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Abstract

The problem of selecting the best k-element subset from a universe is involved
in many applications. While previous studies assumed a noise-free environment
or a noisy monotone submodular objective function, this paper considers a more
realistic and general situation where the evaluation of a subset is a noisy monotone
function (not necessarily submodular), with both multiplicative and additive noises.
To understand the impact of the noise, we firstly show the approximation ratio of
the greedy algorithm and POSS, two powerful algorithms for noise-free subset
selection, in the noisy environments. We then propose to incorporate a noise-aware
strategy into POSS, resulting in the new PONSS algorithm. We prove that PONSS
can achieve a better approximation ratio under some assumption such as i.i.d. noise
distribution. The empirical results on influence maximization and sparse regression
problems show the superior performance of PONSS.

1 Introduction

Subset selection is to select a subset of size at most k from a total set of n items for optimizing some
objective function f , which arises in many applications, such as maximum coverage [10], influence
maximization [16], sparse regression [17], ensemble pruning [23], etc. Since it is generally NP-
hard [7], much effort has been devoted to the design of polynomial-time approximation algorithms.

The greedy algorithm is most favored for its simplicity, which iteratively chooses one item with
the largest immediate benefit. Despite the greedy nature, it can perform well in many cases. For a
monotone submodular objective function f , it achieves the (1− 1/e)-approximation ratio, which is
optimal in general [18]; for sparse regression where f can be non-submodular, it has the best-so-far
approximation bound 1− e−γ [6], where γ is the submodularity ratio.

Recently, a new approach Pareto Optimization for Subset Selection (POSS) has been shown superior
to the greedy algorithm [21, 24]. It reformulates subset selection with two simultaneous objectives,
i.e., optimizing the given objective and minimizing the subset size, and employs a randomized
iterative algorithm to solve this bi-objective problem. POSS is proved to achieve the same general
approximation guarantee as the greedy algorithm, and is shown better on some subclasses [5]. The
Pareto optimization method has also been successfully applied to solve subset selection with general
cost constraints [20] as well as ratio optimization of monotone set functions [22].

Most of the previous studies assumed that the objective function is noise-free. However, we can only
have a noisy evaluation in many realistic applications. For examples, for influence maximization,
computing the influence spread objective is #P-hard [2], and thus is often estimated by simulating the
random diffusion process [16], which brings noise; for sparse regression, only a set of limited data can
be used for evaluation, which makes the evaluation noisy; and more examples include maximizing
information gain in graphical models [4], crowdsourced image collection summarization [26], etc.
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To the best of our knowledge, only a few studies addressing noisy subset selection have been reported,
which assumed monotone submodular objective functions. Under the general multiplicative noise
model (i.e., the noisy objective value F (X) is in the range of (1± ε)f(X)), it was proved that no
polynomial-time algorithm can achieve a constant approximation ratio for any ε > 1/

√
n, while

the greedy algorithm can achieve a (1 − 1/e − 16δ)-approximation ratio for ε = δ/k as long as
δ < 1 [14]. By assuming that F (X) is a random variable (i.e., random noise) and the expectation of
F (X) is the true value f(X), it was shown that the greedy algorithm can achieve nearly a (1− 1/e)-
approximation guarantee via uniform sampling [16] or adaptive sampling [26]. Recently, Hassidim
and Singer [13] considered the consistent random noise model, where for each subset X , only the
first evaluation is a random draw from the distribution of F (X) and the other evaluations return the
same value. For some classes of noise distribution, they provided polynomial-time algorithms with
constant approximations.

In this paper, we consider a more general situation, i.e., noisy subset selection with a monotone
objective f (not necessarily submodular), for both multiplicative noise and additive noise (i.e., F (X)
is in the range of f(X)± ε) models. The main results are:

• Firstly, we extend the approximation ratio of the greedy algorithm from the submodular case [14]
to the general situation (Theorems 1, 2), and also slightly improve it.

• Secondly, we prove that the approximation ratio of POSS is nearly the same as that of the greedy
algorithm (Theorems 3, 4). Moreover, on two maximum coverage cases, we show that POSS can
have a better ability of avoiding the misleading search direction due to the noise (Propositions 1, 2).

• Thirdly, we introduce a noise-aware comparison strategy into POSS, and propose the new PONSS
algorithm for noisy subset selection. When comparing two solutions with close noisy objective
values, POSS selects the solution with the better observed value, while PONSS keeps both of them
such that the risk of deleting a good solution is reduced. With some assumption such as i.i.d.
noise distribution, we prove that PONSS can obtain a 1−ε

1+ε (1 − e−γ)-approximation ratio under
multiplicative noise (Theorem 5). Particularly for the submodular case (i.e., γ = 1) and ε being a
constant, PONSS has a constant approximation ratio. Note that for the greedy algorithm and POSS
under general multiplicative noise, they only guarantee a Θ(1/k) approximation ratio. We also prove
the approximation ratio of PONSS under additive noise (Theorem 6).

We have conducted experiments on influence maximization and sparse regression problems, two typi-
cal subset selection applications with the objective function being submodular and non-submodular,
respectively. The results on real-world data sets show that POSS is better than the greedy algorithm
in most cases, and PONSS clearly outperforms POSS and the greedy algorithm.

We start the rest of the paper by introducing the noisy subset selection problem. We then present
in three subsequent sections the theoretical analyses for the greedy, POSS and PONSS algorithms,
respectively. We further empirically compare these algorithms. The final section concludes this paper.

2 Noisy Subset Selection

Given a finite nonempty set V = {v1, . . . , vn}, we study the functions f : 2V → R defined on
subsets of V . The subset selection problem as presented in Definition 1 is to select a subset X of V
such that a given objective f is maximized with the constraint |X| ≤ k, where | · | denotes the size of
a set. Note that we only consider maximization since minimizing f is equivalent to maximizing −f .

Definition 1 (Subset Selection). Given all items V = {v1, . . . , vn}, an objective function f and a
budget k, it is to find a subset of at most k items maximizing f , i.e.,

arg maxX⊆V f(X) s.t. |X| ≤ k. (1)

A set function f : 2V → R is monotone if for any X ⊆ Y , f(X) ≤ f(Y ). In this paper, we consider
monotone functions and assume that they are normalized, i.e., f(∅) = 0. A set function f : 2V → R
is submodular if for any X ⊆ Y , f(Y ) − f(X) ≤

∑
v∈Y \X(f(X ∪ {v}) − f(X)) [19]. The

submodularity ratio in Definition 2 characterizes how close a set function f is to submodularity. It is
easy to see that f is submodular iff γX,k(f) = 1 for anyX and k. For some concrete non-submodular
applications, bounds on γX,k(f) were derived [1, 9]. When f is clear, we will use γX,k shortly.
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Algorithm 1 Greedy Algorithm
Input: all items V = {v1, . . . , vn}, a noisy objective function F , and a budget k
Output: a subset of V with k items
Process:

1: Let i = 0 and Xi = ∅.
2: repeat
3: Let v∗ = arg maxv∈V \Xi F (Xi ∪ {v}).
4: Let Xi+1 = Xi ∪ {v∗}, and i = i+ 1.
5: until i = k
6: return Xk

Definition 2 (Submodularity Ratio [6]). Let f be a non-negative set function. The submodularity
ratio of f with respect to a set X and a parameter k ≥ 1 is

γX,k(f) = min
L⊆X,S:|S|≤k,S∩L=∅

∑
v∈S

(
f(L ∪ {v})− f(L)

)
f(L ∪ S)− f(L)

.

In many applications of subset selection, we cannot obtain the exact objective value f(X), but rather
only a noisy one F (X). In this paper, we will study the multiplicative noise model, i.e.,

(1− ε)f(X) ≤ F (X) ≤ (1 + ε)f(X), (2)

as well as the additive noise model, i.e.,

f(X)− ε ≤ F (X) ≤ f(X) + ε. (3)

3 The Greedy Algorithm

The greedy algorithm as shown in Algorithm 1 iteratively adds one item with the largest F im-
provement until k items are selected. It can achieve the best approximation ratio for many subset
selection problems without noise [6, 18]. However, its performance for noisy subset selection was
not theoretically analyzed until recently. Let OPT = maxX:|X|≤k f(X) denote the optimal function
value of Eq. (1). Horel and Singer [14] proved that for subset selection with submodular objective
functions under the multiplicative noise model, the greedy algorithm finds a subset X with

f(X) ≥
1−ε
1+ε

1 + 4kε
(1−ε)2

(
1−

(
1− ε
1 + ε

)2k (
1− 1

k

)k)
·OPT. (4)

Note that their original bound in Theorem 5 of [14] is w.r.t. F (X) and we have switched to f(X) by
multiplying a factor of 1−ε

1+ε according to Eq. (2).

By extending their analysis with the submodularity ratio, we prove in Theorem 1 the approximation
bound of the greedy algorithm for the objective f being not necessarily submodular. Note that their
analysis is based on an inductive inequality on F , while we directly use that on f , which brings a
slight improvement. For the submodular case, γX,k = 1 and the bound in Theorem 1 changes to be

f(X) ≥
1−ε
1+ε

1
k

1− 1−ε
1+ε

(
1− 1

k

) (1−
(

1− ε
1 + ε

)k (
1− 1

k

)k)
·OPT.

Comparing with that (i.e., Eq. (4)) in [14], our bound is tighter, since

1−
(

1−ε
1+ε

)k(
1− 1

k

)k
1− 1−ε

1+ε

(
1− 1

k

) =

k−1∑
i=0

(
1−ε
1+ε

(
1− 1

k

))i
≥
k−1∑
i=0

((
1−ε
1+ε

)2(
1− 1

k

))i
≥

1−
(

1−ε
1+ε

)2k(
1− 1

k

)k
1 + 4kε

(1−ε)2
· k.

Due to space limitation, the proof of Theorem 1 is provided in the supplementary material. We also
show in Theorem 2 the approximation ratio under additive noise. The proof is similar to that of
Theorem 1, except that Eq. (3) is used instead of Eq. (2) for comparing f(X) with F (X).
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Algorithm 2 POSS Algorithm
Input: all items V = {v1, . . . , vn}, a noisy objective function F , and a budget k
Parameter: the number T of iterations
Output: a subset of V with at most k items
Process:

1: Let x = {0}n, P = {x}, and let t = 0.
2: while t < T do
3: Select x from P uniformly at random.
4: Generate x′ by flipping each bit of x with probability 1

n .
5: if @z ∈ P such that z � x′ then
6: P = (P \ {z ∈ P | x′ � z}) ∪ {x′}.
7: end if
8: t = t+ 1.
9: end while

10: return arg maxx∈P,|x|≤k F (x)

Theorem 1. For subset selection under multiplicative noise, the greedy algorithm finds a subset X
with

f(X) ≥
1−ε
1+ε

γX,k
k

1− 1−ε
1+ε

(
1− γX,k

k

) (1−
(

1− ε
1 + ε

)k (
1− γX,k

k

)k)
·OPT.

Theorem 2. For subset selection under additive noise, the greedy algorithm finds a subset X with

f(X) ≥
(

1−
(

1− γX,k
k

)k)
·
(
OPT − 2kε

γX,k

)
.

4 The POSS Algorithm

Let a Boolean vector x ∈ {0, 1}n represent a subset X of V , where xi = 1 if vi ∈ X and xi = 0
otherwise. The Pareto Optimization method for Subset Selection (POSS) [24] reformulates the
original problem Eq. (1) as a bi-objective maximization problem:

arg maxx∈{0,1}n (f1(x), f2(x)), where f1(x) =

{
−∞, |x| ≥ 2k

F (x), otherwise
, f2(x) = −|x|.

That is, POSS maximizes the original objective and minimizes the subset size simultaneously. Note
that setting f1 to −∞ is to exclude overly infeasible solutions. We will not distinguish x ∈ {0, 1}n
and its corresponding subset for convenience.

In the bi-objective setting, the domination relationship as presented in Definition 3 is used to compare
two solutions. For |x| < 2k and |y| ≥ 2k, it trivially holds that x � y. For |x|, |y| < 2k, x � y if
F (x) ≥ F (y) ∧ |x| ≤ |y|; x � y if x � y and F (x) > F (y) ∨ |x| < |y|.
Definition 3 (Domination). For two solutions x and y,
• x weakly dominates y (denoted as x � y) if f1(x) ≥ f1(y) ∧ f2(x) ≥ f2(y);
• x dominates y (denoted as x � y) if x � y and f1(x) > f1(y) ∨ f2(x) > f2(y).

POSS as described in Algorithm 2 uses a randomized iterative procedure to optimize the bi-objective
problem. It starts from the empty set {0}n (line 1). In each iteration, a new solution x′ is generated
by randomly flipping bits of an archived solution x selected from the current P (lines 3-4); if x′ is
not dominated by any previously archived solution (line 5), it will be added into P , and meanwhile
those solutions weakly dominated by x′ will be removed (line 6). After T iterations, the solution
with the largest F value satisfying the size constraint in P is selected (line 10).

In [21, 24], POSS using E[T ] ≤ 2ek2n was proved to achieve the same approximation ratio
as the greedy algorithm for subset selection without noise, where E[T ] denotes the expected
number of iterations. However, its approximation performance under noise is not known. Let
γmin = minX:|X|=k−1 γX,k. We first show in Theorem 3 the approximation ratio of POSS under
multiplicative noise. The proof is provided in the supplementary material due to space limitation.
The approximation ratio of POSS under additive noise is shown in Theorem 4, the proof of which is
similar to that of Theorem 3 except that Eq. (3) is used instead of Eq. (2).
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Figure 1: Two examples of the maximum coverage problem.

Theorem 3. For subset selection under multiplicative noise, POSS using E[T ] ≤ 2ek2n finds a
subset X with |X| ≤ k and

f(X) ≥
1−ε
1+ε

γmin

k

1− 1−ε
1+ε

(
1− γmin

k

) (1−
(

1− ε
1 + ε

)k (
1− γmin

k

)k)
·OPT.

Theorem 4. For subset selection under additive noise, POSS using E[T ] ≤ 2ek2n finds a subset X
with |X| ≤ k and

f(X) ≥
(

1−
(

1− γmin

k

)k)
·
(
OPT − 2kε

γmin

)
−
(

1− γmin

k

)k
ε.

By comparing Theorem 1 with 3, we find that the approximation bounds of POSS and the greedy
algorithm under multiplicative noise are nearly the same. Particularly, for the submodular case (where
γX,k = 1 for any X and k), they are exactly the same. Under additive noise, their approximation
bounds (i.e., Theorems 2 and 4) are also nearly the same, since the additional term (1− γmin

k )kε in
Theorem 4 can almost be omitted compared with other terms.

To further investigate the performances of the greedy algorithm and POSS, we compare them on two
maximum coverage examples with noise. Maximum coverage as in Definition 4 is a classic subset
selection problem. Given a family of sets that cover a universe of elements, the goal is to select at
most k sets whose union is maximal. For Examples 1 and 2, the greedy algorithm easily finds an
optimal solution if without noise, but can only guarantee nearly a 2/k and 3/4-approximation under
noise, respectively. We prove in Propositions 1 and 2 that POSS can avoid the misleading search
direction due to noise through multi-bit search and backward search, respectively, and find an optimal
solution. Note that the greedy algorithm can only perform single-bit forward search. Due to space
limitation, the proofs are provided in the supplementary material.
Definition 4 (Maximum Coverage). Given a ground set U , a collection V = {S1, S2, . . . , Sn} of
subsets of U , and a budget k, it is to find a subset of V (represented by x ∈ {0, 1}n) such that

arg maxx∈{0,1}n f(x) = |
⋃

i:xi=1
Si| s.t. |x| ≤ k.

Example 1. [13] As shown in Figure 1(a), V contains n = 2l subsets {S1, . . . , S2l}, where ∀i ≤ l,
Si covers the same two elements, and ∀i > l, Si covers one unique element. The objective evaluation
is exact except that ∀∅ ⊂ X ⊆ {S1, . . . , Sl}, i > l, F (X) = 2 + δ and F (X ∪ {Si}) = 2, where
0 < δ < 1. The budget satisfies that 2 < k ≤ l.
Proposition 1. For Example 1, POSS using E[T ] = O(kn log n) finds an optimal solution, while the
greedy algorithm cannot.
Example 2. As shown in Figure 1(b), V contains n = 4l subsets {S1, . . . , S4l}, where ∀i ≤ 4l− 3 :
|Si| = 1, |S4l−2| = 2l − 1, and |S4l−1| = |S4l| = 2l − 2. The objective evaluation is exact except
that F ({S4l}) = 2l. The budget k = 2.
Proposition 2. For Example 2, POSS using E[T ] = O(n) finds the optimal solution {S4l−2, S4l−1},
while the greedy algorithm cannot.

5 The PONSS Algorithm

POSS compares two solutions based on the domination relation as shown in Definition 3. This may
be not robust to noise, because a worse solution can appear to have a better F value and then survive
to replace the true better solution. Inspired by the noise handling strategy threshold selection [25],
we modify POSS by replacing domination with θ-domination, where x is better than y if F (x) is
larger than F (y) by at least a threshold. By θ-domination, solutions with close F values will be kept
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Algorithm 3 PONSS Algorithm
Input: all items V = {v1, . . . , vn}, a noisy objective function F , and a budget k
Parameter: T , θ and B
Output: a subset of V with at most k items
Process:

1: Let x = {0}n, P = {x}, and let t = 0.
2: while t < T do
3: Select x from P uniformly at random.
4: Generate x′ by flipping each bit of x with probability 1

n .
5: if @z ∈ P such that z �θ x′ then
6: P = (P \ {z ∈ P | x′ �θ z}) ∪ {x′}.
7: Q = {z ∈ P | |z| = |x′|}.
8: if |Q| = B + 1 then
9: P = P \Q and let j = 0.

10: while j < B do
11: Select two solutions z1, z2 from Q uniformly at random without replacement.
12: Evaluate F (z1), F (z2); let ẑ = arg maxz∈{z1,z2} F (z) (breaking ties randomly).
13: P = P ∪ {ẑ}, Q = Q \ {ẑ}, and j = j + 1.
14: end while
15: end if
16: end if
17: t = t+ 1.
18: end while
19: return arg maxx∈P,|x|≤k F (x)

in P rather than only one with the best F value is kept; thus the risk of removing a good solution is
reduced. This modified algorithm called PONSS (Pareto Optimization for Noisy Subset Selection) is
presented in Algorithm 3. However, using θ-domination may also make the size of P very large, and
then reduce the efficiency. We further introduce a parameter B to limit the number of solutions in P
for each possible subset size. That is, if the number of solutions with the same size in P exceeds B,
one of them will be deleted. As shown in lines 7-15, the better one of two solutions randomly selected
from Q is kept; this process is repeated for B times, and the remaining solution in Q is deleted.

For the analysis of PONSS, we consider random noise, i.e., F (x) is a random variable, and assume
that the probability of F (x) > F (y) is not less than 0.5 + δ if f(x) > f(y), i.e.,

Pr(F (x) > F (y)) ≥ 0.5 + δ if f(x) > f(y), (5)
where δ ∈ [0, 0.5). This assumption is satisfied in many noisy settings, e.g., the noise distribution
is i.i.d. for each x (which is explained in the supplementary material). Note that for comparing
two solutions selected from Q in line 12 of PONSS, we reevaluate their noisy objective F values
independently, i.e., each evaluation is a new independent random draw from the noise distribution.

For the multiplicative noise model, we use the multiplicative θ-domination relation as presented in
Definition 5. That is, x �θ y if F (x) ≥ 1+θ

1−θ · F (y) and |x| ≤ |y|. The approximation ratio of
PONSS with the assumption Eq. (5) is shown in Theorem 5, which is better than that of POSS under
general multiplicative noise (i.e., Theorem 3), because

1−
(

1−ε
1+ε

)k (
1− γmin

k

)k
1− 1−ε

1+ε

(
1− γmin

k

) =

k−1∑
i=0

(
1− ε
1 + ε

(
1− γmin

k

))i
≤
k−1∑
i=0

(
1− γmin

k

)i
=

1−
(
1− γmin

k

)k
γmin

k

.

Particularly for the submodular case where γmin =1, PONSS with the assumption Eq. (5) can achieve
a constant approximation ratio even when ε is a constant, while the greedy algorithm and POSS under
general multiplicative noise only guarantee a Θ(1/k) approximation ratio. Note that when δ is a
constant, the approximation guarantee of PONSS can hold with a constant probability by using a
polynomially large B, and thus the number of iterations of PONSS is polynomial in expectation.
Definition 5 (Multiplicative θ-Domination). For two solutions x and y,

• x weakly dominates y (denoted as x �θ y) if f1(x) ≥ 1+θ
1−θ · f1(y) ∧ f2(x) ≥ f2(y);

• x dominates y (denoted as x �θ y) if x �θ y and f1(x) > 1+θ
1−θ · f1(y) ∨ f2(x) > f2(y).
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Lemma 1. [21] For any X ⊆ V , there exists one item v̂ ∈ V \X such that

f(X ∪ {v̂})− f(X) ≥ γX,k
k

(OPT − f(X)).

Theorem 5. For subset selection under multiplicative noise with the assumption Eq. (5), with
probability at least 1

2 (1− 12nk2 log 2k
B2δ ), PONSS using θ ≥ ε and T = 2eBnk2 log 2k finds a subset

X with |X| ≤ k and

f(X) ≥ 1− ε
1 + ε

(
1−

(
1− γmin

k

)k)
·OPT.

Proof. Let Jmax denote the maximum value of j ∈ [0, k] such that in P , there exists a solution x
with |x| ≤ j and f(x) ≥ (1− (1− γmin

k )j) ·OPT . Note that Jmax = k implies that there exists one
solution x∗ in P satisfying that |x∗| ≤ k and f(x∗) ≥ (1 − (1 − γmin

k )k) · OPT . Since the final
selected solution x from P has the largest F value (i.e., line 19 of Algorithm 3), we have

f(x) ≥ 1

1 + ε
F (x) ≥ 1

1 + ε
F (x∗) ≥ 1− ε

1 + ε
f(x∗).

That is, the desired approximation bound is reached. Thus, we only need to analyze the probability of
Jmax = k after running T = 2eBnk2 log 2k number of iterations.

Assume that in the run of PONSS, one solution with the best f value in Q is always kept after each
implementation of lines 8-15. We then show that Jmax can reach k with probability at least 0.5 after
2eBnk2 log 2k iterations. Jmax is initially 0 since it starts from {0}n, and we assume that currently
Jmax = i < k. Let x be a corresponding solution with the value i, i.e., |x| ≤ i and

f(x) ≥
(

1−
(

1− γmin

k

)i)
·OPT. (6)

First, Jmax will not decrease. If x is not deleted, it obviously holds. For deleting x, there are two
possible cases. If x is deleted in line 6, the newly included solution x′ �θ x, which implies that
|x′| ≤ |x| ≤ i and f(x′) ≥ 1

1+εF (x′) ≥ 1
1+ε ·

1+θ
1−θF (x) ≥ 1

1+ε ·
1+ε
1−εF (x) ≥ f(x), where the

third inequality is by θ ≥ ε. If x is deleted in lines 8-15, there must exist one solution z∗ in P with
|z∗| = |x| and f(z∗) ≥ f(x), because we assume that one solution with the best f value in Q is
kept. Second, Jmax can increase in each iteration with some probability. From Lemma 1, we know
that a new solution x′ can be produced by flipping one specific 0 bit of x (i.e., adding a specific item)
such that |x′| = |x|+ 1 ≤ i+ 1 and

f(x′) ≥
(

1− γx,k
k

)
f(x) +

γx,k
k
·OPT ≥

(
1−

(
1− γmin

k

)i+1
)
·OPT,

where the second inequality is by Eq. (6) and γx,k ≥ γmin (since |x| < k and γx,k decreases with x).
Note that x′ will be added into P ; otherwise, there must exist one solution in P dominating x′ (line 5
of Algorithm 3), and this implies that Jmax has already been larger than i, which contradicts with the
assumption Jmax = i. After including x′, Jmax ≥ i+ 1. Since P contains at most B solutions for
each possible size {0, . . . , 2k− 1}, |P | ≤ 2Bk. Thus, Jmax can increase by at least 1 in one iteration
with probability at least 1

|P | ·
1
n (1− 1

n )n−1 ≥ 1
2eBnk , where 1

|P | is the probability of selecting x in
line 3 of Algorithm 3 due to uniform selection and 1

n (1− 1
n )n−1 is the probability of flipping only a

specific bit of x in line 4. We divide the 2eBnk2 log 2k iterations into k phases with equal length.
For reaching Jmax = k, it is sufficient that Jmax increases at least once in each phase. Thus, we have

Pr(Jmax = k) ≥
(

1− (1− 1/(2eBnk))
2eBnk log 2k

)k
≥ (1− 1/(2k))k ≥ 1/2.

We then only need to investigate our assumption that in the run of 2eBnk2 log 2k iterations, when
implementing lines 8-15, one solution with the best f value in Q is always kept. Let R = {z∗ ∈
arg maxz∈Q f(z)}. If |R| > 1, it trivially holds, since only one solution from Q is deleted. If
|R| = 1, deleting the solution z∗ with the best f value implies that z∗ is never included into
P in implementing lines 11-13 of Algorithm 3, which are repeated for B iterations. In the j-th
(where 0 ≤ j ≤ B − 1) iteration, |Q| = B + 1 − j. Under the condition that z∗ is not included
into P from the 0-th to the (j − 1)-th iteration, the probability that z∗ is selected in line 11 is
(B − j)/

(
B+1−j

2

)
= 2/(B + 1− j). We know from Eq. (5) that F (z∗) is better in the comparison

of line 12 with probability at least 0.5+δ. Thus, the probability of not including z∗ into P in the j-th
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iteration is at most 1− 2
B+1−j · (0.5+δ). Then, the probability of deleting the solution with the best f

value in Q when implementing lines 8-15 is at most
∏B−1
j=0 (1− 1+2δ

B+1−j ). Taking the logarithm, we get
B−1∑
j=0

log

(
B − j − 2δ

B + 1− j

)
=

B∑
j=1

log

(
j − 2δ

j + 1

)
≤
∫ B+1

1

log

(
j − 2δ

j + 1

)
dj

= log

(
(B + 1− 2δ)B+1−2δ

(B + 2)B+2

)
− log

(
(1− 2δ)1−2δ

22

)
,

where the inequality is since log j−2δ
j+1 is increasing with j, and the last equality is since the derivative

of log (j−2δ)j−2δ

(j+1)j+1 with respect to j is log j−2δ
j+1 . Thus, we have

B−1∏
j=0

(
1− 1+2δ

B+1−j

)
≤
(
B+1−2δ

B+2

)B+2

· 1

(B+1−2δ)1+2δ
· 4

(1−2δ)1−2δ
≤ 4

e1−1/eB1+2δ
,

where the last inequality is by 0 < 1− 2δ ≤ 1 and (1− 2δ)1−2δ ≥ e−1/e. By the union bound, our
assumption holds with probability at least 1− (12nk2 log 2k)/B2δ . Thus, the theorem holds.

For the additive noise model, we use the additive θ-domination relation as presented in Definition 6.
That is, x �θ y if F (x) ≥ F (y) + 2θ and |x| ≤ |y|. By applying Eq. (3) and additive θ-domination
to the proof procedure of Theorem 5, we can prove the approximation ratio of PONSS under additive
noise with the assumption Eq. (5), as shown in Theorem 6. Compared with the approximation ratio
of POSS under general additive noise (i.e., Theorem 4), PONSS achieves a better one. This can be
easily verified since (1− (1− γmin

k )k) 2kε
γmin
≥ 2ε, where the inequality is derived by γmin ∈ [0, 1].

Definition 6 (Additive θ-Domination). For two solutions x and y,
• x weakly dominates y (denoted as x �θ y) if f1(x) ≥ f1(y) + 2θ ∧ f2(x) ≥ f2(y);
• x dominates y (denoted as x �θ y) if x �θ y and f1(x) > f1(y) + 2θ ∨ f2(x) > f2(y).
Theorem 6. For subset selection under additive noise with the assumption Eq. (5), with probability
at least 1

2 (1 − 12nk2 log 2k
B2δ ), PONSS using θ ≥ ε and T = 2eBnk2 log 2k finds a subset X with

|X| ≤ k and
f(X) ≥

(
1−

(
1− γmin

k

)k)
·OPT − 2ε.

6 Empirical Study

We conducted experiments on two typical subset selection problems: influence maximization and
sparse regression, where the former has a submodular objective function and the latter has a non-
submodular one. The number T of iterations in POSS is set to 2ek2n as suggested by Theorem 3.
For PONSS, B is set to k, and θ is set to 1, which is obviously not smaller than ε. Note that POSS
needs one objective evaluation for the newly generated solution x′ in each iteration, while PONSS
needs 1 or 1 + 2B evaluations, which depends on whether the condition in line 8 of Algorithm 3 is
satisfied. For the fairness of comparison, PONSS is terminated until the total number of evaluations
reaches that of POSS, i.e., 2ek2n. Note that in the run of each algorithm, only a noisy objective value
F can be obtained; while for the final output solution, we report its accurately estimated f value for
the assessment of the algorithms by an expensive evaluation. As POSS and PONSS are randomized
algorithms and the behavior of the greedy algorithm is also randomized under random noise, we
repeat the run 10 times independently and report the average estimated f values.

Influence Maximization The task is to identify a set of influential users in social networks. Let
a directed graph G(V,E) represent a social network, where each node is a user and each edge
(u, v) ∈ E has a probability pu,v representing the influence strength from user u to v. Given a budget
k, influence maximization is to find a subset X of V with |X| ≤ k such that the expected number of
nodes activated by propagating from X (called influence spread) is maximized. The fundamental
propagation model Independent Cascade [11] is used. Note that the set of active nodes in the diffusion
process is a random variable, and the expectation of its size is monotone and submodular [16].

We use two real-world data sets: ego-Facebook and Weibo. ego-Facebook is downloaded from http:
//snap.stanford.edu/data/index.html, and Weibo is crawled from a Chinese microblogging
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(a) ego-Facebook (4,039 #nodes, 88,234 #edges) (b) Weibo (10,000 #nodes, 162,371 #edges)

Figure 2: Influence maximization (influence spread: the larger the better). The right subfigure on
each data set: influence spread vs running time of PONSS and POSS for k = 7.
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(a) protein (24,387 #inst, 357 #feat) (b) YearPredictionMSD (515,345 #inst, 90 #feat)

Figure 3: Sparse regression (R2: the larger the better). The right subfigure on each data set: R2 vs
running time of PONSS and POSS for k = 14.

site Weibo.com like Twitter. On each network, the propagation probability of one edge from node u
to v is estimated by weight(u,v)

indegree(v) , as widely used in [3, 12]. We test the budget k from 5 to 10. For
estimating the objective influence spread, we simulate the diffusion process 10 times independently
and use the average as an estimation. But for the final output solutions of the algorithms, we average
over 10,000 times for accurate estimation.

From the left subfigure on each data set in Figure 2, we can see that POSS is better than the greedy
algorithm, and PONSS performs the best. By selecting the greedy algorithm as the baseline, we plot
in the right subfigures the curve of influence spread over running time for PONSS and POSS with
k = 7. Note that the x-axis is in kn, the running time order of the greedy algorithm. We can see that
PONSS quickly reaches a better performance, which implies that PONSS can be efficient in practice.

Sparse Regression The task is to find a sparse approximation solution to the linear regression
problem. Given all observation variables V = {v1, . . . , vn}, a predictor variable z and a budget k,
sparse regression is to find a set of at most k variables maximizing the squared multiple correlation
R2
z,X = 1−MSEz,X [8, 15], where MSEz,X = minα∈R|X| E[(z−

∑
i∈X αivi)

2] denotes the mean
squared error. We assume w.l.o.g. that all random variables are normalized to have expectation 0 and
variance 1. The objective R2

z,X is monotone increasing, but not necessarily submodular [6].

We use two data sets from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/. The budget k is set to {10, 12, . . . , 20}. For estimating R2 in the optimiza-
tion process, we use a random sample of 1000 instances. But for the final output solutions, we use
the whole data set for accurate estimation. The results are plotted in Figure 3. The performances of
the three algorithms are similar to that observed for influence maximization, except some losses of
POSS over the greedy algorithm (e.g., on YearPredictionMSD with k = 20).

For both tasks, we test PONSS with θ = {0.1, 0.2, . . . , 1}. The results are provided in the supple-
mentary material due to space limitation, which show that PONSS is always better than POSS and
the greedy algorithm. This implies that the performance of PONSS is not sensitive to the value of θ.

7 Conclusion

In this paper, we study the subset selection problem with monotone objective functions under
multiplicative and additive noises. We first show that the greedy algorithm and POSS, two powerful
algorithms for noise-free subset selection, achieve nearly the same approximation guarantee under
noise. Then, we propose a new algorithm PONSS, which can achieve a better approximation ratio with
some assumption such as i.i.d. noise distribution. The experimental results on influence maximization
and sparse regression exhibit the superior performance of PONSS.
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1 Detailed Proofs

This part aims to provide some detailed proofs, which are omitted in our original paper due to space
limitation.

Proof of Theorem 1. Let X∗ be an optimal subset, i.e., f(X∗) = OPT . Let Xi denote the subset
after the i-th iteration of the greedy algorithm. Then, we have

f(X∗)− f(Xi) ≤ f(X∗ ∪Xi)− f(Xi)

≤ 1

γXi,k

∑
v∈X∗\Xi

(
f(Xi ∪ {v})− f(Xi)

)
≤ 1

γXi,k

∑
v∈X∗\Xi

(
1

1− ε
F (Xi ∪ {v})− f(Xi)

)

≤ 1

γXi,k

∑
v∈X∗\Xi

(
1

1− ε
F (Xi+1)− f(Xi)

)

≤ k

γXk,k

(
1 + ε

1− ε
f(Xi+1)− f(Xi)

)
,

where the first inequality is by the monotonicity of f , the second inequality is by the definition
of submodularity ratio and |X∗| ≤ k, the third is by the definition of multiplicative noise, i.e.,
F (X) ≥ (1− ε) · f(X), the fourth is by line 3 of Algorithm 1, and the last is by γXi,k ≥ γXi+1,k

and F (X) ≤ (1 + ε) · f(X). By a simple transformation, we can equivalently get

f(Xi+1) ≥
(
1− ε
1 + ε

)((
1− γXk,k

k

)
f(Xi) +

γXk,k
k

OPT
)
.

Based on this inequality, an inductive proof gives the approximation ratio of the returned subset Xk:

f(Xk) ≥
1−ε
1+ε

γXk,k
k

1− 1−ε
1+ε

(
1− γXk,k

k

) (1− (1− ε
1 + ε

)k (
1− γXk,k

k

)k)
·OPT.

�

Lemma 2 shows the relation between the F values of adjacent subsets, which will be used in the
proof of Theorem 3.
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Lemma 2. For any X ⊆ V , there exists one item v̂ ∈ V \X such that

F (X ∪ {v̂}) ≥
(
1− ε
1 + ε

)(
1− γX,k

k

)
F (X) +

(1− ε)γX,k
k

·OPT.

Proof. Let X∗ be an optimal subset, i.e., f(X∗) = OPT . Let v̂ ∈ argmaxv∈X∗\X F (X ∪ {v}).
Then, we have

f(X∗)− f(X) ≤ f(X∗ ∪X)− f(X)

≤ 1

γX,k

∑
v∈X∗\X

(
f(X ∪ {v})− f(X)

)
≤ 1

γX,k

∑
v∈X∗\X

(
1

1− ε
F (X ∪ {v})− f(X)

)

≤ k

γX,k

(
1

1− ε
F (X ∪ {v̂})− f(X)

)
,

where the first inequality is by the monotonicity of f , the second inequality is by the definition
of submodularity ratio and |X∗| ≤ k, and the third is by F (X) ≥ (1 − ε)f(X). By a simple
transformation, we can equivalently get

F (X ∪ {v̂}) ≥ (1− ε)
((

1− γX,k
k

)
f(X) +

γX,k
k
·OPT

)
.

By applying f(X) ≥ F (X)/(1 + ε) to this inequality, the lemma holds.

Proof of Theorem 3. Let Jmax denote the maximum value of j ∈ [0, k] such that in P , there exists
a solution x with |x| ≤ j and

F (x) ≥
(1− ε)γmin

k

1− 1−ε
1+ε

(
1− γmin

k

) (1− (1− ε
1 + ε

)j (
1− γmin

k

)j)
·OPT.

We analyze the expected number of iterations until Jmax = k, which implies that there exists one
solution x in P satisfying that |x| ≤ k and F (x) ≥ (1−ε) γmin

k

1− 1−ε
1+ε (1−

γmin
k )

(1− ( 1−ε1+ε )
k(1− γmin

k )k) ·OPT .

Since f(x) ≥ F (x)/(1 + ε), the desired approximation bound has been reached when Jmax = k.

The initial value of Jmax is 0, since POSS starts from {0}n. Assume that currently Jmax = i < k.
Let x be a corresponding solution with the value i, i.e., |x| ≤ i and

F (x) ≥
(1− ε)γmin

k

1− 1−ε
1+ε

(
1− γmin

k

) (1− (1− ε
1 + ε

)i (
1− γmin

k

)i)
·OPT. (1)

It is easy to see that Jmax cannot decrease because deleting x from P (line 6 of Algorithm 2) implies
that x is weakly dominated by the newly generated solution x′, which must have a smaller size and a
larger F value. By Lemma 2, we know that flipping one specific 0 bit of x (i.e., adding a specific
item) can generate a new solution x′, which satisfies that

F (x′) ≥
(
1− ε
1 + ε

)(
1− γx,k

k

)
F (x) +

(1− ε)γx,k
k

·OPT

=
1− ε
1 + ε

F (x) +

(
OPT − F (x)

1 + ε

)
(1− ε)γx,k

k
.

Note that OPT − F (x)
1+ε ≥ f(x) − F (x)

1+ε ≥ 0. Moreover, γx,k ≥ γmin, since |x| < k and γx,k
decreases with x. Thus, we have

F (x′) ≥
(
1− ε
1 + ε

)(
1− γmin

k

)
F (x) +

(1− ε)γmin

k
·OPT.

By applying Eq. (1) to the above inequality, we easily get

F (x′) ≥
(1− ε)γmin

k

1− 1−ε
1+ε

(
1− γmin

k

) (1− (1− ε
1 + ε

)i+1 (
1− γmin

k

)i+1
)
·OPT.
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Since |x′| = |x|+ 1 ≤ i+ 1, x′ will be included into P ; otherwise, x′ must be dominated by one
solution in P (line 5 of Algorithm 2), and this implies that Jmax has already been larger than i, which
contradicts with the assumption Jmax = i. After including x′, Jmax ≥ i+ 1. Let Pmax denote the
largest size of P during the run of POSS. Thus, Jmax can increase by at least 1 in one iteration with
probability at least 1

Pmax
· 1n (1−

1
n )
n−1 ≥ 1

enPmax
, where 1

Pmax
is a lower bound on the probability

of selecting x in line 3 of Algorithm 2 and 1
n (1−

1
n )
n−1 is the probability of flipping only a specific

bit of x in line 4. Then, it needs at most enPmax expected number of iterations to increase Jmax.
Thus, after k · enPmax expected number of iterations, Jmax must have reached k.

From the procedure of POSS, we know that the solutions in P must be non-dominated. Thus, each
value of one objective can correspond to at most one solution in P . Because the solutions with
|x| ≥ 2k have −∞ value on the first objective, they must be excluded from P . Thus, Pmax ≤ 2k,
which implies that the expected number of iterations E[T ] for finding the desired solution is at most
2ek2n. �

Proof of Proposition 1. LetA = {S1, . . . , Sl} and B = {Sl+1, . . . , S2l}. For the greedy algorithm,
if without noise, it will first select one Si from A, and continue to select Si from B until reaching
the budget. Thus, the greedy algorithm can find an optimal solution. But in the presence of noise,
after selecting one Si from A, it will continue to select Si from A rather than from B, since for
all X ⊆ A, Si ∈ B, F (X) = 2 + δ > 2 = F (X ∪ {Si}). The approximation ratio thus is only
2/(k + 1).

For POSS under noise, we show that it can efficiently follow the path {0}n (i.e., ∅) → {S} →
{S} ∪ X2 → {S} ∪ X3 → · · · → {S} ∪ Xk−1 (i.e., an optimal solution), where S denotes any
element from A and Xi denotes any subset of B with size i. Note that the solutions on the path will
always be kept in the archive P once found, because there is no other solution which can dominate
them. The probability of the first "→" on the path is at least 1

Pmax
· ln (1−

1
n )
n−1, since it is sufficient

to select {0}n in line 3 of Algorithm 2, and flip one of its first l 0-bits and keep other bits unchanged

in line 4. [Multi-bit search] For the second "→", the probability is at least 1
Pmax

· (
l
2)
n2 (1− 1

n )
n−2,

since it is sufficient to select {S} and flip any two 0-bits in its second half. For the i-th "→" with
3 ≤ i ≤ k − 1, the probability is at least 1

Pmax
· l−i+1

n (1− 1
n )
n−1, since it is sufficient to select the

left solution of "→" and flip one 0-bit in its second half. Thus, starting from {0}n, POSS can follow
the path in

enPmax ·

(
1

l
+

4

l − 1
+

k−1∑
i=3

1

l − i+ 1

)
= O(nPmax log n)

expected number of iterations. Since Pmax ≤ 2k, the number of iterations for finding an optimal
solution is O(kn log n) in expectation. �

Proof of Proposition 2. For the greedy algorithm, if without noise, it will first select S4l−2 since
|S4l−2| is the largest, and then find the optimal solution {S4l−2, S4l−1}. But in the presence of noise,
S4l will be first selected since F ({S4l}) = 2l is the largest, and then the solution {S4l, S4l−1} is
found. The approximation ratio is thus only (3l − 2)/(4l − 3).

For POSS under noise, we first show that it can efficiently follow the path {0}n → {S4l} →
{S4l, S4l−1} → {S4l−2, S4l−1, ∗}, where ∗ denotes any subset Si with i 6= 4l − 2, 4l − 1. In this
procedure, we can pessimistically assume that the optimal solution {S4l−2, S4l−1} will never be
found, since we are to derive a running time upper bound for finding it. Note that the solutions
on the path will always be kept in P once found, because no other solutions can dominate them.
The probability of "→" is at least 1

Pmax
· 1n (1−

1
n )
n−1 ≥ 1

enPmax
, since it is sufficient to select the

solution on the left of "→" and flip only one specific 0-bit. Thus, starting from {0}n, POSS can
follow the path in 3 · enPmax expected number of iterations. [Backward search] After that, the
optimal solution {S4l−2, S4l−1} can be found by selecting {S4l−2, S4l−1, ∗} and flipping a specific
1-bit, which happens with probability at least 1

enPmax
. Thus, the total number of required iterations is

at most 4enPmax in expectation. Since Pmax ≤ 4, E[T ] = O(n). �

For the analysis of PONSS in the original paper, we assume that
Pr(F (x) > F (y)) ≥ 0.5 + δ if f(x) > f(y),
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where δ ∈ [0, 0.5). To show that this assumption holds with i.i.d. noise distribution, we prove the
following claim. Note that the value of δ depends on the concrete noise distribution.
Claim 1. If the noise distribution is i.i.d. for each solution x, it holds that

Pr(F (x) > F (y)) ≥ 0.5 if f(x) > f(y).

Proof. If F (x) = f(x) + ξ(x), where the noise ξ(x) is drawn independently from the same
distribution for each x, we have, for two solutions x and y with f(x) > f(y),

Pr(F (x) > F (y)) = Pr(f(x) + ξ(x) > f(y) + ξ(y))

≥ Pr(ξ(x) ≥ ξ(y))
≥ 0.5,

where the first inequality is by the condition that f(x) > f(y), and the last inequality is derived by
Pr(ξ(x) ≥ ξ(y)) + Pr(ξ(x) ≤ ξ(y)) ≥ 1 and Pr(ξ(x) ≥ ξ(y)) = Pr(ξ(x) ≤ ξ(y)) due to that
ξ(x) and ξ(y) are from the same distribution.

If F (x) = f(x) · ξ(x), the claim holds similarly.

2 Detailed Experimental Results

This part aims to provide some experimental results, which are omitted in our original paper due to
space limitation.
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Figure 1: Influence maximization with the budget k = 7 (influence spread: the larger the better): the
comparison between PONSS with different θ values, POSS and the greedy algorithm.
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Figure 2: Sparse regression with the budget k = 14 (R2: the larger the better): the comparison
between PONSS with different θ values, POSS and the greedy algorithm.
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