill climbing

"Like climbing Everest in thick fog with amnesia"

Hill climbing

Random-restart hill climbing overcomes local maxima—trivially complete Random sideways moves ©escape from shoulders ⓒloop on flat maxima