
Life-Stage Modeling by Customer-Manifold Embedding∗

Jing-Wen Yang†, Yang Yu†, Xiao-Peng Zhang‡

† National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
† Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China

‡ Tencent, China
† {yangjw, yuy}@lamda.nju.edu.cn

‡ xpzhang@tencent.com

Abstract
A person experiences different stages throughout
the life, causing dramatically varying behavior pat-
terns. In applications such as online-shopping,
it has been observed that customer behaviors are
largely affected by their stages and are evolving
over time. Although this phenomena has been rec-
ognized previously, very few studies tried to model
the life-stage and make use of it. In this paper, we
propose to discover a latent space, called customer-
manifold, on which a position corresponds to a
customer stage. The customer-manifold allows us
to train a static prediction model that captures dy-
namic customer behavior patterns. We further em-
bed the learned customer-manifold into a neural
network model as a hidden layer output, resulting
in an efficient and accurate customer behavior pre-
diction system. We apply this system to online-
shopping recommendation. Experiments in real
world data show that taking customer-manifold into
account can improve the performance of the rec-
ommender system. Moreover, visualization of the
customer-manifold space may also be helpful to un-
derstand the evolutionary customer behaviors.

1 Introduction
There are various stages through everyone’s life. The focuses,
concepts and consumption ability of a person can be largely
influenced by his/her stages. Some marketing researchers and
sociologists have recognized that life stages would have a
huge impact on customers’ purchasing behaviors [Wells and
Gubar, 1966] [Bojanic, 2011]. For example, a woman would
buy vitamins during her pregnancy stage, baby food and dia-
pers after baby’s birth, and then toys and fairy tale books as
baby grows. Obviously, considering life-stage would help us
understand customers better, and can help build better service
systems such as recommender systems.

Recommender systems aim at helping customers discover
most useful information from a massive amount of data. They

∗This research was supported by the NSFC (61375061), Jiang-
suSF (BK20160066), Foundation for the Author of National Excel-
lent Doctoral Dissertation of China (201451).

have been widely adopted in areas such as social networks, en-
tertainment, and e-commerce recent years. Researchers and
engineers are always pursuing a better personalized system
for great value of both research and business. Most existing
recommender systems are based on, e.g., collaborative filter-
ing techniques, but do not take the evolutionary stage infor-
mation of customers into account.

A few recent studies have tried to improve recommender
systems by utilizing the information from the evolutionary
custom behaviors. Extended collaborative filtering model
[Ding and Li, 2005] [Liu et al., 2010], matrix factorization
[Koren, 2010] [Xiong et al., 2010], hidden Markov model
[Li et al., 2011], and Gaussian processes [Liu, 2015] were
studied for incorporating temporal effects in the models. The
time-based functions incorporated have been shown to be
able to capture some temporal patterns, but they mostly op-
erate in the customer behavior space where it would be too
many different temporal patterns to be well captured.

As an important matter of fact, people in different stages
may behave similarly in a current time slice, but have dramat-
ically different future behaviors. For example, one is moving
to a new house and another is planing to redecorate his old
apartment. They both buy paints, brushes and wallpapers. At
this time point, they behave almost the same. But for the few
next weeks, the first one purchases furnitures, while the latter
one buys a potted plants. Therefore, an approach processing
in the customer behavior space would get confused in this
situation, meanwhile, if an approach can understand the cus-
tomer stage, it would distinguish their behaviors easily and
make correct recommendations. From the view of this aspect,
modeling customer life-stage can be helpful to eliminate the
complexity of modeling evolution dynamics. With the infor-
mation of life-stage, we could have a deeper understanding
of customer behavior, thus helping us capture various modes
and make the evolution trend predictable.

In this paper, we propose to model customer stages by
learning the customer-manifold space. The intuition is that
the stage of a customer can be reflected by his behavior his-
tory. Therefore, we collect customers’ daily record to build
a novel similarity matrix and employ manifold learning to
embed those sequences into a metric space, which we call
as the customer-manifold space. Within this space, similar
stages are kept aligned, a stage can now be represented by a
point and the stage evolution of a customer can be captured

as the changing path of the embedding positions. Once a cus-
tomer’s stage is mapping to a point on the manifold, his future
behaviors could be predicted according to the path changing
patterns. Powerful learners can be applied here to capture
the complicated evolution patterns, by learning only a static
model in the new space.

To build an efficient and accurate customer modeling sys-
tem, we embed the customer-manifold into a recurrent neural
network model as the hidden layer output. Upon this system,
we further introduce a classifier which maps from a customer-
manifold position to an item to build a recommender system.

To validate the proposed method, we conduct experiments
in a real-world data. Experimental results show that the pro-
posed method can achieve significantly better performance
than baseline recommendation approaches. Since the pro-
posed method can also provide a way to visualize the cus-
tomer behaviors in the system, we demonstrate the manifold
space in both 2D and 3D figures to visualize some interesting
embedded patterns.

To summarize, our main contributions are as follows:
• We propose a simple and general method to learn the

static customer-manifold space, which reflects customer
stages and can be applied to various areas where cus-
tomer modeling is in need.

• We embed the customer-manifold into neural networks
to build a recommender system that learns to predict the
customer behaviors efficiently.

• Experiments on real world data show that capturing life-
stage information brings a significant improvement to
recommendation precision and some visualization result
can be demonstrated.

The rest of the paper is organized as follows. Section 2
introduces the related work, section 3 proposes the method
of learning customer-manifold and the recommendation ap-
proach using the customer-manifold, section 4 reports the ex-
periment results, and section 5 concludes this paper.

2 Related Work
Since we propose to model customer stages and apply the
modeling system to make recommendation. We briefly re-
view some related user modeling and recommender system
studies below.

Some user modeling methods try to capture customers’ se-
quential preference. Le et al. [2016] incorporated dynamic
user-biased emission and context-biased transition for model-
ing sequential preference. Ferwerda et al. [2016] mined the
relationships between users’ personality and their behaviors,
preferences, and needs from user-generated data of social net-
work to infer users’ personality traits.

In recommender systems, collaborative filtering (CF) is a
classical and arguably the most widely adopted technique.
The main idea is that users with similar preferences will have
similar opinions on new items. User-Based CF [Resnick et
al., 1994] and Item-Based CF [Sarwar et al., 2001] are two
well-known collaborative algorithms.

These existing systems usually implicitly assume that the
preference of customer is static. It’s a reasonable approxima-

tion to ignore temporal information for movie ratings like Net-
flix contest, since the preference for a movie do not change
rapidly and dramatically. However, in areas like online shop-
ping, the approximation would lead a relatively large bias for
the ignoring of evolution of customer interest.

A few recent studies shared the same observation of our
work, which tries to take the evolution of customer behav-
iors into account. Ding et al. [2005] and Liu et al. [2010]
employed time decay functions to adapt to the changed be-
haviors quickly. Lathia et al. [2009] proposed a method
to automatically adjust the neighborhood size of customers
based on the updated accuracy, in the framework of user-
based CF. Koren et al. [2010] tackled temporal effects by us-
ing time-related functions to model the customer biases, item
biases, and customers’ latent factors through matrix factoriza-
tion methods. Xiong et al. [2010] extended the probabilistic
matrix factorization method to tensor factorization, where the
tensor has a time dimension, with the time factor being spe-
cially treated. Liu [2015] treated the evolution of the user’s
preference as time series which are learned and inferred us-
ing GP regression. Liu et al. [2014] used the temporal corre-
lations to construct an undirected graph and performed clus-
tering to re-encode the sequence symbol in a better granular-
ity which greatly alleviates the curse of cardinality in tasks
of sequential pattern mining. These approaches try to intro-
duce time dimension so that the model can change along time,
and have been shown to be able to capture some temporal
behavior patterns. But they operated in the customer behav-
ior space, where the temporal patterns would be noising and
complex to be captured by time-based models. While we first
learn a latent stage space to avoid operating in behavior space
directly.

Complex models like deep learning has also received many
attentions for recommender systems. However, deep learning
methods for temporal recommendation has not yet been exten-
sively studied. Hidas et al. [2015] proposed to use Recurrent
Neural Networks (RNN) for recommending shopping items
to user based on the user’s current session history (the frame-
work shows in Figure 1). Powerful as RNN is, customers’

Input: Item
one-hot

encoding

Recurrent
Unit

Feedforward layer

Output: Scores on items

Hidden State

…

Feedforward layer
…

Input: Item
one-hot

encoding

Recurrent
Unit

Input: Item
one-hot

encoding

Recurrent
Unit

Input: Item
one-hot

encoding

Recurrent
Unit

……

Figure 1: Framework of the RNN for recommendation

stage space is not implicitly modeled, which may affect the
performance.

Perhaps the most realted work is [Jiang et al., 2015]. They
first noticed to model the life-stage. They applied a maxi-
mum entropy semi-Markov model to segment and label user
life stages based on the observed purchasing data over time,
which makes recommendations conditioned to the predicted
life-stage. Although the idea and major models can be ap-
plied to various events, domain experts are badly relied on to
label stages and handcraft features. While our method can
only rely on the history behavior data of customers, and does
not restrict the prediction model.

3 Life-Stage Modeling by Customer-Manifold
This section introduces the proposed method for learning the
customer-manifold (CM), which embeds the life-stages of
customers. The proposed method mainly consists of two com-
ponents. The first one is constructing CM, which first splits
the customer behavior sequences into evolutionary segments,
calculates similarity between segments, and then learns the
manifold (as illustrated in Figure 2). The second one as Fig-
ure 3 shows is the LSTM embedding, which embeds the CM
into a recurrent neural network to build a more accurate and
efficient system. The following subsections introduce the
method in details.

3.1 Learning Customer-Manifold
Usually, a customer record is in the format of <customer
id, item id, time stamp> triple, which is the fundamen-
tal element to keep track of customer’s behaviors. In
other words, a series of these triples form a customer be-
havior sequence just as in Figure 2 Part A, Customer 1
clicked items [a,b,c,a,e,f,d,o,q,a,b,w,x,...]
in sequence. Though the data seems quite simple, it contains
important information as we assume that behavior data may
reflect stages of a customer. We will show how the life-stage
is modeled only based on these data.

At first step, we process with the behavior sequence to ex-
tract so called evolutionary segments with the purpose that
some of them may reflect the stage of customers. We simply
split the sequence by day for the intuition that one’s stage is
unlikely to change suddenly in one day (as Figure 2 Part B).

In order to make segments from the same customer evolve
along a path, thus reflecting how his/her stage evolves, we
introduce evolutionary similarity to calculate similarity be-
tween every two segments. Notice that each segment’s length
is variable, simple Euclidean distance measure is very brit-
tle [Chu et al., 2002], because that an elastic shifting in time
axis may be necessary. Dynamic time warping (DTW) dis-
tance [Berndt and Clifford, 1994] is widely used in scenario
like this. We first recall the DTW distance here.

DTW distance is defined using dynamic programming to
evaluate a recurrence [Sakoe and Chiba, 1978]. Given two
sequences q and s, the recurrence of DTW distance between
them is

DTW (i, j) =dist(qi, sj) + min
{
DTW (i− 1, j − 1),

DTW (i− 1, j), DTW (i, j − 1)
}
,

where qi and sj denote the i-th and the j-th action in segments
q and s respectively, the distance dist(qi, sj) between two
actions is defined in applications(we adopt a simple way to
measure it in the experiment).

Given the recurrent definition, the DTW distance between
q and s is calculated as DTW (q, s) = DTW (q.length −
1, s.length − 1) (assuming the accessible index is from 0 to
length− 1).

However, the DTW measures all sequences equally. In
our assumption, the stage of a customer shifts smoothly day
by day, segments from the same customer should be more
similar than from other customers. Therefore, we incorpo-
rate customer discrimination information in the formula, and
thus defining the evolutionary segments similarity (here the
smaller similarity value, the more similar) in Definition 3.1.
Definition 3.1 (Evolutionary Similarity). Given two seg-
ments q and s, the Evolutionary Similarity (ES) between them
is defined as

ES(q, s) = (1 +DTW (q, s))I(q,s) − 1 ,

where I(q, s) = 1 if and only if q and s are from different
customers, otherwise, I(q, s) = λ (0 < λ ≤ 1)

When λ = 1, the ES degrades to the DTW similarity, and
the smaller λ the more similar the segments from the same
customer. The ES combines sequence similarity and customer
continuity, which help us not get confused when dealing with
two similar segments but succeed from different predecessor
stages. For example, let Customer 1 has segments s11 and s12,
Customer 2 has segments s21, and s11 is same with s21, then the
value of ES(s11, s

1
2) would be smaller than that of ES(s21, s

1
2),

since s11 lies in the path of Customer 1.
With the ES defined above, we can know how distant a

segment is to another segment, as illustrated in Figure 2 Part
C. We employ manifold learning methods here to embed the
segments in a metric space, in which the stages of the cus-
tomers are naturally vectorized. The manifold learning has
two purposes. The evolutionary similarity can be regarded as
a similarity in a latent high dimensional space, in which there
warps an intrinsic low-dimensional nonlinear subspace. Man-
ifold learning can discover the intrinsic subspace, in which
the global similarity measurement is more effective. More-
over, manifold learning can assign a low-dimensional posi-
tion to a segment, so that the distance between every two seg-
ments is closest to their effective global distance in the latent
high dimension space. Therefore, the learned manifold space
can be more regular for latter processes. Specifically, inspired
by the visualization method in [Liu et al., 2014], we adopt
the ISOMAP [Tenenbaum et al., 2000], which estimates the
geodesic distances between all pairs of segments on a mani-
fold.

By applying this manifold learning process, we can get a
low dimensional space, where stage evolution is expected to
be well modeled. As Figure 2 Part D shows, customers’ evo-
lutionary paths are captured in CM space.

Last but not least, if we set the target dimension d to 2 or
3, we can easily visualize the CM space, leading us to make
more interesting and useful observations, so that we can have
some insights to the customer behavior evolution.

Customer 1:

Customer 2:

…

a b c a e f d o q a b w x …

 o a q b u i p q d a b c a c b e …

Part A: Customer behavior sequences

Part B: Evolutionary segments

Customer 1:

Customer 2:

…

s1
1 s1

2 s1
3 s1

4 s1
5 s1

6 s1
7

…

…s2
1 s2

3 s2
4 s2

5 s2
6 s2

7s2
2

Part D: Customer-manifold

Part C: Similarity
s1 s2 s3 …

s1

s2

…

1 0.87 0.65 …
0.87 1 0.82 …

…

…

…

…

x1
1

x2
7

x1
2

x1
3

x1
4 x1

5 x1
6 x1

7

x2
6

x2
5

x2
4 x2

3
x2

2

x2
1

Day 1 Day 2 Day 3

Figure 2: Illustration of the workflow of the customer-manifold learning

3.2 Apply Customer-Manifold to Recommender
From what we have discussed above, customers’ life stage
is already modeled in the CM and similar stages are kept
aligned, it would be possible to capture the stage evolution
patterns. We take the recommendation as an example to show
how we can take advantage of CM.

As we can see, the CM space can be regarded as a d-
dimension feature space. With proper label space design, we
can apply various state-of-the-art machine learning methods
to train a static prediction model here. For example, we can
simply take customers’ next behavior in the sequence as su-
pervised label to train a multi-class classifier (as left part of
Figure 3 shows, s12 can be used as the supervised label of
x1
1). If we take customers’ rating as supervised label, we can

train a rating prediction model. In other words, the prediction
model and the prediction task are not restricted.

3.3 LSTM Embedding
It is worth noting that there are some time-consuming parts
in above steps such as similarity computation and ISOMAP,
which make the algorithm face a great performance challenge
in real world applications. When there are millions of cus-
tomers, we can hardly map customers’ segments to the cus-
tomer manifold efficiently.

To make the stage modeling process more scalable and eas-
ily trainable, we embed the CM into the powerful RNN. Since
RNN is devised to model variable-length sequence data, we
just feed the networks with the segments we extracted before
and use the constructed manifold space as supervised infor-
mation to pretrain an embedding layer (as Figure 3 pretrain
part shows). In this way, we don’t have to pay a lot of time
to construct a CM space for big data. We can simply sample
some segments to train the network. And it would also be
much faster to process fresh segments through this network.

As for recommending, we extract customer’s up-to-date
evolutionary segment from his/her behavior sequence as one
instance (like the s12 in Figure 3). Through the embedding
network we trained, this instance can be transformed to the
CM space (like the x1

2 in Figure 3). We introduce a forward

Customer-Manifold

s1
1 s1

2 s1
3 s1

4 s1
5 …

x1
3

Input: Item
one-hot

encoding

Recurrent
Unit

Feedforward layer

Output: Scores on items

Hidden State
…

Feedforward layer
…

Input: Item
one-hot

encoding

Recurrent
Unit

Input: Item
one-hot

encoding

Recurrent
Unit

Input: Item
one-hot

encoding

Recurrent
Unit

……

ab c a e f d o q a b…

Pretrain

End-to-end

x1
2

x1
1

Evolutionary segments

Figure 3: Embedding customer-manifold into a neural net-
work recommender system

neural network as the classifier which maps the position to
future behaviors, thus making a recommendation (as showed
in the bottom of Figure 3). With the CM and the instances
we constructed before, train the whole network is no longer
end-to-end (as end-to-end part in Figure 3), but is still straight-
forward.

4 Experiments
4.1 Experiments Settings
Datasets
The data used in our experiment is provided by Tencent Inc.,
which consists of customer online shopping history from
7/21/2015 to 2/1/2016 from a real B2C e-commerce system,
which servers millions of people everyday. The data set has
4,975,481 records, which includes 102,045 customers and
3,594 items. The data before 1/22/2016 is used for training
and the rest is used for testing. We set the supervised labels as
the customers’ first click items in the next day for the purpose
of predicting what customers will click in the next 10 days.

Metric
We adopt the Precision@K to measure the performance of
recommendation models, which is the ratio of the success-
fully predicted test items to the top-K recommendation.

Comparison
To make the result more convincing, we also compare with
several baselines. Those include:

• UserKNN [Resnick et al., 1994], known as user-based
CF, which finds similar users and recommend according
to these users’ behaviors.

• ItemKNN [Sarwar et al., 2001], known as item-based
CF, which recommends similar items.

• WMRF [Hu et al., 2008], which proposes a regularized
least-square optimization with case weights. The case
weights can be used to reduce the impact of negative
examples.

• AoBPR [Rendle and Freudenthaler, 2014], which is a
sample-based method that optimizes the pair-wise rank-
ing between the positive and negative samples..

• SVD++ [Koren, 2008], which is a matrix factorization
model integrating implicit feedback.

• RegSVD [Paterek, 2007], which combines several SVD
predictors using linear regression.

• KNN(ES). We use the ES we defined as similarity met-
ric, and apply KNN to the segments to make recommen-
dation.

Note that, these algorithms are not able to handle sequential
data, so we generate a rating-like matrix from the original
data. Specifically, a customer’s rating for an item equals to
how many times he clicked that item. For ItemKNN and
UserKNN, we just set the number of neighbors to 10, the sim-
ilarity is computed using Pearson Correlation.

As for our method (denoted as CM-LSTM), we set the
number of neighbors k to 10 (same as ItemKNN and
UserKNN). In the evolutionary similarity computing, the λ
is 0.5 and dist equals to 0.5 if two items belongs to the same
category, otherwise equals to 5. For example, Men’s Clothing
and Women’s Clothing are belong to Clothing, so their dist
is 0.5, however Mobile Phones is way different from Men’s
Clothing, so the dist between them is 5. We adopt only 1
LSTM layer and 2 forward layers. The similarity in KNN(ES)
uses the same setting.

4.2 Experimental Results
Recommendation Precision
We first compare the Precision@1 using a same topology net-
work with different parameter configurations to see how the
embedded CM will influence the model performance. We
random sample 8000 segments to construct the CM, and em-
bed them into three different networks. Three networks differ
in the number of hidden units, mini-batch size and training
epochs. For example, 100-65-2000 denotes that we train a
network with 100 hidden units in mini-batch size of 65 for
2000 epochs.

100−65−2000 100−512−25 3−512−250
4

4.5

5

5.5

6

6.5

7

7.5

8

P
re

ci
si

on
 V

al
ue

(%
)

CM−LSTM
LSTM

Figure 4: Comparison under different configurations

Precision@1 Precision@2 Precision@3
5

5.5

6

6.5

7

7.5

8

P
re

ci
si

on
 V

al
ue

(%
)

CM−LSTM
LSTM

Figure 5: Comparison of recommendation precision

As Figure 4 shows, the original network (denoted as
LSTM) is sensitive to the parameters. But with CM embed-
ded, the performance is more accurate and stable. We make
a recommendation list of size 3 to compare the recommender
precision between the CM-LSTM and LSTM. We set the con-
figuration as the best LSTM model we can train. As the Fig-
ure 5 shows, CM-LSTM performs better than the LSTM, not
only at the top-1 recommendation, but also at the following
positions.

We compare the performance of our approach with that of
baselines and state-of-the-art approaches. Figure 6 shows the
precision of different recommendation models with different
recommendation list sizes.

From Figure 6, we can see that our proposed method out-
performs these baselines. Since other methods cannot han-
dle time-series data, they lose the sequential information at
the beginning. On the other hand, customer behavior space
is quite complicated, it would be very difficult to precisely
capture customer dynamics without considering the stage in-
formation. (Note that for algorithms like SVD++, RegSVD,
additional hand-crafted features can be added to significantly
improve the performance. However we do not provide any
implicit data or additional features to these algorithms for the
sake of fairness, so the performance of these algorithms may
not be the best. But the experimental result already poses
their limitations.) We don’t compare any more time-related
model here, since CM-LSTM already beats LSTM, which is
a powerful time-related model.

On the other hand, when the recommendation list is shorter,
our method performs better. This is due to that our method
aims at predicting customers’ next move. Note that the adver-

Precision@1 Precision@2 Precision@3
0

1

2

3

4

5

6

7

8

P
re

ci
si

on
 V

al
ue

(%
)

CM−LSTM
ItemKNN
UserKNN
WRMF
AoBPR
SVD++
RegSVD
KNN(ES)

Figure 6: Comparison among different algorithms

tisement position is always limited, we can not make a long
recommendation list to customers, thus an efficient short list
is in urgent need.

Time Efficiency
We also record the running time to see how the neural net-
work speeds up the CM method. To embed a new segment by
calculate the similarity matrix into a CM would take over 6
seconds, but using the embedded LSTM network only takes
less than 1 second on the same machine.

4.3 Visualization

The visualization has two purposes, one is to visualize that
a CM is learned, the other is to show that it may help user
identify groups of customers. We will take a small example
in 2D space to illustrate customers’ evolving behaviors and
give an overview of hundreds of customers in a 3D way.

As Figure 7 shows, there are three customers’ data present
in the figure. As we can see, point 1.1 is very close to 3.3,
which reflects customer similar stage. If we look into the
record, we can find both customer 1 and customer 3 clicked a
lot of phone related items and women’s clothing at this stage.
On 1.2 and 1.7, customer 1 seems to have repeated behaviors.
The record shows that he or she viewed many mobile phones,
which may indicate he or she is in a stage of buying phones.
With almost the same women’s clothing browsing record, 1.2
evolved to 1.3 and 1.7 evolved to 1.8, where 1.3 and 1.8 are
also very close. However, customer 2 and customer 3 almost
share the same evolutionary path in their first four stages, but
customer 2’s fifth stage is way from customer 3’ path, which
shows the complexity of stage evolving patterns. Therefore,
machine learning is needed here to help us to capture various
patterns.

Figure 8 shows an overview of CM, where over 400 ran-
dom loyal customers (who have long periods of record) are
presented and every customer’s evolving path is indicated by
one color in a 3D space. It can be observed that, first, the
stage of the customers are not randomly distributed in the
CM space, instead, there are obvious clusters; and the tran-
sition lines do not connect all states, instead, there are strong
beams indicating frequent transitions.

Figure 7: Visualization of 3 customers’ evolutionary stages. Cus-
tomers 1, 2, 3 are indicated by purple, blue and green, respectively.
The color goes darker with time evolving. An “x.y” number is at-
tached to every point, where x denotes the customer ID, y denotes
the evolutionary stage ID

.

Figure 8: Visualization of stage evolution patterns in 3D

5 Conclusion
In this paper, we propose an approach to model customer life-
stage and incorporate it to build a recommender system. In-
stead of building a model in the behavior space directly, we
use only customer behavior history to learn a low dimensional
customer-manifold space to align stages. In this static stage
space, it would be easier to capture complicated stage dynam-
ics and predict future behavior evolution. Visualization re-
sults show that customers’ evolving preferences are well em-
bedded and empirical results on a real world data set demon-
strate that life stage modeling is effective in the recommen-
dation scenario in comparison with the baselines. From the
visualization, we notice that not only the position in the man-
ifold that can affect the future behavior, but also the whole
historical path. We leave in the future the study that incorpo-
rating the customer path into the recommender system.

References
[Berndt and Clifford, 1994] Donald J. Berndt and James.

Clifford. Using dynamic time warping to find patterns in
time series. In Proceedings of the 1th International ACM

SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 359–370, 1994.

[Bojanic, 2011] David C. Bojanic. The impact of age and
family life experiences on mexican visitor shopping expen-
ditures. Tourism Management, 32(2):406–414, 2011.

[Chu et al., 2002] Selina Chu, Eamonn J. Keogh, David M.
Hart, and Michael J. Pazzani. Iterative deepening dynamic
time warping for time series. In Proceedings of the 2nd
SIAM International Conference on Data Mining, pages
195–212, 2002.

[Ding and Li, 2005] Yi Ding and Xue Li. Time weight col-
laborative filtering. In Proceedings of the 14th ACM Inter-
national Conference on Information and Knowledge Man-
agement, pages 485–492, 2005.

[Ferwerda and Schedl, 2016] Bruce Ferwerda and Markus
Schedl. Personality-based user modeling for music rec-
ommender systems. In Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23,
2016, Proceedings, Part III, pages 254–257, 2016.

[Hidasi et al., 2015] Balázs Hidasi, Alexandros Karatzoglou,
Linas Baltrunas, and Domonkos Tikk. Session-based rec-
ommendations with recurrent neural networks. CoRR,
abs/1511.06939, 2015.

[Hu et al., 2008] Yifan Hu, Yehuda Koren, and Chris Volin-
sky. Collaborative filtering for implicit feedback datasets.
In Proceedings of the 8th IEEE International Conference
on Data Mining, pages 263–272, 2008.

[Jiang et al., 2015] Peng Jiang, Yadong Zhu, Yi Zhang, and
Quan Yuan. Life-stage prediction for product recommen-
dation in e-commerce. In Proceedings of the 21th Interna-
tional ACM SIGKDD Conference on Knowledge discovery
and data mining, pages 1879–1888, 2015.

[Koren, 2008] Yehuda Koren. Factorization meets the neigh-
borhood: A multifaceted collaborative filtering model. In
Proceedings of the 14th International ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, pages
426–434, 2008.

[Koren, 2010] Yehuda Koren. Collaborative filtering with
temporal dynamics. Communications of the ACM,
53(4):89–97, 2010.

[Lathia et al., 2009] Neal Lathia, Stephen Hailes, and Li-
cia Capra. Temporal collaborative filtering with adaptive
neighbourhoods. In Proceedings of the 32nd International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 796–797, 2009.

[Le et al., 2016] Duc-Trong Le, Yuan Fang, and
Hady Wirawan Lauw. Modeling sequential prefer-
ences with dynamic user and context factors. In Machine
Learning and Knowledge Discovery in Databases - Eu-
ropean Conference, ECML PKDD 2016, Riva del Garda,
Italy, September 19-23, 2016, Proceedings, Part II, pages
145–161, 2016.

[Li et al., 2011] Ruijiang Li, Bin Li, Cheng Jin, Xiangyang
Xue, and Xingquan Zhu. Tracking user-preference vary-
ing speed in collaborative filtering. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence, pages
133–138, 2011.

[Liu et al., 2010] Nathan Nan Liu, Min Zhao, Evan Wei Xi-
ang, and Qiang Yang. Online evolutionary collaborative
filtering. In Proceedings of the 4th ACM Conference on
Recommender Systems, pages 95–102, 2010.

[Liu et al., 2014] Chuanren Liu, Kai Zhang, Hui Xiong, Ge-
off Jiang, and Qiang Yang. Temporal skeletonization on
sequential data: Patterns, categorization, and visualization.
In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1336–1345, 2014.

[Liu, 2015] Xin Liu. Modeling users’ dynamic preference
for personalized recommendation. In Proceedings of the
24th International Joint Conference on Artificial Intelli-
gence, pages 1785–1791, 2015.

[Paterek, 2007] Arkadiusz Paterek. Improving regularized
singular value decomposition for collaborative filtering. In
Proceedings of KDD Cup and Workshop, 2007.

[Rendle and Freudenthaler, 2014] Steffen Rendle and
Christoph Freudenthaler. Improving pairwise learning
for item recommendation from implicit feedback. In
Proceedings of the 7th ACM International Conference on
Web Search and Data Mining, pages 273–282, 2014.

[Resnick et al., 1994] Paul Resnick, Neophytos Iacovou,
Mitesh Suchak, Peter Bergstrom, and John Riedl. Grou-
pLens: An open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM Conference on
Computer Supported Cooperative Work, pages 175–186,
1994.

[Sakoe and Chiba, 1978] Hiroaki Sakoe and Seibi Chiba.
Dynamic programming algorithm optimization for spoken
word recognition. In IEEE Transactions on Acoustics,
Speech and Signal Processing, pages 43–49, 1978.

[Sarwar et al., 2001] Badrul Sarwar, George Karypis, Joseph
Konstan, and John Riedl. Item-based collaborative filter-
ing recommendation algorithms. In Proceedings of the
10th International Conference on World Wide Web, pages
285–295, 2001.

[Tenenbaum et al., 2000] Joshua B. Tenenbaum, Vin De
Silva, and John C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[Wells and Gubar, 1966] William D. Wells and George
Gubar. Life cycle concept in marketing research. Journal
of Marketing Research, 3(4):355–363, 1966.

[Xiong et al., 2010] Liang Xiong, Xi Chen, Tzu-Kuo Huang,
Jeff G. Schneider, and Jaime G. Carbonell. Temporal col-
laborative filtering with bayesian probabilistic tensor fac-
torization. In Proceedings of the 10th SIAM International
Conference on Data Mining, pages 211–222, 2010.

