
On Subset Selection with General Cost Constraints∗

Chao Qian1, Jing-Cheng Shi2, Yang Yu2, Ke Tang1

1UBRI, School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, China

2National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
{chaoqian, ketang}@ustc.edu.cn, {shijc, yuy}@lamda.nju.edu.cn

Abstract
This paper considers the subset selection problem
with a monotone objective function and a mono-
tone cost constraint, which relaxes the submodu-
lar property of previous studies. We first show that
the approximation ratio of the generalized greedy
algorithm is α

2 (1 −
1
eα) (where α is the submodu-

larity ratio); and then propose POMC, an anytime
randomized iterative approach that can utilize more
time to find better solutions than the generalized
greedy algorithm. We show that POMC can ob-
tain the same general approximation guarantee as
the generalized greedy algorithm, but can achieve
better solutions in cases and applications.

1 Introduction
The problem of selecting a k-element subset that maximizes
a monotone submodular objective f lays in the core of many
applications, which has been addressed with gradually re-
laxed assumptions on the constraint.
With cardinality constraints: The subset selection problem
with a cardinality constraint |X| ≤ k was studied early. It
was shown to be NP-hard. The greedy algorithm, which it-
eratively selects one element with the largest marginal gain,
can achieve a (1 − 1

e)-approximation guarantee [Nemhauser
et al., 1978]. This approximation ratio is optimal in gen-
eral [Nemhauser and Wolsey, 1978].
With linear cost constraints: After that, the problem with
a linear cost constraint c(X) ≤ B (where c is a linear func-
tion) attracted more attentions. The original greedy algorithm
meets some trouble: it has an unbounded approximation ra-
tio [Khuller et al., 1999]. The generalized greedy algorithm
was then developed to achieve a 1

2 (1 −
1
e)-approximation

guarantee [Krause and Guestrin, 2005], which was further
improved to (1 − 1√

e
) [Lin and Bilmes, 2010]. The gener-

alized greedy algorithm iteratively selects the element with
the largest ratio of the marginal gain on f and c, and finally
outputs the better of the found subset and the best single ele-
ment. By partial enumerations, the generalized greedy algo-

∗This work was supported by the NSFC (61375061, 61603367,
61672478, U1605251, U1613216), the JiangsuSF (BK20160066)
and the CCF-Tencent Open Research Fund.

rithm can even achieve a (1− 1
e)-approximation ratio, but with

much more computation time [Krause and Guestrin, 2005].
With monotone submodular cost constraints: Iyer and
Bilmes [2013] later considered the problem with a mono-
tone submodular cost constraint. By choosing appropriate
surrogate functions for f and c to optimize over, several al-
gorithms with bounded approximation guarantees were pro-
posed. However, in some real applications such as mobile
robotic sensing and door-to-door marketing, the cost func-
tion can be non-submodular [Herer, 1999], which appeals for
more general optimization.
With monotone cost constraints: Zhang and Vorobey-
chik [2016] analyzed the case that the cost function c is
only monotone. By introducing the concept of submodular-
ity ratio, they proved that the generalized greedy algorithm
achieves a 1

2 (1−
1
e)-approximation ratio, comparing with the

optimal solution with a slightly relaxed budget constraint.
Most of the above-mentioned previous studies considered

monotone submodular objective functions. Meanwhile, some
applications such as sparse regression and dictionary selec-
tion involve non-submodular objective functions [Das and
Kempe, 2011]. This paper considers the problem of maximiz-
ing monotone functions with monotone cost constraints,
that is, both the objective function f and the cost function c
can be non-submodular.
• First, we extend the analytical results in [Zhang and Vorob-
eychik, 2016], and derive that the generalized greedy al-
gorithm obtains a αf

2 (1 − 1
eαf

)-approximation guarantee
(Theorem 1), where αf is the submodularity ratio of f .
• The greedy nature of the generalized greedy algorithm re-
sults in an efficient fixed time algorithm, but at the same time
limits its performance. We then propose a Pareto optimiza-
tion [Qian et al., 2015; 2016] method, POMC, which is an
anytime algorithm that can use more time to find better solu-
tions. POMC first reformulates the original constrained opti-
mization problem as a bi-objective optimization problem that
maximizes f and minimizes c simultaneously, then employs
a randomized iterative algorithm to solve it, and finally se-
lects the best feasible solution from the maintained set of so-
lutions. We show that POMC can achieve the same general
approximation guarantee as the generalized greedy algorithm
(Theorem 2). Moreover, in a case of the influence maximiza-
tion application, POMC can escape the local optimum, while
the generalized greedy algorithm cannot (Theorem 3).

• Experimental results on sensor placement and influence
maximization with both cardinality and routing constraints
exhibit the superior performance of POMC.

2 Preliminaries
The General Problem. Given a finite set V = {v1, . . . , vn},
we study the functions f : 2V → R over subsets of V . Such
a set function f is monotone if for any X ⊆ Y , f(X) ≤
f(Y). Without loss of generality, we assume that monotone
functions are normalized, i.e., f(∅) = 0. A set function f :
2V → R is submodular [Nemhauser et al., 1978] if for any
X ⊆ Y ⊆ V and v /∈ Y ,

f(X ∪ v)− f(X) ≥ f(Y ∪ v)− f(Y); (1)

or for any X ⊆ Y ⊆ V ,

f(Y)− f(X) ≤
∑

v∈Y \X

(
f(X ∪ v)− f(X)

)
. (2)

Note that we represent a set {v} with a single element as v.
Two concepts will be used in our analysis. The submodu-

larity ratio in Definition 1 characterizes how close a set func-
tion is to submodularity. It is easy to see from Eq. (1) that
f is submodular iff αf = 1. Note that an alternative def-
inition based on Eq. (2) was also used in [Das and Kempe,
2011]. The curvature in Definition 2 characterizes how close
a monotone submodular set function f is to modularity. It is
easy to verify that 1 ≥ 1 − κf (X) ≥ 1 − κf ≥ 0. But in
this paper, we also use it for a general monotone function f as
in [Zhang and Vorobeychik, 2016]. Without the submodular
property, it only holds that 1− κf (X) ≥ αf (1− κf) ≥ 0.

Definition 1 (Submodularity Ratio [Zhang and Vorobeychik,
2016]). The submodularity ratio of a non-negative set func-
tion f is defined as αf = minX⊆Y,v/∈Y

f(X∪v)−f(X)
f(Y ∪v)−f(Y) .

Definition 2 (Curvature [Conforti and Cornuéjols, 1984;
Vondrák, 2010; Iyer et al., 2013]). Let f be a monotone
submodular set function. The total curvature of f is

κf = 1− min
v∈V :f(v)>0

(
f(V)− f(V \ v)

)/
f(v).

The curvature with respect to a set X ⊆ V is

κf (X) = 1− min
v∈X:f(v)>0

(
f(X)− f(X \ v)

)/
f(v).

Our studied problem as presented in Definition 3 is to max-
imize a monotone objective function f subject to an upper
limit on a monotone cost function c. Since the exact com-
putation of c(X) (e.g., a shortest walk to visit a subset of
vertices on a graph) may be unsolvable in polynomial time,
we assume that only an ψ(n)-approximation function ĉ(X)
can be obtained as in [Zhang and Vorobeychik, 2016], where
c(X) ≤ ĉ(X) ≤ ψ(n) · c(X). If ψ(n) = 1, ĉ(X) = c(X).

Definition 3 (The General Problem). Given a monotone
objective function f : 2V → R+, a monotone cost function
c : 2V → R+ and a budget B, the task is as follows:

argmaxX⊆V f(X) s.t. c(X) ≤ B. (3)

Sensor Placement. Sensor placement as presented in Def-
inition 4 is to decide where to take measurements such that

the entropy of selected locations is maximized, where oj de-
notes a random variable representing the observations col-
lected from location vj by installing a sensor. Note that
the entropy H(·) is monotone and submodular. The tradi-
tional sensor placement problem [Krause et al., 2008] has
an upper limit on the selected number of sensors, that is,
c(X) = |X|. However, in mobile robotic sensing domains,
both the costs of moving between locations and that of mak-
ing measurements at locations need to be considered. Let a
graph G(V,E) characterize the routing network of all the lo-
cations, where ce is the cost of traversing an edge e ∈ E and
cv is the cost of visiting a node v ∈ V . The cost function is
usually defined as c(X) = cR(X) +

∑
v∈X cv [Zhang and

Vorobeychik, 2016], where cR(X) is the cost of the short-
est walk to visit each node in X at least once (i.e, a vari-
ant of the TSP problem). Note that cR(X) is generally non-
submodular [Herer, 1999] and cannot be exactly computed in
polynomial time. These two kinds of cost constraints will be
called cardinality and routing constraints, respectively.

Definition 4 (Sensor Placement). Given n locations V =
{v1, . . . , vn}, a cost function c and a budget B, the task is
as follows: argmaxX⊆V H({oj | vj ∈ X}) s.t. c(X) ≤ B.
Influence Maximization. Influence maximization is to iden-
tify a set of influential users in social networks. Let a directed
graph G(V,E) represent a social network, where each node
is a user and each edge (u, v) ∈ E has a probability pu,v
representing the strength of influence from user u to v. As
presented in Definition 5, the goal is to find a subset X of
V such that the expected number of nodes activated by prop-
agating from X is maximized. A fundamental propagation
model is Independence Cascade (IC). Starting from a seed set
X , it uses a set At to record the nodes activated at time t, and
at time t + 1, each inactive neighbor v of u ∈ At becomes
active with probability pu,v; this process is repeated until no
nodes get activated at some time. The set of nodes activated
by propagating from X is denoted as IC(X), which is a ran-
dom variable. The objective E[|IC(X)|] is monotone and
submodular. The traditional influence maximization prob-
lem [Kempe et al., 2003] is with cardinality constraints, i.e.,
c(X) = |X|. However, some special applications are with
routing constraints, such as door-to-door marketing needs to
consider the traversing time cost to visit households of choice.

Definition 5 (Influence Maximization). Given a directed
graph G(V,E), edge probabilities pu,v ((u, v) ∈ E), a cost
function c and a budget B, the task is as follows:

argmaxX⊆V E[|IC(X)|] s.t. c(X) ≤ B.

3 The Generalized Greedy Algorithm
Zhang and Vorobeychik [2016] have recently investigated
the problem of maximizing a monotone submodular function
with a monotone cost constraint, i.e., the function f in Defini-
tion 3 is submodular. They proposed the generalized greedy
algorithm, as shown in Algorithm 1. It iteratively selects one
element v such that the ratio of the marginal gain on f and ĉ
by adding v is maximized; the better of the found subset X
and the best single element v∗ is finally returned.

Algorithm 1 Generalized Greedy Algorithm
Input: a monotone objective function f , a monotone approx-
imate cost function ĉ, and a budget B
Output: a solution X ⊆ V with ĉ(X) ≤ B
Process:

1: Let X = ∅ and V ′ = V .
2: repeat
3: v∗ ∈ argmaxv∈V ′

f(X∪v)−f(X)
ĉ(X∪v)−ĉ(X) .

4: if ĉ(X ∪ v∗) ≤ B then X = X ∪ v∗ end if
5: V ′ = V ′ \ {v∗}.
6: until V ′ = ∅
7: Let v∗ ∈ argmaxv∈V :ĉ(v)≤B f(v).
8: return argmaxS∈{X,v∗} f(S)

Let Kc = max{|X| | c(X) ≤ B}, i.e., the largest size of
a feasible solution. Let X̃ be a corresponding solution to

max

{
f(X) | c(X) ≤ αĉ

B(1+α2
c(Kc−1)(1−κc))
ψ(n)Kc

}
, (4)

i.e., an optimal solution of the original problem Eq. (3) with
a slightly smaller budget constraint. The generalized greedy
algorithm was proved to achieve a 1

2 (1 −
1
e)-approximation

ratio of f(X̃). The key of that proof is Lemma 1, that is,
the inclusion of the greedily selected element can improve f
by at least a quantity proportional to the current distance to
the optimum. Note that in their original proof, 1 − κc(X) ≥
1 − κc is used, which is, however, not true. For a general
monotone cost function c(X), it only holds that 1−κc(X) ≥
αc(1 − κc) by Definitions 1 and 2. We have corrected their
results by replacing αc with α2

c in Eq. (4).
Lemma 1. [Zhang and Vorobeychik, 2016] Let Xi be the
subset generated after the i-th iteration of Algorithm 1
until the first time the budget constraint is violated. For the
problem in Definition 3 with f being submodular, it holds that

f(Xi)− f(Xi−1) ≥ ĉ(Xi)−ĉ(Xi−1)
B · (f(X̃)− f(Xi−1)).

We extend their results to the general situation, i.e., f is
not necessarily submodular. As shown in Theorem 1, the
approximation ratio now is αf

2 (1 − 1
eαf

). The proofs of
Lemma 2 and Theorem 1 are similar to that of Lemma 1 and
the theorem in [Zhang and Vorobeychik, 2016]. The major
difference is that instead of Eq. (1), f(X ∪ v) − f(X) ≥
αf · (f(Y ∪ v) − f(Y)) is used for a general monotone ob-
jective function f .
Lemma 2. Let Xi be the subset generated after the i-th iter-
ation of Algorithm 1 until the first time the budget constraint
is violated. For the problem in Definition 3, it holds that

f(Xi)− f(Xi−1) ≥ αf ĉ(Xi)−ĉ(Xi−1)
B · (f(X̃)− f(Xi−1)).

Theorem 1. For the problem in Definition 3, the generalized
greedy algorithm finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− 1/eαf) · f(X̃).

4 The POMC Approach
The greedy nature of the generalized greedy algorithm may
limit its performance. To alleviate the issue of getting trapped

Algorithm 2 POMC Algorithm
Input: a monotone objective function f , a monotone approx-
imate cost function ĉ, and a budget B
Parameter: the number T of iterations
Output: a solution x ∈ {0, 1}n with ĉ(x) ≤ B
Process:

1: Let x = {0}n and P = {x}.
2: Let t = 0.
3: while t < T do
4: Select x from P uniformly at random.
5: Generate x′ by flipping each bit of x with prob. 1/n.
6: if @z ∈ P such that z � x′ then
7: P = (P \ {z ∈ P | x′ � z}) ∪ {x′}.
8: end if
9: t = t+ 1.

10: end while
11: return argmaxx∈P :ĉ(x)≤B f(x)

in local optima, we propose a new approach based on Pareto
Optimization [Qian et al., 2015] for maximizing a Monotone
function with a monotone Cost constraint, called POMC.

POMC reformulates the original problem Eq. (3) as a bi-
objective maximization problem

argmaxx∈{0,1}n
(
f1(x), f2(x)

)
,

where f1(x) =
{
−∞, ĉ(x) ≥ 2B

f(x), otherwise
, f2(x) = −ĉ(x).

That is, POMC maximizes the objective function f and min-
imizes the approximate cost function ĉ simultaneously. Set-
ting f1 to −∞ is to exclude overly infeasible solutions. Note
that we use a Boolean vector x ∈ {0, 1}n to represent a sub-
set X ⊆ V , where the i-th bit xi = 1 means that vi ∈ X ,
and xi = 0 means that vi /∈ X . In this paper, we will not
distinguish x ∈ {0, 1}n and its corresponding subset X .

In the bi-objective setting, both the two objective values
have to be considered for comparing two solutions x and x′.
x weakly dominates x′ (i.e., x is better than x′, denoted as
x � x′) if f1(x) ≥ f1(x

′) ∧ f2(x) ≥ f2(x
′); x dominates

x′ (i.e., x is strictly better, denoted as x � x′) if x � x′ and
either f1(x) > f1(x

′) or f2(x) > f2(x
′). But if neither x is

better than x′ nor x′ is better than x, they are incomparable.
The procedure of POMC is described in Algorithm 2.

Starting from the empty set {0}n (line 1), it repeatedly tries to
improve the quality of solutions in the archive P (lines 3-10).
In each iteration, a new solution x′ is generated by randomly
flipping bits of an archived solution x selected from the cur-
rent P (lines 4-5); if x′ is not dominated by any previously
archived solution (line 6), it will be added into P , and mean-
while those solutions worse than x′ will be removed (line 7).
Note that P always contains incomparable solutions.

POMC repeats for T iterations. The value of T is a param-
eter, which could affect the quality of the produced solution.
Their relationship will be analyzed in the next section, and we
will use the theoretically derived T value in the experiments.
After the iterations, the solution having the largest f value
and satisfying the budget constraint in P is selected (line 11).

Compared with the generalized greedy algorithm, POMC
may escape local optima by two different ways: (1) backward
search, i.e., flipping one bit value from 1 to 0; (2) multi-bit
search, i.e., flipping more than one 0-bits to 1-bits simultane-
ously. This advantage of POMC over the generalized greedy
algorithm will be theoretically shown in the next section.

5 Approximation Guarantee of POMC
We first prove the general approximation bound of POMC
in Theorem 2, where E[T] denotes the expected number of
iterations. Let Pmax denote the largest size of P during the
run of POMC, and let δĉ = min{ĉ(X ∪ v) − ĉ(X) | X ⊆
V, v /∈ X}. Note that we assume that δĉ > 0. The proof relies
on Lemma 3, which can be directly derived from Lemma 2.
This is because the proof of Lemma 2 does not depend on
Xi−1, but only requires that the element added into Xi−1 has
the largest ratio of the marginal gain on f and ĉ.
Lemma 3. For any X ⊆ V , let v∗ ∈
argmaxv/∈X

f(X∪v)−f(X)
ĉ(X∪v)−ĉ(X) . It holds that

f(X ∪ v∗)− f(X) ≥ αf ĉ(X∪v
∗)−ĉ(X)
B · (f(X̃)− f(X)).

Theorem 2. For the problem in Definition 3, POMC with
E[T] ≤ enBPmax/δĉ finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− 1/eαf) · f(X̃).

Proof. The proof is accomplished by analyzing the increase
of a quantity Jmax, which is defined as Jmax = max{j ∈
[0, B) | ∃x ∈ P, ĉ(x) ≤ j ∧ f(x) ≥ (1 − (1 − αf j

Bk)
k) ·

f(X̃) for some k}.
The initial value of Jmax is 0, since POMC starts from

{0}n. Assume that currently Jmax = i < B. Let x be the
corresponding solution with the value i, i.e., ĉ(x) ≤ i and

f(x) ≥
(
1−

(
1− αf i

Bk

)k) · f(X̃) for some k.

We first show that Jmax cannot decrease. If x is kept in P ,
Jmax obviously will not decrease. If x is deleted from P
(line 7 of Algorithm 2), the newly included solution x′ must
weakly dominate x, i.e., f(x′) ≥ f(x) and ĉ(x′) ≤ ĉ(x),
which makes Jmax ≥ i.

We then show that Jmax can increase by at least δĉ in
each iteration with probability at least 1

enPmax
. By Lemma 3,

we know that flipping one specific 0-bit of x (i.e., adding a
specific element) can generate a new solution x′ such that

f(x′)− f(x) ≥ αf ĉ(x
′)−ĉ(x)
B (f(X̃)− f(x)).

By applying the above two inequalities, we get

f(x′) ≥
(
1−

(
1− αf i

Bk

)k (
1− αf ĉ(x

′)−ĉ(x)
B

))
· f(X̃)

≥
(
1−

(
1− αf i+ĉ(x

′)−ĉ(x)
B(k+1)

)k+1
)
· f(X̃),

where the second inequality is by applying the AM-GM in-
equality. Since ĉ(x′) ≤ i+ ĉ(x′)− ĉ(x), x′ will be included
into P ; otherwise, x′ must be dominated by one solution in
P (line 6 of Algorithm 2), and this implies that Jmax has al-
ready been larger than i, which contradicts with the assump-
tion Jmax = i. After including x′, Jmax ≥ i+ĉ(x′)−ĉ(x) ≥

i+δĉ. Let Pmax denote the largest size of P during the run of
POMC. Thus, Jmax can increase by at least δĉ in one iteration
with probability at least 1

Pmax
· 1n (1−

1
n)
n−1 ≥ 1

enPmax
, where

1
Pmax

is a lower bound on the probability of selecting x in line
4 of Algorithm 2 due to uniform selection and 1

n (1 −
1
n)
n−1

is the probability of flipping a specific bit of x and keeping
other bits unchanged in line 5. Then, it needs at most enPmax

expected number of iterations to increase Jmax by at least δĉ.
Let v∗ ∈ argmaxv/∈x

f(x∪v)−f(x)
ĉ(x∪v)−ĉ(x) . It is easy to see that

after at most B
δĉ
· enPmax expected number of iterations,

Jmax + ĉ(x ∪ v∗) − ĉ(x) ≥ B. This implies that there ex-
ists one solution x in P satisfying that ĉ(x) ≤ Jmax < B and

f(x ∪ v∗) ≥
(
1−

(
1− αf Jmax+ĉ(x∪v∗)−ĉ(x)

Bk

)k)
· f(X̃)

≥
(
1−

(
1− αf B

Bk

)k) · f(X̃) ≥
(
1− 1

eαf

)
· f(X̃).

Let y = argmaxv∈V :ĉ(v)≤B f(v). We then get

f(x ∪ v∗) =f(x)+(f(x ∪ v∗)−f(x))≤f(x)+f(v∗)/αf
≤ f(x) + f(y)/αf ≤ (f(x) + f(y))/αf ,

where the first inequality is by Definition 1, and the last is by
αf ∈ [0, 1]. Thus, after at most enBPmax/δĉ iterations in
expectation, P must contain a solution x with ĉ(x) ≤ B and

f(x) + f(y) ≥ αf (1− 1/eαf) · f(X̃).

Note that {0}n will always be in P , since it has the smallest
ĉ value and no other solutions can dominate it. Thus, y can be
generated in one iteration by selecting {0}n in line 4 of Al-
gorithm 2 and flipping only the corresponding 0-bit in line 5,
whose probability is at least 1

Pmax
· 1n (1−

1
n)
n−1 ≥ 1

enPmax
.

That is, y will be generated in at most enPmax expected iter-
ations. According to the updating procedure of P (lines 6-8),
we know that once y is produced, P will always contain a
solution z � y, i.e., ĉ(z) ≤ ĉ(y) ≤ B and f(z) ≥ f(y).

By line 11 of Algorithm 2, the best solution satisfying the
budget constraint will be finally returned. Thus, POMC using
E[T] ≤ enBPmax/δĉ finds a solution with the f value at least

max{f(x), f(y)} ≥ (αf/2) · (1− 1/eαf) · f(X̃).

The above theorem shows that POMC can obtain the same
general approximation ratio as the generalized greedy algo-
rithm. By using an illustrative example of influence maxi-
mization with cardinality constraints, we then prove in Theo-
rem 3 that the generalized greedy algorithm will get trapped
in local optima, while POMC can find the global optimum.
As shown in Example 1, it has a unique global optimal solu-
tion {v1, . . . , vk−1, vk+1, . . . , v2k−1}. The proof idea is that
the generalized greedy algorithm will first select vk due to
the greedy nature and will be misled by it, while POMC can
avoid vk by backward search and multi-bit search, which will
be shown in the proof, respectively.

Example 1. The parameters of influence maximization with
cardinality constraints in Definition 5 are set as: the graph
G(V,E) is shown in Figure 1 where each edge has a proba-
bility 1 and n = 4k + 5, and the budget B = 2k − 2.

𝑣𝑘−1 𝑣𝑘 𝑣𝑘+1 𝑣2𝑘−1𝑣1 𝑣𝑘−2 𝑣𝑘+2

Figure 1: A social network graph.

Lemma 4 (Multiplicative Drift). [Doerr et al., 2012] Let S ⊆
R+ be a set of positive numbers with minimum smin. Let
{Xt}t∈N be a sequence of random variables over S ∪ {0}.
Let τ be the random variable that denotes the first time for
which Xt = 0. If there exists a real number δ > 0 such that
E[Xt−Xt+1 | Xt = s] ≥ δs holds for all s ∈ S, then for all
s0 ∈ S, we have E[τ | X0 = s0] ≤

(
1 + log(s0/smin)

)
/δ.

Theorem 3. For Example 1, POMC with E[T] =
O(Bn log n) finds the optimal solution, while the generalized
greedy algorithm cannot.

Proof. Since each edge probability is 1, the objective f(x) is
just the number of nodes reached from X . It is easy to verify
that the solution {v1, . . . , vk−1, vk+1, . . . , v2k−1} with the f
value n− 1 is optimal. For the generalized greedy algorithm,
we only need to consider the gain on f since the gain on the
cost c is always 1 for cardinality constraints. It first selects
vk, which has the largest f value 7. By the procedure of Al-
gorithm 1, we know that the output solution must contain vk,
which implies that the optimal solution cannot be found.

For the POMC algorithm, the problem is implemented
as maximizing f(x) and minimizing |x| simultaneously.
We then prove that POMC can find the optimal solution
{v1, . . . , vk−1, vk+1, . . . , v2k−1} by two different ways.

[Backward search] The idea is that POMC first efficiently
finds a solution with the maximum f value n, then reaches
the solution {v1, . . . , v2k−1} by deleting elements vi with i ≥
2k, and finally deleting vk can produce the optimal solution.

Let Ft = max{f(x)|x ∈ P} after t iterations of POMC.
We first use Lemma 4 to derive the number of iterations
(denoted as T1) until Ft = n. Let Xt = n − Ft. Then, the
variable τ in Lemma 4 is just T1, because Xt = 0 is equiva-
lent to Ft = n. Since E[Xt −Xt+1|Xt] = E[Ft+1 − Ft|Ft],
we only need to analyze the change of Ft. Let x̂ be the
corresponding solution with f(x̂) = Ft. First, Ft will not de-
crease, since deleting x̂ in line 7 of Algorithm 2 implies that
the newly included solution x′ � x̂, i.e, f(x′) ≥ f(x̂). We
then show that Ft can increase by flipping only one 0-bit of
x̂. Consider that x̂ is selected in line 4 and only x̂i is flipped
in line 5, whose probability is at least 1

Pmax
· 1
n (1 −

1
n)
n−1.

If x̂i = 0, the newly generated solution x′ = x̂ ∪ vi. By
the monotonicity of f , f(x′) = f(x̂ ∪ vi) ≥ f(x̂). If the
inequality strictly holds, x′ now has the largest f value and
will be added into P , which leads to Ft+1 = f(x̂∪ vi) > Ft.
If f(x̂∪vi) = f(x̂), obviously Ft+1 = Ft = f(x̂∪vi). Thus,

E[Xt−Xt+1|Xt] = E[Ft+1−Ft|Ft] ≥
∑
i:x̂i=0

f(x̂∪vi)−f(x̂)
enPmax

=

∑
v∈V \x̂

(
f(x̂∪v)−f(x̂)

)
enPmax

≥ f(V)−f(x̂)
enPmax

= n−Ft
enPmax

= Xt
enPmax

,

where the second inequality is by the submodularity of f , i.e.,
Eq. (2). Note that X0 ≤ n ∧ smin = 1. By Lemma 4, we get
E[T1] = E[τ | X0] ≤ enPmax(1 + log n).

From Example 1, we know that a solution x with f(x) = n
must contain v1, . . . , v2k−1. Let xi (0 ≤ i ≤ n − (2k − 1))
denote a solution with f(xi) = n and |xi| = 2k − 1 + i.
P will always contain exactly one xi, because any solution
with the f value smaller than n cannot dominate xi and the
solutions in P are incomparable. By selecting xi in line 4
and flipping only one of the last i 1-bits, whose probability
is at least 1

Pmax

i
n (1 −

1
n)
n−1, xi−1 will be generated. Since

xi−1 � xi, xi will be replaced by xi−1. Let T2 denote
the number of iterations until P contains x0. Thus, we get
E[T2] ≤

∑n−(2k−1)
i=1

enPmax

i ≤ enPmax(1 + log n).

After finding x0 = {v1, . . . , v2k−1}, the optimal solution
can be generated by selecting x0 in line 4 and flipping only
the 1-bit corresponding to vk in line 5, whose probability is
at least 1

Pmax
· 1n (1−

1
n)
n−1. Denote the number of iterations

in this phase as T3. We then have E[T3] ≤ enPmax.
Since P only contains incomparable solutions, each value

of one objective can correspond to at most one solution in
P . The solutions with |x| ≥ 2B have the f value −∞,
and must be excluded from P . Thus, Pmax ≤ 2B. By
combining the above three phases, we get that the expected
number of iterations for POMC finding the optimal solution is

E[T] ≤ E[T1] + E[T2] + E[T3] = O(Bn log n).

[Multi-bit search] Let xi (2 ≤ i ≤ 2k − 2) denote the
best solution with |x| = i. It is easy to verify that xi must
contain vk−1 and vk+1, and inserting a specific element into
xi can generate one xi+1. The idea is that flipping the two
0s (corresponding to vk−1 and vk+1) of the solution {0}n
simultaneously can find x2; then following the path x2 →
x3 → · · · → x2k−2 can produce the optimal solution.

The probability of generating x2 from {0}n is at least
1

Pmax
· 1
n2 (1 − 1

n)
n−2 ≥ 1

en2Pmax
. Note that once xi is gen-

erated, it will always be in P , since it cannot be dominated
by any other solution. The probability of xi → xi+1 is at
least 1

Pmax
· 1
n (1 −

1
n)
n−1 ≥ 1

enPmax
, since it is sufficient to

select xi in line 4 and then flip only one specific 0-bit. Thus,

E[T] ≤ en2Pmax + (2k − 4) · enPmax = O(Bn2).

Taking the minimum of the expected number of itera-
tions for finding the optimal solution by backward search and
multi-bit search, the theorem holds.

6 Experiments
We empirically compare POMC with the generalized greedy
algorithm (denoted as Greedy), the previous best algo-
rithm [Zhang and Vorobeychik, 2016], on sensor placement
and influence maximization with both cardinality and rout-
ing constraints. Note that we implement the enhancement of
Greedy, that is, elements continue to be added in line 7 of Al-
gorithm 1 until the budget constraint is violated. As POMC
is a randomized algorithm, we repeat the run 10 times inde-
pendently and report the average results.

5 6 7 8 9 10
Budget B

7

7.5

8

8.5

9
En

tro
py

POMC
Greedy

0.5 0.6 0.7 0.8 0.9 1
Budget B

4.5

5

5.5

6

6.5

7

7.5

En
tro

py

POMC
Greedy

5 6 7 8 9 10
Budget B

9.8

9.9

10

10.1

10.2

En
tro

py

OPT
POMC
Greedy

0.5 0.6 0.7 0.8 0.9 1
Budget B

6.5

7

7.5

8

8.5

9

9.5

En
tro

py

POMC
Greedy

(a) (Berkeley, cardinality) (b) (Berkeley, routing) (c) (Beijing, cardinality) (d) (Beijing, routing)

Figure 2: Sensor placement (entropy: the larger the better).

5 10 15 20 25 30
Budget B

80

100

120

140

160

180

In
flu

en
ce

 S
pr

ea
d

POMC
Greedy

(a) (Digg, cardinality)

5 6 7 8 9 10
Budget B

40

50

60

70

80
In

flu
en

ce
 S

pr
ea

d
POMC
Greedy

(b) (Synthetic, routing)

Figure 3: Influence Maximization (spread: the larger the better).

0 20 40 60
Running time in Bn

7.5

8

8.5

9

En
tro

py

POMC Greedy

4Bn 55Bn

(a) Berkeley, cardinality, B = 10

0 10 20 30
Running time in n2

2

3

4

5

6

7

8

En
tro

py

POMC Greedy

2n2 28n2

(b) Berkeley, routing, B = 1

Figure 4: Performance v.s. running time of POMC.

Sensor Placement. We use two real-world data sets:
one (http://db.csail.mit.edu/labdata/labdata.
html) is collected from sensors installed at 55 locations of
the Intel Berkeley Research lab; the other [Zheng et al., 2013]
is air quality data collected from 36 monitoring stations in
Beijing. The light (discretized into 5 bins with equal size)
and temperature measures are extracted, respectively. The
routing network is constructed as a complete graph, where
the edge cost corresponds to the physical distance between
two locations (normalized to [0,1]) and the node cost is set
as 0.1. Note that the entropy is calculated using the observed
frequency; the routing cost is approximately computed by
the nearest neighbor method [Rosenkrantz et al., 1977].

For cardinality and routing constraints, the budget B is
set as {5, 6, . . . , 10} and {0.5, 0.6, . . . , 1}, respectively. The
results plotted in Figure 2 show that POMC is better than
Greedy in most cases, and never worse. Note that on Fig-
ure 2(c) (where OPT denotes the optimal solution by exhaus-
tive enumeration), Greedy has already been nearly optimal.

Influence Maximization. For cardinality constraints,
we use a real-world data set (http://www.isi.edu/
˜lerman/downloads/digg2009.html) collected from
the social news website Digg. It contains two tables, the
friendship links between users and the user votes on news sto-
ries [Hogg and Lerman, 2012]. After preprocessing, we get a
directed graph with 3523 nodes and 90244 edges. We use the
method in [Barbieri et al., 2012] to estimate the edge proba-
bilities from the user votes. For routing constraints, we use
simulated networks. A social network with 400 nodes is con-
structed by the well-known Barabasi-Albert (BA) model [Al-
bert and Barabási, 2002], and the edge probability is set as
0.1. A routing network is constructed by the Erdos-Renyi
(ER) model [ErdőS and Rényi, 1959], which adds one edge
with probability 0.02; the node cost is set as 0.1 and the edge
cost is the random Euclidean distance between nodes.

For estimating the influence spread, i.e., the expected num-
ber of active nodes, we simulate the diffusion process 1,000
times independently and use the average as an estimation.
The results in Figure 3 show that POMC performs better.

Running Time. For the number T of iterations of POMC,
we used enBPmax/δĉ suggested by Theorem 2. For cardinal-
ity constraints, T is 2eB2n, since Pmax ≤ 2B (as in the proof
of Theorem 3) and δĉ = 1; Greedy takes the time in the order
of Bn. Since 2eB2n is the theoretical upper bound (i.e., a
worst case) for POMC being good, we empirically examine
how effective POMC is in practice. By selecting Greedy as
the baseline, we plot the curve of the entropy over the run-
ning time for POMC on the Berkeley data with B = 10, as
shown in Figure 4(a). The x-axis is in Bn, the running time
of Greedy. We can observe that POMC takes about only 7%
(4/55) of the worst-case time to achieve a better performance.
This implies that POMC can be efficient in practice.

For routing constraints, we set Pmax = n: when the num-
ber of solutions in P exceeds n, we delete the solution with
the smallest ratio of f and ĉ except the best feasible one.
Since at least a node cost 0.1 is increased, δĉ ≥ 0.1. We
thus used T = 10eBn2 for POMC. The time of Greedy is
in the order of n2. From Figure 4(b), we can observe that
POMC also quickly reaches a better performance.

7 Conclusion
In this paper, we study the problem of maximizing monotone
functions with monotone cost constraints. We first extend the
previous analysis to show the approximation ratio of the gen-
eralized greedy algorithm. We then propose a new algorithm
POMC, and prove that POMC can obtain the same general
approximation ratio as the generalized greedy algorithm, but
can have a better ability of avoiding local optima. The supe-
rior performance of POMC is also empirically verified.

References
[Albert and Barabási, 2002] R. Albert and A.-L. Barabási.

Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1):47, 2002.

[Barbieri et al., 2012] N. Barbieri, F. Bonchi, and G. Manco.
Topic-aware social influence propagation models. In Pro-
ceedings of the 12th IEEE International Conference on
Data Mining (ICDM’12), pages 81–90, Brussels, Bel-
gium, 2012.

[Conforti and Cornuéjols, 1984] M. Conforti and
G. Cornuéjols. Submodular set functions, matroids
and the greedy algorithm: Tight worst-case bounds and
some generalizations of the Rado-Edmonds theorem.
Discrete Applied Mathematics, 7(3):251–274, 1984.

[Das and Kempe, 2011] A. Das and D. Kempe. Submodu-
lar meets spectral: Greedy algorithms for subset selec-
tion, sparse approximation and dictionary selection. In
Proceedings of the 28th International Conference on Ma-
chine Learning (ICML’11), pages 1057–1064, Bellevue,
WA, 2011.

[Doerr et al., 2012] B. Doerr, D. Johannsen, and C. Winzen.
Multiplicative drift analysis. Algorithmica, 64(4):673–
697, 2012.

[ErdőS and Rényi, 1959] P. ErdőS and A. Rényi. On random
graphs I. Publ. Math. Debrecen, 6:290–297, 1959.

[Herer, 1999] Y. Herer. Submodularity and the traveling
salesman problem. European Journal of Operational Re-
search, 114(3):489–508, 1999.

[Hogg and Lerman, 2012] T. Hogg and K. Lerman. Social
dynamics of digg. EPJ Data Science, 1(5):1–26, 2012.

[Iyer and Bilmes, 2013] R. Iyer and J. Bilmes. Submodu-
lar optimization with submodular cover and submodular
knapsack constraints. In Advances in Neural Information
Processing Systems 26 (NIPS’13), pages 2436–2444, Lake
Tahoe, NV, 2013.

[Iyer et al., 2013] R. Iyer, S. Jegelka, and J. Bilmes. Curva-
ture and optimal algorithms for learning and minimizing
submodular functions. In Advances in Neural Information
Processing Systems 26 (NIPS’13), pages 2742–2750, Lake
Tahoe, NV, 2013.

[Kempe et al., 2003] D. Kempe, J. Kleinberg, and É. Tardos.
Maximizing the spread of influence through a social net-
work. In Proceedings of the 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD’03), pages 137–146, Washington, DC, 2003.

[Khuller et al., 1999] S. Khuller, A. Moss, and J. Naor. The
budgeted maximum coverage problem. Information Pro-
cessing Letters, 70(1):39–45, 1999.

[Krause and Guestrin, 2005] A. Krause and C. Guestrin. A
note on the budgeted maximization of submodular func-
tions. Technical Report No. CMU-CALD-05-103, 2005.

[Krause et al., 2008] A. Krause, A. Singh, and C. Guestrin.
Near-optimal sensor placements in Gaussian processes:
Theory, efficient algorithms and empirical studies. Jour-
nal of Machine Learning Research, 9:235–284, 2008.

[Lin and Bilmes, 2010] H. Lin and J. Bilmes. Multi-
document summarization via budgeted maximization of
submodular functions. In Proceedings of the 11th Annual
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL’10), pages
912–920, Los Angeles, CA, 2010.

[Nemhauser and Wolsey, 1978] G. L. Nemhauser and L. A.
Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of Operations
Research, 3(3):177–188, 1978.

[Nemhauser et al., 1978] G. L. Nemhauser, L. A. Wolsey,
and M. L. Fisher. An analysis of approximations for max-
imizing submodular set functions – I. Mathematical Pro-
gramming, 14(1):265–294, 1978.

[Qian et al., 2015] C. Qian, Y. Yu, and Z.-H. Zhou. Subset
selection by Pareto optimization. In Advances in Neu-
ral Information Processing Systems 28 (NIPS’15), pages
1765–1773, Montreal, Canada, 2015.

[Qian et al., 2016] C. Qian, J.-C. Shi, Y. Yu, K. Tang, and
Z.-H. Zhou. Parallel Pareto optimization for subset selec-
tion. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence (IJCAI’16), pages 1939–
1945, New York, NY, 2016.

[Rosenkrantz et al., 1977] D. J. Rosenkrantz, R. E. Stearns,
and P. M. Lewis, II. An analysis of several heuristics for
the traveling salesman problem. SIAM Journal on Com-
puting, 6(3):563–581, 1977.

[Vondrák, 2010] J. Vondrák. Submodularity and curvature:
The optimal algorithm. RIMS Kokyuroku Bessatsu B,
23:253–266, 2010.

[Zhang and Vorobeychik, 2016] H. Zhang and Y. Vorobey-
chik. Submodular optimization with routing constraints. In
Proceedings of the 30th AAAI Conference on Artificial In-
telligence (AAAI’16), pages 819–826, Phoenix, AZ, 2016.

[Zheng et al., 2013] Y. Zheng, F. Liu, and H.-P. Hsieh. U-
air: When urban air quality inference meets big data.
In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD’13), pages 1436–1444, Chicago, IL, 2013.

