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Abstract
In real-world classification tasks, it is difficult to
collect training samples from all possible cate-
gories of the environment. Therefore, when an in-
stance of an unseen class appears in the prediction
stage, a robust classifier should be able to tell that it
is from an unseen class, instead of classifying it to
be any known category. In this paper, adopting the
idea of adversarial learning, we propose the ASG
framework for open-category classification. ASG
generates positive and negative samples of seen cat-
egories in the unsupervised manner via an adver-
sarial learning strategy. With the generated sam-
ples, ASG then learns to tell seen from unseen in
the supervised manner. Experiments performed on
several datasets show the effectiveness of ASG.

1 Introduction
As machine learning techniques are adopted in increasing ap-
plications, it is appealing that they can be applied in envi-
ronments that are open and non-stationary, where unseen sit-
uations can emerge unexpectedly. For classification, a typ-
ical learning task, classical methods implicitly assume that
the data is i.i.d. even for the future test ones. This assump-
tion no longer holds in open environments, which drastically
weaken the robustness of classical classification methods.

In this work, we consider the open-category classification
(OCC) problem, where there are novel classes that none of
their instances were observed during the training phase, but in
the test phase their instances could be encountered. Classical
approaches can only predict instances from unseen classes as
one of the seen classes. An open-environment aware classi-
fier, on the contrary, should be able to tell at first if an instance
belongs to a seen class.

Different directions have been explored related to the OCC
problem. In class incremental-learning [Fink et al., 2006;
Muhlbaier et al., 2009; Kuzborskij et al., 2013], new classes
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are assumed to appear incremental. However, these stud-
ies mainly focused on how to enable the system to incor-
porate later coming training instances from new classes, but
did not address the problem of recognizing unseen classes.
In learning with a rejection option [Chow, 1970], the clas-
sifier rejects to recognize an instance if its confidence is low,
which, however, does not take open-environment into consid-
eration. Note that an instance close to the seen class bound-
ary can have a low confidence but belongs to a seen class,
while an unseen class instance can have a high confidence
if it is far from the seen class boundary. Outlier detection
techniques [Hodge and Austin, 2004] could be employed if
we treat unseen class instances as outliers. However, sam-
ples from seen class could also contains outliers, meanwhile,
a cluster of unseen class instances may not be treated as out-
liers. Zero-shot learning [Palatucci et al., 2009] is close to the
OCC problem, but they commonly assume that a high-level
attribute set is available for all classes including the unseen
one, which provides useful information for recognizing un-
seen class instances. In our problem, however, we consider
learning in an unfamiliar open environment and thus do not
assume the availability of such high-level attributes.

Only a few previous studies addressed the OCC problem.
For examples, in [Scheirer et al., 2013] the open-set cost is
considered, but it is hard to measure that cost without seeing
open-set data; in [Da et al., 2014], a set of unlabeled data of
all classes is employed, but sufficient unlabeled data from all
potential classes may not always available. We are thus more
interested in solving the problem without extra information.

In this paper, we propose the adversarial sample genera-
tion (ASG) framework for the OCC problem. Inspired by the
adversarial learning [Goodfellow et al., 2014], ASG gener-
ates negative instances of seen classes by finding data points
that are close to the training instances, given that they can be
separated from the seen data by a discriminator. When the
training data is small, ASG also generates positive instances
that cannot be discriminated from the seen class instances,
in order to enlarge the dataset. Using the supervision of the
generated negative and positive samples of seen classes, it
is then straightforward to train an open-category classifier to
tell seen from unseen. We conduct experiments on several do-
mains with open categories but no extra training information.
The results show that the ASG achieves significant better per-
formance than the compared methods.



The rest of this paper is organized in four sections that
presents the background, the proposed method, the experi-
ment results, and the conclusion, respectively.

2 Background
2.1 Related Problems
This paper studies the open-category classification problem,
where no information about the unseen classes, neither in-
stances nor attributes, is available. Some studies are related
to this problem.

The incremental learning requires a proper adaptation of
traditional machine learning approaches to deal with the dy-
namic and open environment, in addition, class-incremental
learning(C-IL) [Zhou and Chen, 2002] is an important branch
of it, which mainly concerned with the addition of new
classes. In [Fink et al., 2006; Kuzborskij et al., 2013], each
new class has a binary classifier which distinguishes between
existing categories and new categories, and the new category
in the classifier shares the hypothesis with the existing cate-
gory to train. However, the method still need a few instances
of new categories, when no instances of new categories are
available in the training phase, these methods can not be ap-
plied. To address this limitation, a new method is introduced
in [Da et al., 2014], which processes new categories by ex-
ploring unlabeled instances, this requires reliable unlabeled
data, but the data availability and quality is difficult to guar-
antee in practice.

The open set recognition problem is mainly concerned by
the community of pattern recognition, and has been applied
to face recognition and speech recognition, etc. In [Phillips et
al., 2011], the main concern is the operation of the threshold,
only instances where the confidence is above the threshold are
classified as seen classes. In [Scheirer et al., 2013; Bendale
and Boult, 2015], both the new decision boundary and the
risk over open space are considered to limit the regions for
seen categories.

The outlier detection problem [Hodge and Austin, 2004]
requires the identification of anomaly instances from a given
data set. The outlier detection methods can be applied in
open-category problems as long as the abnormal instances is
predicted as novel classes. However, the difference is that
outlier detection is only concerned with the discovery of ab-
normal instances, which is limited to specific applications.
Besides, it does not take into account the classification error
of existing categories

The class discovery problem tries to identify the instances
of rare categories which are not known in advance, but are
known to exist in the training data [Pelleg and Moore, 2005;
Hospedales et al., 2013]. The open-category problem is dif-
ferent from class discovery problem, because the unseen class
is not necessarily a rare class. On the other hand, it is possible
to find examples of a rare class in the training data, while the
instance of novel classes only appear in the test data.

The zero-shot problem tries to identify the unseen classes
with the assumption that some high-level attributes of all
classes are known as a prior. For example, in [Xian et al.,
2016], a latent embedding model was presented which learns

a compatibility function in the high-level attributes space con-
sidered between image and class embeddings. In this work,
we do not assume the availability of such information.

2.2 Adversarial Learning
The adversarial learning employs a generative model and a
discriminative model, where the generative model learns to
generate instances that can fool the discriminative model as
a non-generated instance, which is also called Turing Learn-
ing in [Li et al., 2016]. Besides, the Generative adversarial
nets (GAN) combines the two models as a whole neural net-
work for end-to-end training, resulting in a model that is con-
sistent with the original data distribution. Further improve-
ments include studies on the stability of GAN. For example,
in [Nowozin et al., 2016], the F-divergence is introduced from
the perspective of distance measurement, and GAN has been
shown to be a special case of F-divergence when it comes to
a particular metric.

In our work, we will employ the adversarial learning prin-
ciple that a generative model fights to generate instances
judged by a discriminator. Different with the studies on GAN,
our framework can apply to various learning models besides
neural networks. Moreover, to solve the open-category clas-
sification problem, we do not only need to generate seen class
data, but more importantly need to generate unseen class data.

2.3 Derivative-free Optimization
Previously learning approaches commonly employed
gradient-based optimization methods. However, the opti-
mization problems may not always simple enough to fit the
gradient-based methods. Often, a complex optimization has
to be relaxed to a convex problem, sacrificing the faithfulness
to the original problem.

Ancient derivative-free optimization methods include rep-
resentatives such as genetic algorithms [Goldberg, 1989],
which are mostly heuristic methods. Recently, the derivative-
free optimization methods have made significant progress in
both theoretical foundation and practical usage, including
Bayesian optimization methods [Brochu et al., 2010], op-
timistic optimization methods [Munos, 2014], and model-
based optimization [Yu et al., 2016]. A derivative-free op-
timization method considers an optimization formalized as
argmaxx∈X f(x), where X is domain. The method, instead
of calculating gradients of f , samples solutions x and learns
from their feedbacks f(x) for finding better solutions. There-
fore, derivative-free optimization methods can be more suit-
able for problem with bad mathematical properties, including
non-convexity, non-differentiability, and having many local
optima. We thus employ the state-of-the-art derivative-free
methods in our approach.

3 Proposed Method
The open-category classification (OCC) problem can be
described as follows. Given a training dataset D =
{(xi, yi)}Li=1, where xi ∈ Rd is a training instance and yi ∈
Y = {1, 2, ...,K} is the corresponding category label. In the
test phase, we need to predict the categories of an open dataset
Do = {(xi, yi)}∞i=1, where yi ∈ Yo = {1, 2, ...,K,K +



1, ...,M} withM > K. Since there are classes which are not
observed in the training phase, the goal of OCC is to learn
a model f(x) : X → Y ′ = {1, 2, ...,K, novel}, where the
option novel indicates that the category was unseen in the
training phase, so as to minimize the expected risk as follows

f∗ = argminf∈H E(x,y)∼Do
err(y, f(x)) (1)

whereH is the hypnosis space and err is defined as follows

err(y, f(x)) =

{
I(f(x) 6= y), y ∈ Y
I(f(x) 6= novel), y 6∈ Y (2)

The I(expression) is an indicator function, it equals 1 when
the expression holds and 0 otherwise.

The OCC problem is difficult to solve because no informa-
tion about the novel class is available. Our overall idea is
that, if we can generate the instances of the class novel and
put them into the training set (denoted the augmented training
set as D̃), then the problem will be easily solved by standard
supervised learning

f∗ = argminf∈H E(x,y)∼D̃I(y 6= f(x)) (3)

The label of instance x can be predicted as
argmaxk=1,...,K,novel fk(x). The problem is then how
to generate data of the novel class.

The idea of adversarial learning [Goodfellow et al., 2014]
is employed for data generation. In the adversarial learning,
a generative model is trained to generate samples that are
thought to be appropriate according to a discriminator. For
example, to generate data consisting with the training data,
the objective is that the discriminator cannot distinguish the
generated data from the training data. Using this idea, we di-
rectly generate the data of unseen class for the OCC problem.

Generate Unseen Class Instances
To generate an instance of the unseen classes, ASG searches
in the instance space, such that the instance should not be
recognized as the seen class by the discriminator, which is a
classifier trained to separate generated samples and seen class
instances. However, there are too many such instances. For
the purpose of distinguishing seen from unseen, we only need
the samples that are around the boundary between seen and
unseen classes. Therefore, ASG tries to find an instance that
is close to the seen class instances, but is recognized as unseen
class by the discriminator.

ASG considers each class separately, and for each class, it
generates samples one by one. Let PD(x;D,D−) denote the
probability of x to be positive by the discriminator, trained
with positive data D and negative data D−. For class k, de-
note the current generated samples as D−k , which is empty
initially. The objective that a generated sample does not be-
long to the seen class is

argminx PD(x;Dk, D
−
k ∪ {x}) (4)

Intuitively, we evaluate a generated sample by adding it to the
negative data set and train the model to see if the generated
sample is not classified as positive (seen class).

Eq.(4) alone cannot generate all the boundary samples of
the seen class, but only data samples that do not belong to the

Algorithm 1 Generation of negative instances of seen classes

Input:
D: Training instances{(xi, yi)}Li=1
T : Number of generated instances per class
L: Learning algorithm for the discriminant model
Opt: A derivative-free optimization method

Output:
D−: Negative samples of all class 1, 2, ..K

1: for each k ∈ {1, ...,K} do
2: D−k = ∅
3: for t = 1, 2, ..., T do
4: x− = solve Eq.(7) by Opt with discriminator L
5: Update D−k = D−k ∪ {x−}
6: end for
7: end for
8: return D− = {D−1 , D

−
2 , . . . , D

−
K}

seen class. To generate boundary samples, we further require
that the generated samples are close to the seen class data.
Therefore, it is natural to consider that the distance between
the generated sample and the original data set Dk should be
small in a measure, which is enforced by the penalty term as

P1(x,Dk) = max{0, argminx′∈Dk
dist(x, x′)− C1} (5)

where the radius parameter C1 is a positive constant, and
dist(x, x′) is a distance measure that can be Euclidean dis-
tance or other distance measures.

Furthermore, since ASG generates samples one by one,
Eq.(4) and Eq.(5) cannot prevent it from generating many
identical samples. However, we want the generated samples
to be scattered around the boundary. Therefore, we force
the generated samples to be different, i.e., a newly gener-
ated sample should be far away from the previously generated
samples, which is expressed as

P2(x,D
−
k ) = max{0, C2 − argminx′∈D−k

dist(x, x′)} (6)

Here the radius parameter C2 is a positive constant.
Combining the loss and the penalty terms, the overall ob-

jective function is

argmin
x

PD(x;Dk, D
−
k ∪{x})+λ1P1(x,Dk)+λ2P2(x,D

−
k )

(7)
where λ1 and λ2 are hyper-parameters of the penalty terms.
Note that our penalty terms aims only at are pushing samples
out of the radius distance, the hyper-parameters will not have
a great impact on the learning result.

Note that Eq.(7) is non-convex, particularly when models
other than neural networks are considered. It is hard to rely on
the gradient-based method. Thus, we employ the derivative-
free method to solve the optimization. Since most derivative-
free methods are generally applicable, we denote such an al-
gorithm as Opt in Algorithm 1. The concrete algorithm will
be disclosed in the experiment section.

Algorithm 1 shows the overall procedure of generating
negative instances. The algorithm takes input of labeled
training dataset D and parameter T to indicate the num-
ber of instances to be generated per class. For each class



k ∈ 1, 2, ...,K, it generates a set of instances, D−k , in turn,
and the instances are obtained by optimizing Eq.(7).

Generate Seen Class Instances
On the other hand, if the class k is a rare class that has only
a small number of samples, the trained classification model
may be inaccurate. Our sample generation method can also
be used to generate positive/seen class data, in order to im-
prove the prediction accuracy. We only need to change the
optimization function in step 6 of Algorithm 1 to complete
this goal.

For the goal of generating a seen class instance, the loss is
argmaxx PD(x;Dk, D

+
k ∪ {x}) (8)

where D+
k is the previously generated positive data set.

Again, we want to generate scattered samples, thus we force
the generated instance to be distant to the previously gener-
ated ones, by the penalty:
P3(x,D

+
k ) = max{0, C3 − argminx′∈D+

k
dist(x, x′)} (9)

where the dist is a distance measure function, and C3 is a
positive constant. Then the overall objective is:

argmaxx PD(x;Dk, D
+
k ∪ {x})− ηP3(x,D

+
k ) (10)

where η is the coefficient of regular entry P3. Let the Eq.(10)
replace the Eq.(7) in the step 6 of Algorithm 1, the D+

k set
can be obtained for each class k.

Overall Procedure
After the data of unseen and seen classes are generated, it is
straightforward to train a classifier for distinguishing between
them. In ASG, we prefer to train such classifier for each class,
i.e., train foock from Dk ∪D+

k and D−k .
Another issue needs to be considered is the learning capac-

ity of the discriminator L. Note that when the capacity is too
high, every generated sample can be discriminated from the
original data; while when the capacity is too low, the bound-
ary of the seen classes cannot be well captured. Unlike un-
supervised learning, in the OCC problem we have some data
of the seen classes. Using this data, we can fine tune the
hyper-parameter (e.g. the structure of a neural network) of
the learning algorithm for a proper capacity.

Overall, given any learning algorithm L, the procedure of
the ASG framework is as follows:
(1) On the seen data D, fine tune the hyper-parameters of L;
(2) Generate negative instancesD− of the seen classes by Al-
gorithm 1, as well as positive instances D+ if necessary;
(3) For each class k, train a classifier foock from positive data
Dk ∪D+

k and negative data D−k by L;
In the prediction stage, for a test instance x, it is tested by
each of foock . If all foock classify x as negative, then x is pre-
dicted as a novel class. Otherwise, x is predicted as the class
k with foock has the highest confident.

4 Experiments
4.1 Comparison Methods
As discussed above, the hyper-parameters of the learning al-
gorithm should be determined at the first step. In the exper-
iment, we employ SVM with RBF kernel as the learning al-
gorithm and for the discriminant model too. And the binary

classifier trained after the generation is also set as RBF-SVM.
In order to verify the validity of the ASG framework, we con-
ducted experiments on several benchmark datasets, compar-
ing with:

OC-SVM: One-Class SVM [Schölkopf et al., 2001] is
a state-of-the-art outlier detector [Ma and Perkins, 2003],
which computes a binary function supposed to capture re-
gions in the input space where the probability density lives.

MOC-SVM: The OC-SVM can hardly find local outliers
since it seeks for a hyperplane to separate the data and the
origin in essence. Therefore, for this comparison method, we
train multiple one-class SVMs, one OC-SVM for each seen
class in the training set, for outlier detection.

1-vs-Set: 1-vs-Set Machine [Scheirer et al., 2013] intro-
duces extra decision boundaries for the seen classes in order
to minimize the risk over open space.

OVR-SVM: One-vs-rest SVM is a powerful multi-class
classification scheme [Rifkin and Klautau, 2004]. In the orig-
inal OVR-SVM, an instance x is predicted as category y,
where y = argmaxk=1,...,K fk(x) where fk is a binary SVM
trained for class k. In order to adapt OVR-SVM for the pre-
diction of open-category problem, we let the x be predicted
as class y only when maxkf(x) > 0, otherwise x is consid-
ered to be the instance of novel class.

NNO: Nearest Non-Outlier(NNO) [Bendale and Boult,
2015] is a theoretical guaranteed method which deal with the
open world recognition by introduce a measurable function in
Nearest Class Mean method.

In experiments, we use the implementations of OC-SVM,
MOC-SVM and OVR-SVM in the LIBSVM software [Chang
and Lin, 2011], and the implementation of 1-vs-Set Ma-
chine from the code released by the authors. And we im-
plement the NNO by ourselves due to the miss of the code.
The coefficient C in SVM is determined by cross valida-
tion on the training dataset using the original OVR-SVM.
The width of Gaussian kernel γ is fixed to 1/d, where d
is the size of the feature. For the ASG algorithm, the
distance measure dist is set to be the Euclidean distance.
When generating negative samples of class k, the parame-
ter C1,C2 is set as minx1,x2∈Dk;x1 6=x2

dist(x1, x2), λ1 and
λ2 are both set to 0.1, and T = 200. When generating
positive samples for class k, the parameter C3 is also set
to minx1,x2∈Dk;x1 6=x2

dist(x1, x2), η is set to 0.3, and also
T = 200. For the derivative-free optimization method, we
employ the recently developed RACOS algorithm1 [Yu et al.,
2016] with default parameters.

4.2 Results
Three Moons: We first illustrate the behaviors of ASG us-
ing a 2-dimensional synthetic data as in Figure 1. The dataset
consists of three classes, but only two of them are seen in the
training stage, as in Figure 1 (a). With the generated data,
the boundary of the seen classes can be well characterized,
as in Figure 1 (b). The decision boundaries in Figure 1 (c)
show that ASG can correctly exclude the unseen moon as
seen data, while the classical SVM will classify the unseen
moon as blue.

1using the implementation in https://github.com/eyounx/ZOOpt



(a) true classes and training data (b) original and generated data (c) decision boundaries

Figure 1: An illustration of ASG framework on the synthetic data. (a) shows the origin distribution of the three moons, where the blue and
red moons are seen classes and the gray moon is unseen, and the dots are the training instances; (b) shows the generated data of seen classes
(small colored dots) as well as that of unseen classes (gray dots); (c) shows the classification boundaries of a well tuned SVM (in grey line)
and the ASG (in red lines).

Handwritten Digit Image Classification: We conducted
the second experiment on the MNIST handwritten digit
dataset. First, seen categories were randomly selected from
10 total categories and the test data contains all 10 categories.
The number of training data, generated data and test data are
100, 300 and 100 for each class. We have 10 random selec-
tions for the seen categories and repeat 10 times for each se-

lection, both mean and standard deviation are recorded. Fig-
ure 2 shows the results on 3 and 5 seen classes in training.
It can be observed that ASG-SVM achieves the best perfor-
mance on both configurations, while the OVR-SVM is the
runner up. Besides, the 1-vs-set machine shows to outper-
form the OC-SVM and MOC-SVM, and the outlier detection
methods, OC-SVM and MOC-SVM, produce the worst per-
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(b) with 5 seen classes

Figure 2: Comparisons of different methods on MNIST dataset

Table 1: F1, Precesion and Recall for seen classes 2,3,5 in MNIST dataset (NIPC means number of instances per class)

Measure NIPC OC-SVM MOC-SVM 1-vs-Set OVR-SVM NNO ASG-SVM

Se
en

C
la

ss F1 100 .398±.033 .446±.028 .488±.046 .552±.021 .424±.013 .570±.029
1000 .389±.026 .437±.027 .542±.043 .612±.013 .421±.010 .624±.024

Precision 100 .330±.037 .414±.033 .336±.051 .398±.019 .367±.012 .539±.027
1000 .314±.027 .374±.031 .388±.048 .534±.017 .379±.011 .566±.022

Recall 100 .502±.031 .484±.030 .882±.046 .898±.024 .501±.014 .605±.031
1000 .511±.029 .525±.027 .897±.044 .716±.014 .474±.012 .697±.025

U
ns

ee
n

C
la

ss F1 100 .645±.035 .918±.031 .882±.048 .895±.023 .702±.012 .933±.030
1000 .617±.031 .905±.029 .897±.044 .930±.016 .722±.011 .935±.026

Precision 100 .736±.036 .941±.034 .983±.049 .987±.020 .763±.014 .957±.028
1000 .726±.027 .944±.033 .986±.043 .968±.018 .763±.012 .966±.024

Recall 100 .577±.032 .897±.032 .752±.053 .818±.025 .650±.013 .911±.034
1000 .538±.030 .870±.028 .789±.048 .896±.013 .685±0.01 .907±.026



Table 2: Improvement ratio of ASG-SVM to the comparing methods
on MNIST dataset (NIPC means number of instances per class)

#classes Comparison Methods
-NIPC OC-SVM MOC-SVM 1-vs-set OVR-SVM NNO
3-1000 .2391 .1720 .1782 .0624 .1624
3-100 .3816 .2061 .1957 .0650 .2469
5-1000 .3995 .0755 .1016 .0108 .3877
5-100 .4283 .1691 .1552 .0259 .3403

formance. Besides, the NNO seems not perform well in this
dataset.

To break down the performance to seen and unseen data
separately, we set the class 2, 3, 5 as seen categories, and
training data size for each category is set to 100 and 1000,
respectively. The experiments are repeated for 10 times, and
both mean and standard variance of the measure are reported.
The results of F1, precision and recall for both seen classes
and unseen classes are shown in Table 1. For seen classes,
the ASG-SVM gets the best performance on F1 and preci-
sion when the instance number for each category is set to 100
and 1000, while the recall of OVR-SVM and 1-vs-set is the
highest when the number of instance is set to 100 and 1000.
For unseen classes, the ASG-SVM obtains the highest per-
formance on F1 and recall, while the precision of OVR-SVM
and 1-vs-set is the best when the instance number of each
class is 100 and 1000.

Table 2 shows the improvement ratio of ASG-SVM over
the comparing methods in 4 configurations of the number of
seen classes and training set size. The cases in the first col-
umn represent different situations, for example, 3-100 repre-
sent there are 3 seen classes in the training data and 100 in-
stances for each class. It can be observed that, when the train-
ing data has a smaller size, ASG-SVM has larger improve-
ments. This mainly due to that ASG also generates samples
of seen classes to improve the prediction accuracy.

Document Classification: In the third experiment, we con-
duct experiments on the 20 Newsgroups dataset, which is
a popular text dataset consists of documents from 20 dif-
ferent topics. Note that this data set has some topics that
are highly similar, such as comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware. When one belongs to the seen
classes and the other is unseen, the classification will be quite
difficult. We set the number of seen classes as 5. The number
of training data, generated positive data, generated negative
data and test data are set to 3000, 2000, 2000 and 3000, re-
spectively. We randomly sample seen classes and the training
data to form 20 data sets, and for each data sets, the experi-
ment is repeat for 10 times.

Figure 3 shows the Macro-F1 performance with the in-
crease of test classes. It can be observed that the curves
in general decreases as expected. Among these methods,
ASG-SVM consistently achieves the best performance, and
the OVR-SVM is the runner-up. The outlier detection meth-
ods, OC-SVM and MOC-SVM, fail in this data, which fur-
ther confirms that the instance of unseen classes should not
be simply treated as outliers in the OCC problem. The
win/tie/loss table on all algorithm pairs is in the appendix due
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Figure 3: Performance with different number of test classes on
20News dataset

Table 3: Comparisons of classification performance (Macor-F1
score, mean±std.), the best performance on each dataset is in bold.

Dataset artificial flag glass letter page blocks
OC-SVM .419±.036 .309±.052 .482±.039 .658±.024 .505±.049

MOC-SVM .555±.022 .504±.050 .678±.037 .721±.019 .536±.042
1-vs-Set .562±.042 .462±.057 .609±.046 .739±.030 .513±.046

OVR-SVM .667±.020 .501±.042 .646±.032 .885±.015 .579±.037
NNO .564±.013 .581±.045 .659±.014 .938±.016 .519±.036

ASG-SVM .703±.035 .522±.043 .706±.042 .944±.026 .611±.043

to the space limit, which will show that ASG framework is
significantly better than the other methods.

Small Datasets: We also conducted experiments on five
small datasets, where the size for each seen class is no more
than 100 in the training datasets, which makes the classifica-
tion tasks become more challenging.

As the result shown in Table 3, ASG-SVM obtains the best
performance in four datasets compared to the other five meth-
ods; NNO has the best performance in the flag dataset, but
can be worse than some of the comparing methods. In ad-
dition to ASG-SVM, NNO and OVR-SVM are runner-ups
that have better performance in several cases, but have lower
Macro-F1 in the glass dataset than MOC-SVM, where the
number of each class is just 15 in the training set. Sort the
algorithms with their average ranks on all data sets, the best
is ASG-SVM (average rank 1.2), and the remaining are NNO
(2.6), OVR-SVM (3.0), MOC-SVM (3.6), 1-vs-Set (4.6), and
OC-SVM (6).

5 Conclusion
Open-category classification problem often occurs in practi-
cal problems, where a system needs to predict the data in an
open environment. In this paper, we propose the ASG frame-
work to address the problem by adversarial data generation.
In experiments, we demonstrate that ASG can successfully
generate boundary data around the seen classes, which makes
the recognition of unseen classes can be easily done by super-
vised learning. On several datasets, ASG shows to be more
effective than several state-of-the-art methods. In the future,
besides the current SVM model, we would like to apply ASG
with state-of-the-art multi-class learning method, and develop
a theoretical grounded method for the OCC problem.
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Appendix

Table 4: The results of win/tie/loss information with 20 randomly
selected configurations on 20Newsgroup dataset (paired two-tailed
t-test at 95% significance level)

Method OC-SVM MOC-SVM 1-vs-Set OVR-SVM NNO ASG-SVM
OC-SVM - - - - - -
MOC-SVM 15/5/0 - - - - -
1-vs-Set 20/0/0 17/2/1 - - - -
OVR-SVM 20/0/0 20/0/0 20/0/0 - - -
NNO 16/4/0 12/3/5 9/8/3 0/0/20 - -
ASG-SVM 20/0/0 20/0/0 19/0/1 16/3/1 20/0/0 -


