

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2012, Yang Yu

Lecture 7: Ensemble Methods

http://cs.nju.edu.cn/yuy/course_dm12.ashx

A summary of learning algorithms

decision tree

neural networks

linear models

 $P(y \mid$

Bayes classifiers

$$x) = \frac{P(x \mid y)P(y)}{P(x)}$$

lazy classifiers

fast training & testing moderate accuracy comprehensible nominal + numerical feature

slow training & testing high accuracy not comprehensible numerical feature

fast with linear kernel high accuracy (with good kernel) numerical feature

fast training moderate accuracy (high for semi-naive) nominal feature

fast training + slow testing moderate accuracy numerical feature

How can we improve one algorithm

Hansen and Salamon [PAMI'90] reported an observation that combination of multiple BP-NN is better than the best single BP-NN

Ensemble learning

combination of multiple classifiers/regressors

base learner

combined learner

What base classifiers should be?

not useful to combine identical base learners

What base classifiers should be?

good to combine different base learners

Motivation theories

for binary classification, what if the classifiers give *independent* output and are little bit better than random guess?

each classifier has error 0.49 error of combining *T* classifiers:

Motivation theories

for regression task: mean error of base regressors

error of ensemble = a mean error of base regressors – mean difference base regressors to the ensemble

accurate and diverse

Ensemble methods

Parallel ensemble

create diverse base learners by introducing randomness

Sequential ensemble

create base learners by complementarity

Base classifiers should be sensitive to sampling
> decision tree, neural network are good
> NB, linear classifier are not
Good for handling large data set

Data should be rich in features Good for handling high dimensional data

Random forest

Randomized decision tree

at each node

- 1. randomly select a subset of features
- 2. use C4.5 method to select a feature (and split point) from the subset to split the data

(other variants are available)

every run produce a different tree

Random forest

decision boundary of single decision tree

decision boundary of random forest

May drastically reduce the accuracy of base learners

Diversity generating categories:

Data Sample Manipulation bootstrap sampling/Bagging
Input Feature Manipulation random subspace
Learning Parameter Manipulation random initialization Random Forests
Output Representation Manipulation flipping output/output smearing

combine two or more categories

fit an additive model, sequentially

$$H() = \sum_{t=1}^{T} \alpha_t h_t()$$

1. every h_t is a weak learner (better than random)

2. every is to complement its predecessors

example: least square regression

$$\min \frac{1}{m} \sum_{i=1}^{m} (H(\boldsymbol{x}_i) - y_i)^2$$

1. fit the first base regressor

$$\min \frac{1}{m} \sum_{i=1}^{m} (h_1(\boldsymbol{x}_i) - y_i)^2$$

then how to train the second base regressor ?

$$\min \frac{1}{m} \sum_{i=1}^{m} (h_1(\boldsymbol{x}_i) + h_2(\boldsymbol{x}_i) - y_i)^2$$

gradient descent in function space

gradient descent in function space

$$h_{\text{new}} \leftarrow -\frac{\partial (H-f)^2}{\partial H} = -2(H-f)$$

this function is not directly operable

operate through data

$$\forall \boldsymbol{x}_i : \hat{y}_i = -2(H(\boldsymbol{x}_i) - y_i)$$

fit *h*² point-wisely

$$h_{\text{new}} = \arg\min_{h} \frac{1}{m} \sum_{i=1}^{m} (h(\boldsymbol{x}_{i}) - \hat{y}_{i})^{2}$$

Gradient boosting (for least square regression)

1.
$$h_0 = 0, H_0 = h_0$$

2. For
$$t = 1$$
 to T

3. let
$$\forall x_i : y_i = -2(H_{t-1}(x_i) - y_i)$$

4. solve
$$h_t = \arg\min_h \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)^2$$

(by some least square regression algorithm)

5.
$$H_t = H_{t-1} + \eta h_t$$
 (usually set $\eta = 0.01$)
6. next for

Output
$$H_T = \sum_{t=1}^T h_t$$

Gradient boosting (for classification)

Gradient boosting (for classification)

 $\begin{array}{l} \textbf{0-1 loss} \\ \min I(yH(\boldsymbol{x}) \leq 0) \end{array}$

Gradient boosting (for classification)

0-1 loss $\min I(yH(\boldsymbol{x}) \leq 0)$ logistic regression

 $\min\log(1+e^{-yH(\boldsymbol{x})})$

 $0-1 \log s$ $\min I(yH(\boldsymbol{x}) \le 0)$ logistic regression $\min\log(1+e^{-yH(\boldsymbol{x})})$ perceptron $\min\max\{-yH(\boldsymbol{x}),0\}$

 $0-1 \log s$ $\min I(yH(\boldsymbol{x}) \le 0)$ logistic regression $\min\log(1+e^{-yH(\boldsymbol{x})})$ perceptron $\min\max\{-yH(\boldsymbol{x}),0\}$ hinge loss $\min\max\{1-yH(\boldsymbol{x}),0\}$

Gradient boosting (for classification)

 $0-1 \log s$ $\min I(yH(\boldsymbol{x}) \le 0)$ logistic regression $\min\log(1+e^{-yH(\boldsymbol{x})})$ perceptron $\min\max\{-yH(\boldsymbol{x}),0\}$ hinge loss $\min\max\{1-yH(\boldsymbol{x}),0\}$ exponential loss $\min e^{-yH(\boldsymbol{x})}$


```
exponential loss
\min e^{-y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i+b)}
```

use (approximate) Newton's method to sequentially optimize exponential loss

exponential loss $\min e^{-y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i+b)}$

use (approximate) Newton's method to sequentially optimize exponential loss

L. Valiant Turing Award 2010

parallel ensemble: reduce variance

sequential ensemble: reduce bias and variance

Applications

KDDCup: data mining competition organized by ACM SIGKDD

KDDCup 2009: to estimate the churn, appetency and up-selling probability of customers.

KDDCup 2010: to predict student performance on mathematical problems from logs of student interaction with Intelligent Tutoring Systems.

An Ensemble of Three Classifiers for KDD Cup 2009: Expanded Linear Model, Heterogeneous Boosting, and Selective Naïve Bayes

Hung-Yi Lo, Kai-Wei Chang, Shang-Tse Chen, Tsung-Hsien Chiang, Chun-Sung Ferng, Cho-Jui Hsieh, Yi-Kuang Ko, Tsung-Ting Kuo, Hung-Che Lai, Ken-Yi Lin, Chia-Hsuan Wang, Hsiang-Fu Yu, Chih-Jen Lin, Hsuan-Tien Lin, Shou-de Lin {D96023, B92084, B95100, B93009, B95108, B92085, B93038, D97944007, R97028, R97117, B94B02009, B93107, CJLIN, HTLIN, SDLIN}@CSIE.NTU.EDU.TW Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan

JMLR: Workshop and Conference Proceedings 1: 1-16

KDD Cup 2010

Feature Engineering and Classifier Ensemble for KDD Cup 2010

Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G. McKenzie, Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei, Jui-Yu Weng, En-Syu Yan, Che-Wei Chang, Tsung-Ting Kuo, Yi-Chen Lo, Po Tzu Chang, Chieh Po, Chien-Yuan Wang, Yi-Hung Huang, Chen-Wei Hung, Yu-Xun Ruan, Yu-Shi Lin, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan

KDDCup 2011, KDDCup 2012, and foreseeably, 2013, 2014 ...

Applications

Netflix Price: if one participating team improves Netflix's own movie recommendation algorithm by 10% accuracy, they would win the grand prize of \$1,000,000.

什么样的集成学习(ensemble learning)方法可能获得好的预测性能?

并行集成学习方法(parallel ensemble)为何可以并行进行训练?

作为0-1损失函数(0-1 loss)的近似, logistic regression loss、perception loss、hinge loss、exponential loss各有什么优缺点?