Data Mining for M.Sc. students, CS, Nanjing University Fall, 2012, Yang Yu

Lecture 3:
 Supervised Learning

http://cs.nju.edu.cn/yuy/course_dm12.ashx

Position

The desire of prediction

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

Supervised learning/inductive learning

Find a relation between a set of variables (features) to target variables (labels) from finite examples.

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f
examples/training data: $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

Regression

Features: color, weight Label: sweetness [0,1]

(color, weight) \rightarrow sweetness

$$
\mathcal{X} \quad \rightarrow[-1,+1]
$$

ground-truth function f
examples/training data: $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

I.I.D. assumption

all training examples and future (test) examples are drawn independently from an identical distribution

Hypothesis class

box hypothesis class \mathcal{H} contains all boxes

$h \in \mathcal{H}$ is a hypothesis
$h(\boldsymbol{x})=\left\{\begin{array}{l}+1, \text { if } x \text { is inside the box } \\ -1, \text { if } x \text { is outside the box }\end{array}\right.$

Training and generalization errors

find a hypothesis minimizes the generalization error

S, G, and the version space algorithm

Generalization error

assume i.i.d. examples, and the ground-truth hypothesis is a box

the error of picking a consistent hypothesis:
with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

- more examples
- smaller hypothesis space

Generalization error

for one h
What is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$
h is consistent with 1 example:

$$
P \leq 1-\epsilon
$$

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

Generalization error

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

There are \boldsymbol{k} consistent hypotheses

Probability of choosing a bad one:
h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$

h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$
overall:
$\exists h$: h can be chosen (consistent) but is bad

Generalization error

h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$ h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$

overall:

$\exists h$: h can be chosen (consistent) but is bad
Union bound: $P(A \cup B) \leq P(A)+P(B)$
$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

Generalization error

$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

$$
\begin{gathered}
\sqrt{3} \\
P\left(\epsilon_{g} \geq \epsilon\right) \leq \frac{|\mathcal{H}| \cdot(1-\epsilon)^{m}}{\delta}
\end{gathered}
$$

with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

with probability at least $1-\delta$
$\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}$
smaller generalization error: • smaller hypothesis space

- smaller training error

Hoeffding's inequality

X be an i.i.d. random variable $X_{1}, X_{2}, \ldots, X_{m}$ be m samples

$$
X_{i} \in[b-a]
$$

$\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mathbb{E}[X] \leftarrow$ difference between sum and expectation

$$
P\left(\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mathbb{E}[X] \geq \epsilon\right) \leq \exp \left(-\frac{2 \epsilon^{2} m}{(b-a)^{2}}\right)
$$

Generalization error

for one h

$$
X_{i}=I\left(h\left(x_{i}\right) \neq f\left(x_{i}\right)\right) \in[0,1]
$$

$$
\frac{1}{m} \sum_{i=1}^{m} X_{i} \rightarrow \epsilon_{t}(h) \quad \mathbb{E}\left[X_{i}\right] \rightarrow \epsilon_{g}(h)
$$

$$
P\left(\epsilon_{t}(h)-\epsilon_{g}(h) \geq \epsilon\right) \leq \exp \left(-2 \epsilon^{2} m\right)
$$

$$
P\left(\epsilon_{t}-\epsilon_{g} \geq \epsilon\right)
$$

with probability at least $1-\delta$

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

Generalization error: Summary

assume i.i.d. examples
consistent hypothesis case:
with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

inconsistent hypothesis case:

$$
\begin{aligned}
& \text { with probability at least } 1-\delta \\
& \qquad \epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
\end{aligned}
$$

generalization error:
number of examples m
training error ϵ_{t}
hypothesis space complexity $\ln |\mathcal{H}|$

PAC-learning

Probably approximately correct (PAC): with probability at least $1-\delta$

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

PAC-learnable: [Valiant, 1984]
A concept class \mathcal{C} is PAC-learnable if exists a learning algorithm A such that

Leslie Valiant
Turing Award (2010)
EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986) for all $f \in \mathcal{C}, \epsilon>0, \delta>0$ and distribution D

$$
P_{D}\left(\epsilon_{g} \leq \epsilon\right) \geq 1-\delta
$$

using $m=\operatorname{poly}(1 / \epsilon, 1 / \delta)$ examples and polynomial time.

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space

$$
\{y=a+b x \mid a, b \in \mathbb{R}\}
$$

higher polynomials: moderate training error, moderate space $\left\{y=a+b x+c x^{2}+d x^{3} \mid a, b, c, d \in \mathbb{R}\right\}$
even higher order: no training error, large space $\left\{y=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5} \mid a, b, c, d, e, f \in \mathbb{R}\right\}$

Dimensions of modeling

监督学习的目标是否是最小化训练误差？

PAC－learning泛化界对于任意的潜在分布是否都成立？

以下两个多项式函数空间，哪一个的复杂度更高？ $\mathcal{F}_{1}=\left\{y=a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$ $\mathcal{F}_{2}=\left\{y=a+a x+b x^{2}+b x^{3}+(a+b) x^{4} \mid a, b \in \mathbb{R}\right\}$解释过配（overfitting）和欠配（underfitting）现象。

