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f(x) = argmax

y
P (x | y)P (y)

P (x | y) = P (x1, x2, . . . , xn | y)
= P (x1 | y) · P (x2 | y) · . . . P (xn | y)
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˜

P (xi | y)

Naive Bayes

estimation the a priori by frequency:

assume features are conditional independence given 
the class (naive assumption):

decision function:



P (x | y) =
Y
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P (xi | y)

y

y
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Naive Bayes

graphic representation

no assumption:

naive Bayes assumption:

xi



P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...
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f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) = 0

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) = 0

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no
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color={0,1,2,3} weight={0,1,2,3,4}

...
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P (color = 0 | y = yes) = (0 + 1)/(2 + 4)

P (y = yes) = (2 + 1)/(5 + 2)

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) =
2

7
⇥ 1

8
⇥ 4

7
= 0.02

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) =
1

6
⇥ 1

7
⇥ 3

7
= 0.01

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

+

color sweet?

0 yes

1 yes

2 yes

3 yes

smoothed (Laplacian correction) probabilities:

f(y | color = 0, weight = 1) !

for counting frequency, 
assume every event 
has happened once. 



O(mn)

O(n)

Naive Bayes

advantages:

disadvantages:

very fast: 
    scan the data once, just count:
    store class-conditional probabilities: 
    test an instance:            (c the number of classes) 

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)
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Naive Bayes

advantages:

disadvantages:

very fast: 
    scan the data once, just count:
    store class-conditional probabilities: 
    test an instance:            (c the number of classes) 

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)

the strong assumption may harm the accuracy
does not handle numerical features naturally



Relaxation of naive Bayes assumption

assume features are conditional 
independence given the class

if the assumption holds, naive Bayes 
classifier will have excellence performance

if the assumption does not hold ...



Relaxation of naive Bayes assumption

assume features are conditional 
independence given the class

if the assumption holds, naive Bayes 
classifier will have excellence performance

if the assumption does not hold ...

‣ Naive Bayes classifier may also have good 
performance

‣ Reform the data to satisfy the assumption

‣ Invent algorithms to relax the assumption



Reform the data

clustering to generate data with subclasses
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clustering the 
data in each class

form a new data set 
with subclasses

2-class

4-class



Semi-naive Bayes classifiers

TreeNB

color

w
ei

g
h

t

NB1

NB2

NB3

train an NB classifier in each leaf node of a 
rough decision tree



Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
extends NB by allowing every feature to 
have one more parent feature other than 
the class, which forms a tree structure

y

xi

y

xi

fully connected TAN
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Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
xi xi

fully connected graph 
among features

weights assigned

mutual information 
for every node pair

maximum 
weighted 
spanning tree

wij

xi

and 
choose 
a root

xi

connect to the 
class node

y



f(x) = argmax

y

X

i

I(count(xi � m)) · ˜P (y) · ˜P (xi | y) ·
Y

j

˜

P (xj | xi, y)

P (x | y) = P (x2, . . . , xn | x1, y)P (x1 | y)

= P (x1 | y)
Y

i

P (xi | x1, y)

Semi-naive Bayes classifiers

AODE (average one-dependent estimators)

P (x | y) =
Y

i

P (xi | y)

compare with NB:expand a posterior probability 
with one-dependent estimators

‣the conditional independency is less important

‣harder to estimate (fewer data)

AODE: average ODEs



p(x) =
1p
2⇡�2

e

� (x�µ)2

2�2

p(x1, . . . , xn) =
1
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� 1
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Handling numerical features

Discretization

     recall what we have talked about in Lecture 2

Estimate probability density (P(X) → p(x))

Gaussian model:

training: calculate mean and covariance
test: calculate density



Bayesian networks

inference in a graphic model representation
a model simplified by conditional independence
a clear description of how things are going

Judea Pearl
Turing Award 2011

“for fundamental contributions 
to artificial intelligence through 
the development of a calculus 
for probabilistic and causal 
reasoning”
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Bayesian networks/Graphic models

Hidden Markov Model (HMM)

voice

words

Topic Model: Latent Dirichlet Allocation

yt

parameters

document

topic

words



S(x1,x2)
{(x1, y1), . . . , (xm, ym)}

x

Lazy methods

similarity function
training data

no model is built until meet a test instance

to predict the label of
      objects that look similar are indeed similar 

find similar training instances S

build a model on S

use the model to predict the label of

x

x



Nearest neighbor classifier

1-nearest neighbor: k-nearest neighbor:



Nearest neighbor classifier

1-nearest neighbor: k-nearest neighbor:

‣ asymptotically less than 2 times of the optimal Bayes 
error 
‣ naturally handle multi-class
‣ no training time
‣ nonlinear decision boundary
‣ slow testing speed for a large training data set
‣ have to store the training data
‣ sensitive to similarity function



Locality sensitive hashing

hashing
objects:

buckets:

value
hash function



Locality sensitive hashing

hashing
objects:

buckets:

value

locality sensitive hashing: 
              similar objects in the same bucket

hash function



Locality sensitive hashing

hashing
objects:

buckets:

value

locality sensitive hashing: 
              similar objects in the same bucket

hash function

A LSH function family                      has the 
following properties for any x1,x2 2 S

if kx1 � x2k  r, then Ph2H(h(x1) = h(x2)) � P1

if kx1 � x2k � cr, then Ph2H(h(x1) = h(x2))  P2

H(c, r, P1, P2)

similar objects should be hashed in the same bucket with high probability

dissimilar objects should be hashed in the same bucket with low probability



k110101001, 110001100kH = 3

Locality sensitive hashing

Binary vectors in Hamming space

objects:  (1100101101)
Hamming distance:  count the number of positions 
with different elements



k110101001, 110001100kH = 3

Locality sensitive hashing

Binary vectors in Hamming space

objects:  (1100101101)
Hamming distance:  count the number of positions 
with different elements

h2 h5 h9

LSH functions:                           where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1    0    1
1    1    0
0    1    0
1    0    1
0    1    1
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Locality sensitive hashing

Binary vectors in Hamming space

objects:  (1100101101)
Hamming distance:  count the number of positions 
with different elements

h2 h5 h9

LSH functions:                           where
hi(x) = xiH = {h1, . . . , hn}

110101001
110010100
000110110
111001001
000011101

1    0    1
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P (hi(x1) = hi(x2)) = 1� kx1 � x2k
d

frequency in the same bucket for 
a sample of hashing functions



hr(x) = sign(r>x)

r1

r2
P (hr(x1) = hr(x2)) = 1� ✓(x1,x2)

⇡

✓(x1,x2) = arccos

x

>
1 x2

kx1kkx2k

Locality sensitive hashing

Real vectors with angle similarity

LSH functions:                           whereH = {hr}(r 2 Bn)

frequency in the same bucket for 
a sample of hashing functions



习题

朴素贝叶斯假设是指数据的属性之间相互独立？

朴素贝叶斯假设不满足时，朴素贝叶斯的性能一定不好？

k近邻分类算法是否需要训练预测模型？


