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Abstract

In real-world decision-making tasks, learning an optimal policy without a trial-
and-error process is an appealing challenge. When expert demonstrations are
available, imitation learning that mimics expert actions can learn a good policy ef-
ficiently. Learning in simulators is another commonly adopted approach to avoid
real-world trials-and-errors. However, neither sufficient expert demonstrations nor
high-fidelity simulators are easy to obtain. In this work, we investigate policy
learning in the condition of a few expert demonstrations and a simulator with
misspecified dynamics. Under a mild assumption that local states shall still be
partially aligned under a dynamics mismatch, we propose imitation learning with
horizon-adaptive inverse dynamics (HIDIL) that matches the simulator states with
expert states in a H-step horizon and accurately recovers actions based on inverse
dynamics policies. In the real environment, HIDIL can effectively derive adapted
actions from the matched states. Experiments are conducted in four MuJoCo loco-
motion environments with modified friction, gravity, and density configurations.
Experiment results show that HIDIL achieves significant improvement in terms of
performance and stability in all of the real environments, compared with imitation
learning methods and transferring methods in reinforcement learning.

1 Introduction

Reinforcement Learning (RL) [1] has achieved remarkable success in virtual environments like Atari
games [2], StarCraft II [3], and Go [4]. The principal commonality shared by these virtual environ-
ments (predefined games or man-made simulators) is the access to unlimited training data. Such
a virtual trial-and-error makes the learning process not only faster but also safer, since execution
failures lead to zero physical damage.

Current approaches to apply RL in real-world decision-making tasks without a costly trial-and-error
process can be divided into two major categories. One is Imitation Learning (IL) that obtains a
policy by mimicking the behavior of human experts from demonstrations. The other is to train a
policy in a simulator and then adapt it to the real world. Both approaches have their own limitations
— collecting sufficient expert demonstrations or building a high-fidelity simulator that perfectly
recovers real environments are both laborious and expensive. A problem naturally arises: How
can we relax the requirements of these two methods yet yield a ready-to-deploy policy. Imagine
a feasible scenario that we have a few expert demonstrations and a simulator with misspecified
dynamics.
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In this paper, we propose a method that learns to imitate experts with a few demonstrations and
a simulator with misspecified dynamics in a completely offline manner (i.e. no sampling process
in the real world). This setting has been rarely studied before, except for in [5]. None of the
two common paradigms of IL, Behavioral Cloning (BC) [6] or Generative Adversarial Imitation
Learning (GAIL) [7] can be directly applied in this task. BC treats policy learning as a supervised
learning task on expert data. Although BC works in certain environments and is completely offline,
it violates a key assumption of statistical supervised learning by considering past predictions that
affect the distribution of future inputs. This intrinsic drawback leads to compounding error [8, 9]
during policy execution and tends to take the agent to an incorrect state. GAIL, on the other hand,
shows better generalization, but requires sampling in the environment. Empirical results in the
previous work [10] also prove GAIL does not work if a dynamics mismatch exists.

Our method tackles this hard problem with two key techniques: (1) Horizon-adaptive Inverse Dy-
namics (HID) and (2) Policy Optimization under Distribution Constraint (PODC). In the training
phase, HID learns from expert data in a supervised manner. K ensemble HID models are also
trained to estimate the uncertainty of goal state to guide PODC. PODC learns a simulator policy in
the simulator by constraining its state distribution with expert data. The state is re-weighted based on
the uncertainty estimated by HID ensemble. Since direct optimization over a state distribution is in-
tractable, we adopt Generative Adversarial Networks (GANs) [11]. The final optimization objective
takes a similar form as described in Generative Adversarial Imitation Learning from Observation
(GAILfO) [12]. In the deployment phase, the simulator policy runs in the simulator for several steps
to generate short-term goals. HID then selects the best goal among them and recovers an action
based on the state-goal pair.

We evaluate the efficacy of our algorithm with four continuous-control locomotion tasks from Mu-
JoCo [13]. In our experiments, an expert policy is trained under a modified dynamics (serving as
a “real-world” dynamic), where one of the gravity, friction and density configurations is changed.
A few trajectories are then collected by the expert policy as a fixed size expert data. The default
dynamics, serving as the simulator, is where the imitator’s policy is learned. The range of modifica-
tion is {0.5, 1.5, 2.0}, which is sufficient to show that our algorithm is effective and robust to a wide
range of dynamics mismatch. We show that our method yields much better policies than baseline
IL algorithms in all these tasks, leading to a successful transfer of expert skills to an imitator in an
environment different from where the expert acts without any sampling process.

2 Background

2.1 Preliminaries

Reinforcement learning (RL). RL solves sequential decision-making problems by instructing an
agent to interact with the environment and optimize the policy. An RL environment is usually mod-
eled as an MDP which is characterized by 〈S,A,R, T , γ〉, where S is the state space, and A is
the action space. Given an action at at state st, the next state is determined by the state transi-
tion function:st+1 ∼ T (·|st, at), and reward is governed by reward function:rt ∼ R(st, at). The
optimization objective of RL is to train a policy π to maximize the expected discounted accumu-
lated rewards, Eπ[

!∞
t=0 γ

trt] , where γ ∈ (0, 1). In this paper, the dynamics mismatch refers to T
functions of two MDPs being different from each other and the rest remaining the same.

Imitation learning (IL). IL methods aim to train a policy to mimic the expert’s behavior [14, 9, 15]
with expert demonstrations DE = {(s0, a0), (s1, a1) · · · } and no extra reward signal. There are
many ways to utilize expert demonstrations, such as BC which directly maximizes the likelihood
of expert actions under the training policy for each state appears in the expert demonstration, and
inverse reinforcement learning (IRL) [16, 17, 18] that finds a cost function under which the expert is
uniquely optimal. GAIL frames IL as an occupancy-measure matching or divergence minimization
problem. It alternatively trains a policy πθ and a discriminator Dω : S ×A → [0, 1] to optimize the
min-max objective similar to GANs:

min
πθ

max
Dω

E(s,a)∼πE [logDω(s, a)] + E(s,a)∼πθ
[log (1−Dω(s, a))]− λH (πθ) , (1)
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Figure 1: Illustration of the structure of the model and the deployment procedure. The entire model
is composed of two parts: one policy is trained and utilized in the simulator, while the other is trained
and utilized in the real environment. Algorithm 2 describes the detailed procedure of joint training.

where D : S × A → [0, 1] is a classifier trained to discriminate between the state-action pairs
from the expert and those from the imitator, and λH (πθ) is the entropy term. The original GAIL
approach can be modified to work in the absence of actions. Specifically, Eq.(1) can be altered to
use a state-dependent discriminator Dω(s), and state-visitation (instead of state-action visitation)
distributions ρE(s) and ρπθ

(s). GAILfO is an example of such method that learns a discriminator
Dω : S × S → [0, 1] instead. GAIL and GAILfO recover the same policy if converged to the
optimum.

Our method contains a variant of GAILfO to learn policy in a simulator. The policy learned with
GAIL is not directly deployed, but is used to generate good future states. The fake samples are also
re-weighted to perform a partial matching.

Inverse Dynamics and Goal-Conditioned Policy. Given a state transition tuple (st, at, st+1), the
inverse dynamics takes (st, st+1) as input and recovers action at to reflect local environment transi-
tions. Most previous works use inverse dynamics to perform curiosity-driven exploration [8, 19, 20].
PCHID [21] learns a k-step policy by directly using Hindsight Inverse Dynamics. Goal-conditioned
policy also takes a state pair (st, sg) as input and outputs action at to reach the goal state sg from
st. LfP [22] learns a goal conditioned policy from “playing” with data collected by a human demon-
strator, and goalGAIL [23] performs goal-conditioned imitation learning with goal-labeled expert
demonstrations. GCSL [24] shows a goal conditioned policy learned in a supervised way can still
solve sequential decision tasks. RPL [25] decomposes long-horizon tasks into several sub-tasks that
are solvable by k-step local goals.

Our method contains HID which extends one-step future state st+1 in the original inverse dynamics
to a set of H future states {st+h|h ∈ {1 . . . H}}. HID regards these near-future states as local
goals of the current state. It can be viewed as a hybrid of inverse dynamics and goal-conditioned
policy. We name our method "horizon-adaptive inverse dynamics". Experiment results show that
our method generalizes better on a fixed expert dataset without a specially designed or relabeled
goal state.

2.2 Related Work

Two key topics of our work that extend imitation learning are (1) learning with dynamics mismatch;
(2) an offline training manner. There are some works tackling dynamics mismatch in IL. A common
technique is to constrain the state distribution of agents and experts. I2L [10] extends the GAIL
framework to a two-stage optimization problem by first minimizing the distribution shift between
the replay buffer and expert demonstrations and then performing conventional GAIL optimization
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Algorithm 1 Deployment Process of HIDIL

Input: K HID policies πHID, simulator policy πsim, discriminator Dω , simulator.
Output: Policy πreal running in real environment.

while not done do
Observe st from real environment.
Set simulator state to st.
Execute πsim in the simulator for H steps and get {st+1, . . . , st+H}.
Select sg = argmaxsg∈{st+1,...,st+H}Dω(st, sg).
Output at = πHID(st, sg), where at is the output closest to the mean of the ensemble models’
output.

end while

process; SAIL [26] aligns the states visited by agents and experts by minimizing the Wasserstein
Distance between them. Such techniques are also used in off-policy reinforcement learning to sta-
bilize the training process. CSDS [27] uses a density estimator to estimate the state distribution and
then develops a constrained off-policy gradient objective that minimizes the distribution shift.

Regarding the second topic, BC and its variations [28, 29] are the only methods capable of training
policies in the offline setting simply from expert demonstrations. All these methods train policies
in a supervised manner. Our work makes the most of expert demonstrations and a simulator with
imperfect dynamics and provides a feasible way to imitate the expert’s policy in an offline manner.
Christiano et al. [5] study offline imitation learning with a simulator similar to our setting. They
propose a method that combines an inverse dynamics policy learned with expert demonstrations and
another policy generating st+1 by sampling in the simulator. The similarities and differences with
their work are elaborated in Sec. 3.

3 Imitation Learning with Horizon-adaptive Inverse Dynamics

We study offline imitation learning with expert demonstrations and a misspecified simulator. To vali-
date our method, we configure simulators in both “simulation” and “real-world” environments as the
amplitude of variation between “simulation” and “real-world” environments can be easily adjusted.
Let DE = {{s0, a0, ..., sT , aT }1, . . . , {s0, a0, ..., sT , aT }i}E denote a fixed set of demonstrations
collected by experts in the real world. We start by analyzing why previous methods perform poorly
under this setting and propose our improved method.

Figure 2: An illustration of reward dis-
crepancy between the policy trained in
the simulator and the policy deployed in
the real world.

Motivation. Christiano et al. [5] propose a method to
combine an inverse dynamics policy learned with expert
demonstrations and a simulator policy πsim trained in sim-
ulator. While in deployment, πsim runs in the simulator to
generate the next state, and then the inverse dynamics pol-
icy recovers an action. However, their practical algorithm
performs worse than expected when expert data is limited
or the dynamics change more than a little. Two reasons,
according to our analysis, cause this phenomenon: (1) a
policy is trained in the simulator from scratch, leaving the
expert data alone. The simulator policy will inevitably
visit states that are dissimilar from expert data since this
policy is trained independently of the expert data. Thus
the inverse dynamics policy outputs an improper action
when receiving such states. Fig. 2 shows the reward dis-
crepancy between the policy trained in the simulator and
the policy deployed in the real world. Though the policy is trained, it does not provide correct
guidance to the inverse dynamics in the real environment, resulting in poor performance; (2) an as-
sumption that 1-step inverse dynamics is similar across simulator and the real world is made. Such
assumption usually fails under the dynamics mismatch. We loosen this constraint by introducing
the idea of H-step equivalence that two policies in different dynamics can reach the same goal state
sg from any st within H steps, as illustrated in Fig. 3. Our method implements these two ideas by
designing modules elaborated in the following sections. The key idea of our method is to match
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states in the simulator to expert states in a H step horizon and accurately recover actions based on
inverse dynamics policies.

𝑠𝑡+1 = 𝑠𝑡′+h

𝑠𝑡+1′ …

𝑠𝑡 = 𝑠𝑡′

dynamic I
dynamic II

Figure 3: Illustrations of agents in different dynamics takings different steps to reach the same goal.

Fig. 1 shows the overall structure of our method and the workflow in the deployment process. Our
method is comprised of two modules, one being a horizon-adaptive inverse dynamics that mimics
expert behaviors, the other being a policy πsim trained in the simulator to generate future states.
While deploying in the real world, we generate actions to be executed in the following procedure:
given state st observed in the real environment, we set it as the current state in the simulator and
simulate with policy πsim for H steps to get a set of future states {st+h|h ∈ {1, . . . , H}}. Then the
agent chooses the best one from them as the goal state sg . The standard for “best” will be discussed
later. Finally, the agent in the real world executes actions recovered from inverse dynamics policy.
The training and the deployment procedure are elaborated in Alg. 1 and Alg. 2 respectively.

3.1 Horizon-adaptive Inverse Dynamics (HID)

Usually, an inverse dynamics policy is trained on (st, st+1, at) ∼ DE. We propose horizon-adaptive
inverse dynamics (HID) that is trained on extended expert demonstrations (st, at, st+h), where h ∈
{1, . . . , H}. All inverse dynamics policies with different horizons share one neural network for two
reasons. First, it introduces an inductive bias that local actions are similar given the current state
and a goal within a horizon of H . It helps the goal-conditioned policy to generalize better when
st or st+h is somewhat inaccurate. Second, since expert data are very limited in the offline setting,
training different networks for different horizons or using a more sophisticated network structure
may incur severe overfitting. The optimization objective is formalized as:

L(θ,D) = E(st,st+h,at)∼DE‖πθ(·|st, st+h)− at‖2
2. (2)

3.2 Uncertainty Estimation from HID Ensemble

Expert data can be further exploited to decide if a given state pair is located inside the distribution
of expert data by estimating its uncertainty. Consider that expert demonstrations in our case are
fixed and limited, a simple but practical approach to estimate the uncertainty is to use an ensemble
of several HIDs with different initialization. The variance over the HIDs should be high outside the
experts’ distribution, since the data is sparse, but low inside the experts’ distribution since the data is
dense [30]. This can help πsim generate future goal states with low uncertainty. The concrete usage
is described in the next subsection. The variance of the output of the ensembled policies’ is written
as:

Var(πHID(at|st, st+h)) =
1

K

K"

k=1

#
πk
HID(at|st, st+h)−

1

K

K"

K=1

πk
HID(at|st, st+h)

$2

. (3)

Since we have H horizon-adaptive inverse dynamics policies, we select the action closest to the
mean value as the action to be executed during the deployment phase.

3.3 Policy Optimization under Distribution Constraint

Following the aforementioned motivation, the target for πsim is to generate state-goal pairs that
resemble expert data. Directly minimizing the distance between two complex distributions is in-
tractable. However, f -GAN [31] proves that generative-adversarial training is equivalent to mini-
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Algorithm 2 Training Procedure of HIDIL

Input: Expert demonstrations DE, number of ensemble policies K, horizon H , simulator.
Output: K HID policies πHID, discriminator Dω , simulator policy πsim.

Initialize K horizon-adaptive inverse dynamics policies πHID = {π1
HID, . . . ,π

K
HID}.

// Train πHID
Generate τ̂exp by relabelling (st, at) ∼ τexp to (st, at, sg) where sg ∼ {st+1, . . . , st+H}.
for k = 1 → K do

while not converged do
Sample B from τ̂exp.
Train πk

HID(at|st, sg) on B.
end while

end for
// Train πsim
Initialize πsim.
while not converged do

Run πsim in simulator and collect trajectories τpol.
Generate τ̂pol by relabelling (st, at) ∼ τpol to (st, at, sg) where sg ∼ {st+1, . . . , st+H}.
for each discriminator update iteration do

Sample Bpol from τ̂pol and Bexp from τ̂exp.
Update Dω using Eq.(5).

end for
Compute trajectory reward rt = maxsg∼{st+1,...,st+H} logDω(st, sg).
Update πsim using PPO.

end while

mizing certain kinds of distances between two distributions. A training objective that resembles the
form of GAILfO can be written as:

min
πθ

max
Dω

E(s,s′)∼πθ
[log (Dω (s, s′))] + E(s,s′)∼πE [log (1−Dω (s, s′))] . (4)

Note the entropy term is omitted here since we do not need the policy itself, but the good goal states.
The generator is implicit in the form of a policy interacting with the environment and collecting
samples. Recalling our claims on the H-step equivalence of policies, we are extending the input to
H state-goal pairs for every s.

min
πθ

max
Dω

E(st,st+h)∼πθ

%
H"

h=1

wh log (Dω (st, st+h))

&
+ E(s,sh)∼πE

%
H"

h=1

log (1−Dω (s, sh))

&
.

(5)

We want πsim to generate goal states that are less uncertain. Unlike previous work [32] that simply
adds the variance of ensemble models’ output to reward, we utilize the variance to re-weight the
data generated by πsim. It can be interpreted in the way that the discriminator mainly focuses on the
pairs that are within the expert distribution (i.e., with low variance (uncertainty)), rather than the full
set {(st, st+h), h ∈ {1, . . . , H}}. Such relaxation allows the policy to reach a good goal state via
some bad states in different dynamics. The weight wh is computed via a relaxed Softmax function
on the negation of the variance of (st, st+h) pair as equation 6 shows:

wh = σ (z/T) =
exp (−Var(πHID(at|st,st+h))/T)

!H
h=1 exp (

−Var(πHID(at|st,st+h)/T)
, (6)

where T is a hyper-parameter on the amplitude of softening the weight on the maximum goal state
sg . This operator falls back to mean when Ti → ∞. For Ti = 1, the original Softmax operator is
obtained. We use a relaxed Softmax to focus on the most relevant (or most correct) state-goal pairs.

Once the discriminator is fitted, the policy can be trained with any model-free RL algorithm on
the reward maxh∈{1,...,H} logDω(st, st+h). In our case, we choose Proximal Policy Optimization
(PPO) [33] as the policy optimization algorithm.
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4 Experiments

In this section, we evaluate our method in the MuJoCo physics simulator from OpenAI Gym. Dy-
namics mismatch is constructed by modifying the configuration files of MuJoCo. For reasons elabo-
rated in Sec. 3, we choose MuJoCo as both simulation and real-world environments. Specifically, the
default configuration is regarded as the simulation environment (Esim) and the modified environment
is regarded as the real-world environment (Ereal). We have ensured that none of the modifications
changes the observation space or action space. Experiment results will be shown in the three fol-
lowing themes:

1) training process in different MuJoCo environments with various dynamics;

2) state distributions of our simulator policy in Esim and expert policy in Ereal;

3) connection between the variance of ensemble’s outputs and the performance of HIDIL in Ereal.

4.1 Experiment Setting

In MuJoCo environments, gravity, friction, and density are the three configurations that influence en-
vironment dynamics without changing the observation space. In our experiments, we modify one of
them each time with three levels of amplitude: {0.5, 1.5, 2.0}. That is, the {gravity, friction, density}
of Ereal is the coefficient of Esim respectively. In all of our experiments, 10 expert demonstration
trajectories collected by a stochastic expert policy are given to all algorithms as expert demonstra-
tions. Short trajectories are omitted to ensure the performance of expert demonstrations is above a
certain threshold. Every method trained in the simulator samples 4M timesteps in Esim. The hori-
zon H in HIDIL is set to 5 and T is set to 1 by default across all tasks and dynamics configurations.
HIDIL is not sensitive to the setting of horizon and results are shown in Appendix A.3. The methods
that require supervised training, i.e. HID, are all trained until convergence. All results reported are
averaged with 3 random trials.

To the best of our knowledge, [5] is still the state-of-the-art method under this setting. Since there
is not an open-source code of their method, we do our best to reproduce their results and compare
HIDIL with it, along with a simpler version of HIDIL and a BC baseline. These methods are named
and concisely described as follows. 1) PPO+ID: [5] trains a policy in simulator and recovers an
action from an inverse dynamics policy; 2) GAILfO+ID: a simpler version of HIDIL taking one-
step (st, st+1) only, which trains a policy in simulator using original GAILfO and recovers an action
from an inverse dynamics policy; 3) BC: baseline method which trains a policy in a supervised
manner based on expert (st, at) pair. For brevity, we use πsim, πPPO and πGAILfO to represent the
simulator policy in HIDIL, PPO+ID, and GAILfO+ID respectively.

4.2 Experiment Results

Episodic reward of the deployed policy πreal. Fig. 4 shows the curves of the episodic reward of
the deployed policy πreal as the training of πsim progresses. We present results under the amplitude
of 1.5 for each type of dynamics mismatch. HIDIL behaves significantly better than the baseline
methods. GAILfO+ID also shows considerable results in some environments but suffers from high
variance and instability. It helps prove that even the simplest way to constrain the state distribution
in the training phase of a simulator could yield a passable policy. PPO+ID fails to imitate expert’s
policy in most environments except for HalfCheetah, probably because agents in HalfCheetah can
always run to the maximum timestep no matter how poorly they behave, thus bad states incur smaller
damage to the overall performance. HIDIL degrades into GAILfO+ID in some experiments in which
the goal state can be reached within 1-step, which reflects the "adaptivity" of HIDIL. Table 1 shows
the normalized scores of 4 methods in MuJoCo environments based on the final score when training
stops. HIDIL reaches a average of 78.1% of expert performance over all kinds of modifications and
environments while other methods are all below 65%. Since the expert fails to perform well under
some dynamics modifications in Ereal (e.g. Gravity ×2 in Hopper-v2), the experiment results in

Table 1: Normalized scores over all experiments.
Method HIDIL GAILfO+ID PPO+ID BC Expert

Normalized Score 78.1% 64.8% 32.8% 55.0% 100.0%
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Figure 4: Training curve of different methods when dynamics variety amplitude is 1.5.

(a) KL-divergence (b) Policy state distribution

Figure 5: Analysis of policy distribution similarity over πOurs and πPPO. (a). Estimated KL-
divergence when friction × 0.5. (b). Visualization of one dimension of state distributions over
policies following different training manners.

those environments are not taken into account. Experiment results of other levels of modification
amplitude can be found in Appendix A.1.

Analysis of state distribution similarity. We estimate state distribution similarity by calculat-
ing KL divergence between state distribution of our policy and the expert. Since the original KL-
divergence between policy state distributions is intractable, we simplify the calculation by estimating
KL-divergence independently in every dimension. Fig. 5 shows the numerical results of policy state
distribution similarity. Both numerical results on average KL-divergence and visualization on two
selected dimensions show states generated by our method align with expert data better.

Analysis of the correlation between variance and reward. Fig. 6 corroborates such a correlation
between the variance of the output of ensemble policies and the episodic reward of the deployed
policy during the training process. In all cases, the reward improves while the uncertainty decreases.
The results show that the deployed policy can reach a higher reward and be more stable if the final
variance is smaller. In some cases, we also find that a sudden rise in the variance indicates a drop in
the final performance, which proves to be an effective criterion to early-stop the training process in
the simulator.

Ablation studies on sample re-weighting are shown in Appendix B.
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Figure 6: Correlation between variance of ensemble models’ outputs and πreal’s performance.

5 Conclusions

In this paper, we propose HIDIL to solve an offline imitation-learning problem, in which a few expert
demonstrations and simulator with misspecified dynamics are given. We propose an idea of imitation
learning with horizon-adaptive inverse dynamics that matches state distributions for up to H steps.
To fully utilize expert demonstrations in the offline setting, we introduce an ensemble model to help
estimate the uncertainty and stabilize the training process. Experiment results in four locomotion
environments with modified friction, gravity, and density configurations show that HIDIL achieves
significant improvement in the real-world environment, compared with current imitation learning
and transfer RL methods. Based on the results of our work, we would like to point out that combining
expert data and an imperfect simulator in the offline setting is a promising idea to deploy RL in real-
world decision-making tasks and deserves more attention.

Broader Impact

In this paper, we present an offline imitation-learning approach that utilizes a few expert demon-
strations and a simulator with misspecified dynamics. Potentially, it can be used to improve the
performance of sim-to-real transfer without dangerous exploration in the early training stage of
conventional algorithms. Since RL has not been applied in complex real-world tasks, the ethical
concerns of this work are very limited. The major drawback is that the final policy πreal may
still produce undesirable actions or reach bad states. In the deployment phase, the agent should be
monitored carefully. Other researches on safe reinforcement learning may also help alleviate this
problem.
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A Full Experiment Results

A.1 Training Process on All Amplitudes of Variety
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Figure 7: Training process in four MuJoCo environments with various types of dynamics mismatch.

12



A.2 Empirical Correlation Between Variance and Reward
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Figure 8: Full results on the correlation between variance and episodic reward.
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A.3 Comparison between different horizons

Fig. 9 shows full experiment results when H = 3 and H = 5. In most experiments, the performance
under different horizons are about the same, while a larger horizon leads to better performance in
some other experiments.
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Figure 9: Comparison between (H = 3) and (H = 5).
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A.4 Ablation study on re-weighted GAILfO

We re-weight the discriminator loss of GAILfO and do ablation study on it. Fig. 10 shows the
ablation study on the re-weighted discriminator loss of fake data. Re-weighting the discriminator
loss leads to better performance.
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Figure 10: Ablation study on re-weighting.

B Convergence of GAILfO with/without re-weighting

Figure 11: Discriminator’s accuracy on real and fake samples.

It is worth noting that, although the generative training empirically derives a good policy πsim, the
GAN does not converge in most cases. In MuJoCo environments, the accuracy of the discriminator
on real and fake samples converge to around 0.8, which is distant from the desired 0.5, as Fig. 11
shows. Previous results on GAIL also confirm such an observation. It is partially due to the generator
being implicitly induced by a policy and can not be optimized directly. Despite HIDIL has reached
a good empirical performance, such results suggest that the distance between policy distribution
and expert distribution can be further optimized and the general framework proposed in this paper
could benefit from more recent advancements in constraining state distributions in Reinforcement
Learning.
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C Implementation Details

Hyper-parameter Value
Horizon 5
GAE λ, γ 0.95, 0.99
Tempreture 1
Policy network 4 layers, [128,256,128,64], relu
BC, ID network 2 layers, [100,100], relu
BC, ID optimizer, lr Adam, 1e-4
Ensemble model Nums 5
Discriminator epoch of GAILfO 5
Iterations Num. for training BC, ID 20000
Trajectories Num. of expert demonstrations 10
PPO optimizer, lr, batchsize, epoch, clip ratios Adam, 3e-4, 512, 10, 0.2
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