Artificial Intelligence, cs, Nanjing University Spring, 2015, Yang Yu

Lecture 3: Search 2

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

function Tree-Search (problem, fringe) returns a solution, or failure
fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure
node \leftarrow Remove-Front (fringe)
if Goal-Test(problem, State(node)) then return node
fringe $\leftarrow \operatorname{Insert} \operatorname{AlL}(\operatorname{Expand}($ node, problem), fringe)
note the time of goaltest: expanding time not generating time
function Expand (node, problem) returns a set of nodes
successors \leftarrow the empty set
for each action, result in Successor-Fn(problem, State[node]) do
$s \leftarrow$ a new Node
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result
Path-Cost $[s] \leftarrow$ Path-Cost [node] $+\operatorname{Step}-\operatorname{Cost}($ node, action,$s)$
Depth $[s] \leftarrow$ Depth $[$ node $]+1$
add s to successors
return successors

Informed Search Strategies

best-first search: $f \quad$ but what is best?
uniform cost search: cost function g heuristic function: \boldsymbol{h}

Example: $h_{S L D}$

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.22 Values of $h_{S L D}$-straight-line distances to Bucharest.

Greedy search

Evaluation function $h(n)$ (heuristic)
$=$ estimate of cost from n to the closest goal
E.g., $h_{\mathrm{SLD}}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Example
$\frac{\text { Timisoara }}{329}$

Example

Example

Properties

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$ —keeps all nodes in memory
Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function $f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost to goal from n
$f(n)=$ estimated total cost of path through n to goal
A* search uses an admissible heuristic
i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n.
(Also require $h(n) \geq 0$, so $h(G)=0$ for any goal G.)
E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

Theorem: A^{*} search is optimal

Example

Example

Example

Arad

Example

Arad

A* is optimal: Admissible and consistency

Admissible: never over estimate the cost

no larger than the cost of the optimal path from n to the goal

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic why?

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic

Suppose some suboptimal geal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

$$
\begin{aligned}
& f\left(G_{2}\right)=g\left(G_{2}\right) \quad \\
& \quad \text { since } h\left(G_{2}\right)=0 \\
& \geq g\left(G_{1}\right) \quad \\
& \geq f(n) \quad \text { since } G_{2} \text { is suboptimal } \\
& \text { since } h \text { is admissible }
\end{aligned}
$$

Since $f\left(G_{2}\right)>f(n), \mathrm{A}^{*}$ will never select G_{2} for expansion

A* is optimal: Admissible and consistency

A* is optimal with admissible heuristic

why?
Lemma: A^{*} expands nodes in order of increasing f value*
Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

A* is optimal: Admissible and consistency

Admissible is not the best condition

A heuristic is consistent if

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

If h is consistent, we have

$$
\begin{aligned}
f\left(n^{\prime}\right) & =g\left(n^{\prime}\right)+h\left(n^{\prime}\right) \\
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& =f(n)
\end{aligned}
$$

I.e., $f(n)$ is nondecreasing along any path.

Proof is similar with that of admissible

Example

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

Start State

1	2	3
4	5	6
7	8	

Goal State

$$
\begin{aligned}
& h_{1}(S)=? ? \\
& h_{2}(S)=? ? \\
& \underline{4}+0+3+3+1+0+2+1=14
\end{aligned}
$$

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} and is better for search

Typical search costs:
why?

$$
\begin{array}{ll}
d=14 & \text { IDS }=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=24 & \text { IDS } \approx 54,000,000,000 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Given any admissible heuristics h_{a}, h_{b},

$$
h(n)=\max \left(h_{a}(n), h_{b}(n)\right)
$$

is also admissible and dominates h_{a}, h_{b}

Admissible heuristics from relaxed problem

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8 -puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Example

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O\left(n^{2}\right)$ and is a lower bound on the shortest (open) tour

Beyond Classical Search

Iterative-improvement search

a higher level perspective of optimization

$$
\max _{x \in X} \text { objective-function }(x)
$$

Different with path search

Uniform-cost, A* --> path search
path search v.s. iterative improvement search

by A*: search the path one-step by one-step
by iterative improvement: improve a path

Hill climbing

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing(problem) returns a state that is a local maximum
    inputs: problem, a problem
    local variables: current, a node
            neighbor, a node
    current }\leftarrow\mathrm{ Make-Node(Initial-State[problem])
    loop do
        neighbor \leftarrowa highest-valued successor of current
        if Value[neighbor] \leq Value[current] then return State[current]
        current }\leftarrow\mathrm{ neighbor
    end
```


Hill climbing

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima-trivially complete Random sideways moves (3)escape from shoulders ©loop on flat maxima

