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Abstract

Learning policies in nonlinear representations is an im-
portant step toward real-world applications of reinforce-
ment learning in robotics. While functional representa-
tion has been widely applied in state-of-the-art super-
vised learning techniques (as known as boosting ap-
proaches) to adaptively learn nonlinear functions, in
reinforcement learning the boosting-style approaches
have been little investigated. Only a few pieces of work
explored in this direction, which however may suf-
fer from the occurring-probability-pursuing problem.
In this paper, to alleviate the problem, we propose to
employ a ranking-based objective function to guide the
policy search in a function space, resulting in the Poli-
cyBoost approach. Experiment results verify the effec-
tiveness as well as the robustness of the PolicyBoost.

Introduction
A good reinforcement learning algorithm would be able
to generalize well from limited feedbacks, sharing similar
principle with supervised learning algorithms. In supervised
learning, an algorithm is given a fixed training examples
and expected to build a model that correctly predicts unseen
instances. We may learn from successful supervised learn-
ing algorithms in designing strong reinforcement learning
algorithms. A noticeable off-the-shelf supervised learning
algorithm family is called boosting, with representatives as
AdaBoost (Freund and Schapire 1997), LogitBoost (Fried-
man, Hastie, and Tibshirani 2000), GradientBoost (Fried-
man 2001), etc. Most of them share a common routine (Ma-
son et al. 2000) that trains an additive combination of models
via the gradient descent in some function space. The perfor-
mance of booting algorithms is supported by both theoreti-
cal guarantees and many successful real-world applications.
Particularly, boosting approaches have a strong generaliza-
tion ability and a good adaptivity to nonlinear models, which
are also quite appealing in reinforcement learning.

Despite the powerful performance of boosting approaches
verified in supervised learning, there are few previous stud-
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ies investigating boosting-like approaches in reinforcement
learning. As far as we are aware, the only existing work is
the NPPG (Kersting and Driessens 2008), by which a policy
is formed by learning an additive model as the boosting ap-
proaches. It trains the model to directly maximize the total
reward objective function via the gradient ascent in a func-
tion space. However, we found that directly maximizing the
objective function on a small training trajectory set could
be the result of optimizing only the occurring probability of
these trajectories, which can be useful only when the policy
has been near optimal already. Inherited from boosting, the
NPPG method has a strong learning ability, which makes the
occurring-probability-pursuing problem even more severe.

In this paper, we propose the PolicyBoost approach that
maximizes the ranking-based objective function to alleviate
the occurring-probability-pursuing problem, which is opti-
mized by the gradient ascent method in a function space.
The new objective encourages a policy to rank the trajecto-
ries correctly according to their rewards, rather than encour-
aging maximizing the sum of rewards. Therefore, simply in-
creasing the occurring probability of training trajectories no
longer leads to a better objective value. Moreover, for a bet-
ter assessment of the gradient, it is quite useful to include
some good trajectories in the training set. Thus unlike NPPG
that throws away past samples, PolicyBoost maintains a pool
of good trajectories that have been experienced. We perform
empirical studies of PolicyBoost on several domains. Exper-
iment results reveal that, firstly, NPPG can be injured by the
occurring-probability-pursuing problem while PolicyBoost
does not. Secondly, PolicyBoost is shown to be not only ef-
fective to achieve good policies on the tested domains, but
also highly stable to its configuration parameters, which is
an important property for practical applications.

Background
Reinforcement Learning and Policy Gradient
In reinforcement learning, an autonomous agent is put in
an environment. The environment involves a state space
X , an action space A, a transition probability P such that
P (s′|s, a) gives the probability of being in state s′ after tak-
ing action a on state s, and a reward function r : X×X → R
that gives a reward value for every step (i.e., a transition
from a state to another). In this paper, we consider the state
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space being a vector space X = Rn of n features. A pol-
icy π is a decision function that gives a probability distri-
bution for actions, with π(a|s) denoting the probability of
choosing action a at state s by the policy. The agent seeks a
policy maximizing its long-term total reward. The long-term
total reward can be evaluated by the expected T -step reward
ρ(π) = E{ 1

T

∑T
t=1 rt | π}, and the expected discounted re-

ward, ρ(π) = E{
∑∞
t=1 γ

t−1rt | π}, where rt is the reward
at step t and γ is the discount factor.

Policy gradient methods (Williams 1992;
Kimura 1995; Peshkin 2001; Ng and Jordan 2000;
Peters 2010) are a branch of reinforcement learning ap-
proaches, which derive a policy by directly maximizing
the total reward via gradient ascent and can avoid the
policy degradation problem of the value function estima-
tion approaches (Bartlett and Baxter 2001). Considering
a finite execution of a policy, i.e., T -step horizon, all
the trajectories with length T constitute the trajectory
space T . For each trajectory τ = (s1, s2, . . . , sT+1), let
R(τ ) be its trajectory-wise reward, for the T -step setting
R(τ ) =

∑T
i=1 r(si, si+1)/T and for the discounted setting

R(τ ) =
∑T
i=1 γ

t−1r(si, si+1). The expected total reward
is then equivalent to

ρ(π) =

∫
T
pπ(τ )R(τ ) dτ , (1)

where the probability of the trajectory pπ(τ ) is pπ(τ ) =

p(sτ1 )
∏T
t=1 p

π(sτt+1 | sτt )

= p(sτ1 )
∏T
t=1

∫
A p(s

τ
t+1 | sτt , a)π(a | st) da.

Several policy gradient methods have been proposed, and
most of them consider the policy as a linear function with
parameter vector θ, i.e., π(a|s) = g(θ>s) for some prob-
ability function g. Then a general expression of the gra-
dient of the expected total reward w.r.t. θ is ∇θρ(πθ) =∫
τ∈T ∇θp

πθ (τ )R(τ )dτ . Once the gradient has been esti-
mated, the parameter can be updated by the gradient ascent
θt+1 = θt + ηt∇θρ(πθt) with a learning rate ηt.

A straightforward way to estimate the gradient is
via the finite difference (Orate et al. 1996), which
estimates the gradient by sampling some neigh-
bors of the current parameter vector. The REIN-
FORCE (Williams 1992) uses log-likelihood ratio trick
∇θpπθ (τ ) = pπθ (τ )∇θ log pπθ (τ ), such that the gradient
of the objective ∇θρ(πθ) can be estimated on a sample
of trajectories S = {τ1, . . . , τm} as that, for the k-th
dimension, ∇θkρS(πθk) = 1

m

∑m
i=1∇θk log pπθk (τi)R(τ )

= 1
m

∑m
i=1

∑T
t=1∇θk log pπθk (sτit+1 | s

τi
t )R(τ ).Moreover,

it usually plugs a constant b into the reward as (R(τ ) − b),
aiming to minimize the variance of the gradient for stability
(Greensmith, Bartlett, and Baxter 2004). In the actor-critic
framework, policy gradient has also been employed. For
example, considering the stationary distribution of states,
the gradient can be (Sutton et al. 2000)

∇θρ(πθ) =

∫
X
dπθ (s)

∑
a∈A

Qπθ (s, a)∇θπθ(a|s)ds,(2)

where dπ(s) is the probability of state s under the station-
ary distribution, andQπ(s, a) is the state-action value. More
variants are proposed in different aspects and settings (e.g.
(Peters and Schaal 2008; Bhatnagar et al. 2009)).

Non-Parameteric Policy Gradient
The non-parametric policy gradient (NPPG) method (Ker-
sting and Driessens 2008) is, to the best of our knowledge,
the only previous boosting-like approach that uses additive
function models to represent policies.

A policy π(a|s) is represented as a function g of some po-
tential function Ψ : X×A → R, i.e., πΨ(a|s) = g(Ψ(s, a)).
For discrete action spaces, g can be the Gibbs Sampling
function (i.e., the logistic regression function), πΨ(a|s) =

exp(Ψ(s,a))∑
a′ exp(Ψ(s,a′)) , and for continuous action spaces, g can

be the Gaussian function with parameter σ, πΨ(a|s) =
1√

2πσ2
exp

(
− (Ψ(s)−a)2

σ2

)
.

NPPG employs the gradient of Eq.(2) directly, except that
the gradient is with respect to the potential function (i.e.,
functional gradient),

∇Ψρ(πΨ)=

∫
X
dπΨ(s)

∑
a∈A

QπΨ(s, a)∇ΨπΨ(a|s)ds.

Then the potential function is updated as Ψk+1 = Ψk +
ηk∇Ψρ(πΨk),which results an additive combination of base
models, i.e., ΨK =

∑K
k=1 ηk∇Ψρ(πΨk) for K iterations.

Different with the gradient in parameter spaces, the gra-
dient in a function space ∇Ψρ(πΨk) is also a function but
can not be explicitly expressed. Then the point-wise esti-
mation is used (Friedman 2001) to approximate the gradi-
ent function via regression learning algorithms. Given a set
of state-action samples (which can be extract from the tra-
jectories), the value of the gradient function on each sam-
ple (state s and action a) is calculated as grad(s, a) =
Qπ(s, a)∇Ψ(s,a)πΨ(a|s). It then constructs a set of exam-
ples with features (s, a) and label grad(s, a), and derives
a model hk by regression learning from this set. Now the
update rule is by Ψk+1 = Ψk + ηkhk. Note this step is
a standard supervised regression task, and thus many well-
established learning algorithms with strong generalization
ability can be used here.

The Proposed Approach
The Occurring-Probability-Pursuing Problem
The executing policy is often different from the explo-
ration policy due to the introduced randomization for col-
lecting perturbated samples. Since Eq.(1) can be rewritten
as ρ(π) =

∫
τ∈T q(τ )p

π(τ )
q(τ ) R(τ )dτ for any exploration dis-

tribution q(τ )>0, the unbiased estimator of the gradient on
a sample S of trajectories from the distribution q is

∇ρS(π) =
1

m

∑m

i=1

pπ(τi)

q(τi)
∇ log pπ(τi)R(τi),

which is, at the same time, the exact gradient of the objective

ρS(π)=
1

m

m∑
i=1

pπ(τi)

q(τi)
R(τi)=ZS,π

1

m

m∑
i=1

pπ(τi)
ZS,π

q(τi)
R(τi),(3)

where ZS,π =
∑m
i=1 p

π(τi) is the normalization factor.
Note that ZS,π is commonly much smaller than 1, partic-
ularly when the whole trajectory space T is quite large and
the sample S is small.



Eq.(3) is actually the objective on a finite sample set. As
the transformation in Eq.(3), this objective can have two
components: one is the normalization factor ZS,π , and the
other component 1

m

∑m
i=1

1
q(τi)

pπ(τi)
ZS,π

R(τ ) is the weighted

correlation between the normalized probability pπ(τi)
ZS,π

and
the reward R(τ ). When increasing the objective Eq.(3),
it is possible that only ZS,π , the occurring probability of
the sampled data, is optimized. Consider a simple exam-
ple, where the rewards are all positive, pπ(τ ) = c1 for all
τ ∈ S and pπ(τ ) = c2 for all the rest τ . If the updated
policy π′ simply increases the probability of every trajec-
tory in S as pπ

′
(τ ) = c1 + c and decreases the probabil-

ity of the rest trajectories by a constant value, we will get
that ρS(π′) = (1 + c

c1
)ρS(π). This looks like a progress,

but the policy π′ only increases the occurring probability
of the training set S. For the ultimate goal ρ it is easy to
see that ρ(π′) < ρ(π) as long as that the average reward
in S is below the average reward over all trajectories (i.e.,
1
m

∑
τ∈S R(τ) < 1

|T |−m
∑
τ∈T \S R(τ) in discrete space

version).
The occurring-probability-pursuing problem could be

even more severe for boosting-style approaches, which em-
ploys additive function models and thus can produce quite
flexible models to fit the occurring probability.

The Ranking-based Objective Function
To deal with the problem, it is ideal to focus on maximizing
the correlation between the normalized probability pπ(τi)

ZS,π

and the reward R(τ ), while pushing the normalization fac-
tor towards the value from the optimal policy. This can be
described by the objective function, for some constant λ,

ρ∗S(π) =
1

m

m∑
i=1

1

q(τi)

pπ(τi)

ZS,π
R(τi)− λ|ZS,π∗ − ZS,π|,

which will equal Eq.(1) when summing up over the trajec-
tory distribution, similar to that of Eq.(3). However, this ob-
jective function is obviously infeasible, since that we cannot
know ZS,π∗ and it is hard to optimize the probability under
the normalization constraint.

Therefore, we propose to employ the following ranking-
based objective function, which focuses on the correlation
between the executing probabilities and the rewards,

ρ̃(π)=

∫
T

∫
T

(
p(τ |π)− p(τ ′|π)

)(
R(τ )−R(τ ′)

)
dτdτ ′.(4)

It is easy to verify that maximizing Eq.(4) is equivalent
to maximizing Eq.(1). But the new objective can be safer.
When over a finite set S sampled from the distribution q(τ ),
the objective is to maximize

ρ̃S(π) =
1

m2

∑
τ ,τ ′∈S

(pπ(τ )

q(τ )
− p

π(τ ′)

q(τ ′)

)(
R(τ )−R(τ ′)

)
,(5)

by which the policies π and π′ with ∀τ ∈ S : pπ
′
(τ ) =

pπ(τ ) + c are equally good due to the subtraction.

We can expand the sum and obtain an equivalent but sim-
pler objective as that

ρ̃S(π) =
2

m

∑
τ∈S

pπ(τ )

q(τ )

(
R(τ )− 1

m

∑
τ ′∈S

R(τ ′)
)
.

It reveals that the optimization of the new objective is the
same as before except the rewards of the training set are cen-
tralized. The new objective encourages increasing the prob-
ability of the trajectories with above-average rewards and
decreasing the probability of the rest. Note that the reward
centralization and the variance reduction trick (Greensmith,
Bartlett, and Baxter 2004) have very different derivations, as
well as very different values.

Moreover, the objective of Eq.(4) tells that an optimal pol-
icy should rank the trajectories with the largest reward above
all the others. Therefore, to have a good evaluation of the
gradient towards the optimal policy via Eq.(5), it is helpful
to include trajectories with large rewards in the training set
S. Otherwise, when S contains only low reward trajectories,
the policy that perfectly ranks these trajectories may not rank
the large reward trajectories well. Motivated by this under-
standing, we propose to record the best past trajectories and
put them in the training set. Note that this is different with
the reweighting of past trajectories in PoWER (Kober and
Peters 2011), the trajectories are kept not according to their
probability in the current sampling distribution.

Algorithm 1 PolicyBoost
Input:

K: Number of iterations
ε: Probability for ε-greedy (for discrete action)
σ: Gaussian width (for continues action)
m: Sample size
(b, u): Parameters for memory pool size
{ηk}Kk=1: Learning rate
L: Base regression learner

Output:
π: The learned policy

1: Poolbest = ∅, Pooluniform = ∅
2: Ψ0(s, a) = 1,∀(s, a) ∈ S × A (for discrete action), or

Ψ0(s) = 0,∀s ∈ S (for continues action)
3: for k = 1 to K do
4: Let Sk be m trajectories sampled by executing πk−1:

πk−1(a|s) = eΨk−1(s,a)/
∑
b e

Ψk−1(s,b)

with ε-greedy for discrete action, or
πk−1(a|s) = 1√

2πσ2
exp

(
− (Ψk−1(s)−a)2

σ2

)
with a width of σ for continues action

5: Generate functional gradient examples Dk as
Dk = {((s, a),∇Ψ(s,a)ρ̃τ (πΨ))}

for discrete action, or for continues action as
Dk = {(s,∇Ψ(s,a)ρ̃τ (πΨ))}

for all (s, a) in all τ ∈ St ∪Poolbest ∪Pooluniform
6: Train a regression model hk using L from Dk

7: Ψk = Ψk−1 + ηkhk
8: Update Poolbest and Pooluniform with Sk
9: end for

10: return πK



The PolicyBoost Algorithm
In order to verify the effective of the new objective function,
we propose an actor-only algorithm, the PolicyBoost as in
Algorithm 1. The details are explained in the follows. The
codes can be found from http://cs.nju.edu.cn/yuy.

The PolicyBoost employs two pools Poolbest and
Pooluniform to record some past samples, the former one
keeps some best-so-far trajectories, and the latter one con-
tains randomly selected trajectories. They are initialized in
line 1. Line 2 initializes the potential function. Then Poli-
cyBoost performs T iterations to update the policy. Given
a potential function Ψ, the policy is formed by the Gibbs
Sampling function for discrete action spaces and the Gaus-
sian distribution for continuous action spaces, which is the
same as that for the NPPG. Line 4 uses the policy to sample
m trajectories, stored in St. In line 5, from the union of all
sets, a training data is constructed for learning an approxi-
mation of the gradient function in line 6, and the potential
function is then updated in line 7 with the learning rate ηt.
Line 8 updates the pools.

For the generation and approximation of the gradient
function, through the point-wise gradient (Friedman 2001),
we can calculate the gradient function of Eq.(5) at a
state-action pair (sk, ak) in a trajectory τ as

∇Ψ(sk,ak)ρ̃τ (πΨ)=
2

n

pπΨ(τ )

q(τ )
R̂(τ )∇Ψ(sk,ak)log pπΨ(τ )

=
2

n

pπΨ(τ )

q(τ )
R̂(τ )∇Ψ(sk,ak) log pπΨ(sτk+1|sτk )

=
2

n

pπΨ(τ )

q(τ )

p(sτk+1|sτk , ak)

pπΨ(sτk+1|sτk )
R̂(τ )∇Ψ(sk,ak)πΨ(ak|sk),

where R̂ is the centralized reward among the training
trajectories, and the gradient of the policy is, for discrete
action space,

∇Ψ(s,a)π(a | s) = πΨ(a | s)(1− πΨ(a | s))
and for continuous action space,

∇Ψ(s,a)π(a | s) = 2πΨ(a | s)(a−Ψ(s))/σ2.
Then we calculate the gradient value at every state-action
pair in every available trajectory, and construct a data set
Dt in line 5. This data set expresses the gradient values at
some state-action points. A regression algorithm is then used
to learn a function ht from the data set to approximate the
gradient function, as in line 6.

Note that the gradient requires to calculate the probabil-
ity of sampling probability q(τ ). In a model-based environ-
ment, where the transition probability can be accurately es-
timated, we can do the calculation, while in a model-free
environment, we can simply let q(τ ) = pπΨ(τ ), and the
fraction is aways one.

Experiments
Parameter Sensitivity
We employ two typical domains, the Mountain Car and the
Acrobot, to examine the parameter sensitivity.

In the Mountain Car task, a state of the agent is a two di-
mensional vector, and each dimension is a continuous vari-
able: the horizontal position x and the velocity ẋ, which are

restricted to the ranges [−1.2, 0.6] and [−0.07, 0.07] respec-
tively. Note that we do not discretize the state space. The
agent has three actions: driving left, driving right, and not
to use the engine at all. The goal of the agent is to reach
the mountain top, i.e., x > 0.5, from an initial state from
{(x, ẋ)|x ∈ [−0.75,−0.25], ẋ ∈ [−0.025, 0.025]}. We run
each episode at a maximal horizon of 2000 steps. The car
receives a reward of −1 before reaching the goal and 1 for
reaching the goal. In the Acrobot task, a state consists of four
dimensions with each is a continuous variable: two joint po-
sitions θ1, θ2 and two joint velocities θ̇1, θ̇2. There are three
actions correspond to torque to the joint between the first and
second link of −1, 0, 1 respectively. The goal of the agent is
to let the tip above the goal line from an initial state from
{(θ1, θ2, ), θ̇1, θ̇2|θ1, θ2, θ̇1, θ̇2 ∈ [−0.5, 0.5]}. We run each
episode at a maximal horizon of 2000 steps. It receives a re-
ward of −1 before reaching the goal line and 1 for reaching
the goal. The dynamics of the two domains and other details
can be found in (Sutton and Barto 1998).

In the implementation of the PolicyBoost, the base re-
gression learner used in all policies is regression decision
trees (Breiman, Friedman, and Stone 1984) as implemented
in WEKA (Witten and Frank 2005), and we set m = 50.
The variable parameters include the learning rate, the deci-
sion tree depths, and the size of the pools. The performance
of with different learning rates are shown in Figure 1.

It can be observed that, first, except with too large learn-
ing rates (i.e., 5 and 10), PolicyBoost policies does not have
a significant different performance. We thus suggest that a
fixed learning rate of 1 or 0.1 is good enough in practice.
Second, the tree depth does not show a significant differ-
ence except for the smallest depth 10. Consider that it would
be time consuming to employ deep trees, 100 could be suf-
ficient. On the pool size, we observe that it is quite different
whether the pool is used, since the performance is quite bad
with zero pool size. While other pool sizes lead to close per-
formances, we suggest “10/10” in practice. Overall, these
comparisons show that PolicyBoost is not quite sensitive to
its parameters, and some moderate parameters are suggested
from the observations.

Comparison with NPPG
In the following we compare the PolicyBoost with a fixed
configuration with NPPG. For PolicyBoost, we set η = 1,
ε = 0, tree depth= 100, and the pool size is 10 for the both
pools. For NPPG, we make two versions, the one named
“NPPG” uses the same fixed configuration as PolicyBoost,
and the other named “NPPGopt” is with carefully tuned pa-
rameters: η = 0.1 and ε = 0.2 for Mountain Car, and
η = 0.08 and ε = 0.1 for Acrobot. For this comparison, we
use an extra domain Corridor World (Kersting and Driessens
2008), which is a very simple task that an agent from any
random position x ∈ [4, 6] in a one dimensional corridor
[0, 10] need to reach one of the exits at both ends (0 and 10).
For Corridor World, NPPGopt uses η = 0.05 and ε = 0.1.

The comparison results are presented in Figure 2. On all
three tasks, even if PolicyBoost uses the same fixed configu-
ration, it produces policies with a clear trend of convergence

http://cs.nju.edu.cn/yuy
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Figure 1: Performance of PolicyBoost with different parameters. The top row is on Mountain Car; the bottom row is on Acrobot.
The first column shows different learning rates, the second column shows different maximal depth of the regression decision
tree, and the third column shows different pool sizes (best trajectory pool size/uniform trajectory pool size)
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Figure 2: Performance of different policies at each iteration. The fewer steps the better. Plots (a) and (b) share the legend with
plot (c).
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Figure 3: Normalized rewards of NPPG and PolicyBoost on
the Mountain Car task.

to the near optimal solution. NPPG works the same as Poli-
cyBoost only on Corridor World, possibly because this task
is quite simple so that the occurring-probability-pursuing is-
sue is not important. On Mountain Car and Acrobot, NPPG
with the fixed configuration does not seem to converge at
all. Only after the parameter tuning, NPPGopt can gain some
improvement, but is still worse than PolicyBoost.

To verify whether the occurring-probability-pursuing
problem do exists, we calculated the normalized expected
rewards of NPPG and PolicyBoost, i.e.,

∑
τ∈S R(τ ) ·

pπ(τ )/
∑
τ ′ p

π(τ ′), using the Mountain Car task. The result
is shown in Figure 3. It is clear that PolicyBoost using the
proposed objective function indeed learns to rank higher the
trajectories with larger rewards, while NPPG fails to do that.
This observation confirms that PolicyBoost can well han-
dle the occurring probability occurring-probability-pursuing
problem, which injures NPPG.
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Figure 4: Performance of different policies on the Helicopter
Hovering task. The more steps the better.

Application to Helicopter Control

We use a simulator (Tanner and White 2009) that models
one of the Stanford autonomous helicopters in the flight
regime close to hover. The model was learned from data col-
lected using “frequency sweeps” (which systematically vary
each of the helicopter’s four controls) around the hover flight
regime by (Abbeel, Ganapathi, and Ng 2005). This is a chal-
lenge task that the agent needs to manipulate 4 continuous
control inputs simultaneously based on a 12-dimensional
state space. Previously this task was considered as a hard
challenge and methods were tested(Abbeel et al. 2007;
Koppejan and Whiteson 2011).

We set the maximal horizon 6000 steps. We regard the
four continuous control inputs as independent variables and
set δ = 0.05 for each input. So we will learn four policy
functions simultaneously each for an input, which does not
need to change the structure of the PolicyBoost or NPPG.



The PolicyBoost with the fixed configuration is tested. For
NPPG we did not find a good parameter, so the best perfor-
mance is reported, as in Figure 4. NPPG does not able to find
the right gradient direction to improve the hovering steps,
while PolicyBoost constantly improve the policy, without
any parameter turning.

Conclusion
In this paper, we propose the ranking-based objective
function to avoid the occurring probability occurring-
probability-pursuing problem in NPPG, and derive the Pol-
icyBoost method which searches in an additive function
space for a policy that maximizes the ranking-based objec-
tive. Empirical studies on several domains show that Policy-
Boost is not only effective to achieve good policies, but is
also highly stable to its configuration parameters. Moreover,
experiments on the Helicopter Hovering task verifies its ap-
plicability in real-world problems. The future work will fo-
cus on designing more appropriate mechanism for trajectory
reuse than the current pool based solution.
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