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Abstract

Imitation learning trains a policy by mimicking expert demonstrations. Various
imitation methods were proposed and empirically evaluated, meanwhile, their
theoretical understanding needs further studies. In this paper, we firstly analyze
the value gap between the expert policy and imitated policies by two imitation
methods, behavioral cloning and generative adversarial imitation. The results
support that generative adversarial imitation can reduce the compounding errors
compared to behavioral cloning, and thus has a better sample complexity. Noticed
that by considering the environment transition model as a dual agent, imitation
learning can also be used to learn the environment model. Therefore, based on
the bounds of imitating policies, we further analyze the performance of imitating
environments. The results show that environment models can be more effectively
imitated by generative adversarial imitation than behavioral cloning, suggesting a
novel application of adversarial imitation for model-based reinforcement learning.
We hope these results could inspire future advances in imitation learning and
model-based reinforcement learning.

1 Introduction

Sequential decision-making under uncertainty is challenging due to the stochastic dynamics and
delayed feedback [27, 8]. Compared to reinforcement learning (RL) [46, 38] that learns from
delayed feedback, imitation learning (IL) [37, 34, 23] learns from expert demonstrations that provide
immediate feedback and thus is efficient in obtaining a good policy, which has been demonstrated in
playing games [45], robotic control [19], autonomous driving [14], etc.

Imitation learning methods have been designed from various perspectives. For instance, behavioral
cloning (BC) [37, 50] learns a policy by directly minimizing the action probability discrepancy with
supervised learning; apprenticeship learning (AL) [1, 47] infers a reward function from expert demon-
strations by inverse reinforcement learning [34], and subsequently learns a policy by reinforcement
learning using the recovered reward function. Recently, Ho and Ermon [23] revealed that AL can be
viewed as a state-action occupancy measure matching problem. From this connection, they proposed
the algorithm generative adversarial imitation learning (GAIL). In GAIL, a discriminator scores
the agent’s behaviors based on the similarity to the expert demonstrations, and the agent learns to
maximize the scores, resulting in expert-like behaviors.

Many empirical studies of imitation learning have been conducted. It has been observed that, for
example, GAIL often achieves better performance than BC [23, 28, 29]. However, the theoretical
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explanations behind this observation have not been fully understood. Only until recently, there
emerged studies towards understanding the generalization and computation properties of GAIL
[13, 55]. In particular, Chen et al. [13] studied the generalization ability of the so-calledR-distance
given the complete expert trajectories, while Zhang et al. [55] focused on the global convergence
properties of GAIL under sophisticated neural network approximation assumptions.

In this paper, we present error bounds on the value gap between the expert policy and imitated policies
from BC and GAIL, as well as the sample complexity of the methods. The error bounds indicate that
the policy value gap is quadratic w.r.t. the horizon for BC, i.e., 1/(1− γ)2, and cannot be improved
in the worst case, which implies large compounding errors [39, 40]. Meanwhile, the policy value
gap is only linear w.r.t. the horizon for GAIL, i.e., 1/(1− γ). Similar to [13], the sample complexity
also hints that controlling the complexity of the discriminator set in GAIL could be beneficial to the
generalization. But our analysis strikes that a richer discriminator set is still required to reduce the
policy value gap. Besides, our results provide theoretical support for the experimental observation
that GAIL can generalize well even provided with incomplete trajectories [28].

Moreover, noticed that by regarding the environment transition model as a dual agent, imitation
learning can also be applied to learn the transition model [51, 44, 43]. Therefore, based on the
analysis of imitating policies, we further analyze the error bounds of imitating environments. The
results indicate that the environment model learning through adversarial approaches enjoys a linear
policy evaluation error w.r.t. the model-bias, which improves the previous quadratic results [31, 25]
and suggests a promising application of GAIL for model-based reinforcement learning.

2 Background

2.1 Markov Decision Process

An infinite-horizon Markov decision process (MDP) [46, 38] is described by a tuple M =
(S,A,M∗, R, γ, d0), where S is the state space, A is the action space, and d0 specifies the ini-
tial state distribution. We assume S and A are finite. The decision process runs as follows: at
time step t, the agent observes a state st from the environment and executes an action at, then
the environment sends a reward r(st, at) to the agent and transits to a new state st+1 according to
M∗(·|st, at). Without loss of generality, we assume that the reward function is bounded by Rmax,
i.e., |r(s, a)| ≤ Rmax,∀(s, a) ∈ S ×A.

A (stationary) policy π(·|s) specifies an action distribution conditioned on state s. The quality of
policy π is evaluated by its policy value (i.e., cumulative rewards with a discount factor γ ∈ [0, 1)):
Vπ = E [

∑∞
t=0 γ

tr(st, at)|s0 ∼ d0, at ∼ π(·|st), st+1 ∼M∗(·|st, at), t = 0, 1, 2, · · · ]. The goal of
reinforcement learning is to find an optimal policy π∗ such that it maximizes the policy value (i.e.,
π∗ = arg maxπ Vπ).

Notice that, in an infinite-horizon MDP, the policy value mainly depends on a finite length of the
horizon due to the discount factor. The effective planning horizon [38] 1/(1 − γ), i.e., the total
discounting weights of rewards, shows how the discount factor γ relates with the effective horizon.
We will see that the effective planning horizon plays an important role in error bounds of imitation
learning approaches.

To facilitate later analysis, we introduce the discounted stationary state distribution dπ(s) = (1−
γ)
∑∞
t=0 γ

t Pr (st = s;π) , and the discounted stationary state-action distribution ρπ(s, a) = (1−
γ)
∑∞
t=0 γ

t Pr(st = s, at = a;π). Intuitively, discounted stationary state (state-action) distribution
measures the overall “frequency” of visiting a state (state-action). For simplicity, we will omit
“discounted stationary” throughout. We add a superscript to value function and state (state-action)
distribution, e.g., VM

∗

π , when it is necessary to clarify the MDP.

2.2 Imitation Learning

Imitation learning (IL) [37, 34, 1, 47, 23] trains a policy by learning from expert demonstrations.
In contrast to reinforcement learning, imitation learning is provided with action labels from expert
policies. We use πE to denote the expert policy and Π to denote the candidate policy class throughout
this paper. In IL, we are interested in the policy value gap VπE − Vπ. In the following, we briefly
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introduce two popular methods considered in this paper, behavioral cloning (BC) [37] and generative
adversarial imitation learning (GAIL) [23].

Behavioral cloning. In the simplest case, BC minimizes the action probability discrepancy with
Kullback–Leibler (KL) divergence between the expert’s action distribution and the imitating policy’s
action distribution. It can also be viewed as the maximum likelihood estimation in supervised learning.

min
π∈Π

Es∼dπE

[
DKL

(
πE(·|s), π(·|s)

)]
:= E(s,a)∼ρπE

[
log

(
πE(a|s)
π(a|s)

)]
. (1)

Generative adversarial imitation learning. In GAIL, a discriminatorD learns to recognize whether
a state-action pair comes from the expert trajectories, while a generator π mimics the expert policy
via maximizing the rewards given by the discriminator. The optimization problem is defined as:

min
π∈Π

max
D∈(0,1)S×A

E(s,a)∼ρπ
[
log
(
D(s, a)

)]
+ E(s,a)∼ρπE

[
log(1−D(s, a)

)]
.

When the discriminator achieves its optimum D∗(s, a) = ρπ(s, a)/ (ρπ(s, a) + ρπE(s, a)), we can
derive that GAIL is to minimize the state-action distribution discrepancy between the expert policy
and the imitating policy with the Jensen-Shannon (JS) divergence (up to a constant):

min
π∈Π

DJS(ρπE , ρπ) :=
1

2

[
DKL(ρπ,

ρπ + ρπE

2
) +DKL(ρπE ,

ρπ + ρπE

2
)

]
. (2)

3 Related Work

In the domain of imitating policies, prior studies [39, 48, 40, 12] considered the finite-horizon setting
and revealed that behavioral cloning [37] leads to the compounding errors (i.e., an optimality gap of
O(T 2), where T is the horizon length). DAgger [40] improved this optimality gap to O(T ) at the
cost of additional expert queries. Recently, based on generative adversarial network (GAN) [20],
generative adversarial imitation learning [23] was proposed and had achieved much empirical success
[17, 28, 29, 11]. Though many theoretical results have been established for GAN [5, 54, 3, 26], the
theoretical properties of GAIL are not well understood. To the best of our knowledge, only until
recently, there emerged studies towards understanding the generalization and computation properties
of GAIL [13, 55]. The closest work to ours is [13], where the authors considered the generalization
ability of GAIL under a finite-horizon setting with complete expert trajectories. In particular, they
analyzed the generalization ability of the proposed R-distance but they did not provide the bound
for policy value gap, which is of interest in practice. On the other hand, the global convergence
properties with neural network function approximation were further analyzed in [55].

In addition to BC and GAIL, apprenticeship learning (AL) [1, 47, 49, 24] is a promising candidate for
imitation learning. AL infers a reward function from expert demonstrations by inverse reinforcement
learning (IRL) [34], and subsequently learns a policy by reinforcement learning using the recovered
reward function. In particular, IRL aims to identify a reward function under which the expert policy’s
performance is optimal. Feature expectation matching (FEM) [1] and game-theoretic apprenticeship
learning (GTAL) [47] are two popular AL algorithms with theoretical guarantees under tabular
MDP. To obtain an ε-optimal policy, FEM and GTAL require expert trajectories of O( k log k

(1−γ)2ε2 ) and

O( log k
(1−γ)2ε2 ) respectively, where k is the number of predefined feature functions.

In addition to imitating policies, learning environment transition models can also be treated by
imitation learning by considering environment transition model as a dual agent. This connection has
been utilized in [44, 43] to model real-world environments and in [51] to reduce the regret regarding
model-bias following the idea of DAgger [40], where the model-bias refers to prediction errors
when a learned environment model predicts the next state given the current state and current action.
Many studies [6, 31, 25] have shown that if the virtual environment is trained with the principle of
behavioral cloning (i.e., minimizing one-step transition prediction errors), the learned policy from
this learned environment also suffers from the issue of compounding errors regarding model-bias.
We are also inspired by the connection between imitation learning and environment-learning, but we
focus on applying the distribution matching property of generative adversarial imitation learning to
alleviate model-bias. Noticed that in [44, 43], adversarial approaches have been adopted to learn a
high fidelity virtual environment, but the reason why such approaches work was unclear. This paper
provides a partial answer.
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4 Bounds on Imitating Policies

4.1 Imitating Policies with Behavioral Cloning

It is intuitive to understand why behavioral cloning suffers from large compounding errors [48, 40]
as that the imitated policy, even with a small training error, may visit a state out of the expert demon-
strations, which causes a larger decision error and a transition to further unseen states. Consequently,
the policy value gap accumulates along with the planning horizon. The error bound of BC has
been established in [48, 40] under a finite-horizon setting, and here we present an extension to the
infinite-horizon setting.
Theorem 1. Given an expert policy πE and an imitated policy πI with
Es∼dπE

[DKL(πE(·|s), πI(·|s))] ≤ ε (which can be achieved by BC with objective Eq.(1)),

we have that VπE − VπI ≤ 2
√

2Rmax

(1−γ)2
√
ε.

The proof by the coherent error-propagation analysis can be found in Appendix A. Note that Theorem
1 is under the infinite sample situation. In the finite sample situation, one can further bound the
generalization error ε in the RHS using classical learning theory (see Corollary 1) and the proof can
be found in Appendix A.

Corollary 1. We use {(s(i)
πE , a

(i)
πE )}mi=1 to denote the expert demonstrations. Suppose that πE and πI

are deterministic and the provided function class Π satisfies realizability, meaning that πE ∈ Π. For
policy πI imitated by BC (see Eq. (1)), ∀δ ∈ (0, 1), with probability at least 1− δ, we have that

VπE − VπI ≤
2Rmax

(1− γ)2

(
1

m
log (|Π|) +

1

m
log

(
1

δ

))
.

Moreover, we show that the value gap bound in Theorem 1 is tight up to a constant by providing an
example shown in Figure 1 (more details can be found in Appendix A.3). Therefore, we conclude
that the quadratic dependency on the effective planning horizon, O(1/(1− γ)2), is inevitable in the
worst-case.

s0 s1s2
0
a1

0
a2

+1-1

Figure 1: A “hard” deterministic MDP corresponding to Theorem 1. Digits on arrows are correspond-
ing rewards. Initial state is s0 while s1 and s2 are two absorbing states.

4.2 Imitating Policies with GAIL

Different from BC, GAIL [23] is to minimize the state-action distribution discrepancy with JS
divergence. The state-action distribution discrepancy captures the temporal structure of Markov
decision process, thus it is more favorable in imitation learning. Recent researches [35, 18] showed
that besides JS divergence, discrepancy measures based on a general class, f -divergence [30, 16],
can be applied to design discriminators. Given two distributions µ and ν, f -divergence is defined
as Df (µ, ν) =

∫
µ(x)f(µ(x)

ν(x) )dx, where f(·) is a convex function that satisfies f(1) = 0. Here, we
consider GAIL using some common f -divergences listed in Table 1 in Appendix B.1.
Lemma 1. Given an expert policy πE and an imitated policy πI with Df (ρπI , ρπE) ≤ ε (which can
be achieved by GAIL) using the f -divergence in Table 1, we have that VπE − VπI ≤ O

(
1

1−γ
√
ε
)
.

The proof can be found in Appendix B.1. Lemma 1 indicates that the optimality gap of GAIL grows
linearly with the effective horizon 1/(1− γ), multiplied by the square root of the f -divergence error
Df . Compared to Theorem 1, this result indicates that GAIL with the f -divergence could have fewer
compounding errors if the objective function is properly optimized. Note that this result does not
claim that GAIL is overall better than BC, but can highlight that GAIL has a linear dependency on
the planning horizon compared to the quadratic one in BC.
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Analyzing the generalization ability of GAIL with function approximation is somewhat more com-
plicated, since GAIL involves a minimax optimization problem. Most of the existing learning
theories [32, 42], however, focus on the problems that train one model to minimize the empirical
loss, and therefore are hard to be directly applied. In particular, the discriminator in GAIL is often
parameterized by certain neural networks, and therefore it may not be optimum within a restrictive
function class. In that case, we may view the imitated policy is to minimize the neural network
distance [5] instead of the ideal f -divergence.
Definition 1 (Neural network distance [5]). For a class of neural networks D, the neural network
distance between two (state-action) distributions, µ and ν, is defined as

dD(µ, ν) = sup
D∈D

{
E(s,a)∼µ[D(s, a)]− E(s,a)∼ν [D(s, a)]

}
.

Interestingly, it has been shown that the generalization ability of neural network distance is sub-
stantially different from the original divergence measure [5, 54] due to the limited representation
ability of the discriminator set D. For instance, JS-divergence may not generalize even with sufficient
samples [5]. In the following, we firstly discuss the generalization ability of the neural network
distance, based on which we formally give the upper bound of the policy value gap.

To ensure the non-negativity of neural network distance, we assume that the function class D contains
the zero function, i.e., ∃D ∈ D, D(s, a) ≡ 0. Neural network distance is also known as integral
probability metrics (IPM) [33].

As an illustration, f -divergence is connected with neural network distance by its variational represen-
tation [54]:

df,D(µ, ν) = sup
d∈D

{
E(s,a)∼µ[D(s, a)]− E(s,a)∼ν [D(s, a)]− E(s,a)∼µ[φ∗(f(s, a))]

}
,

where φ∗ is the (shifted) convex conjugate of f . Thus, considering φ∗ = 0 and choosing the activation
function of the last layer in the discriminator as the sigmoid function g(t) = 1/ (1 + exp(−t))
recovers the original GAIL objective [54]. Again, such defined neural network distance is still
different from the original f -divergence because of the limited representation ability of D. Thereafter,
we may consider GAIL is to find a policy πI by minimizing dD(ρπE , ρπI).

As another illustration, when D is the class of all 1-Lipschitz continuous functions, dD(µ, ν) is the
well-known Wasserstein distance [4]. From this viewpoint, we give an instance called Wasserstein
GAIL (WGAIL) in Appendix D, where the discriminator in practice is to approximate 1-Lipschitz
functions with neural networks. However, note that neural network distance in WGAIL is still
distinguished from Wasserstein distance since D cannot contain all 1-Lipschitz continuous functions.

In practice, GAIL minimizes the empirical neural network distance dD(ρ̂πE , ρ̂π), where ρ̂πE and ρ̂π
denote the empirical version of population distribution ρπE and ρπ with m samples. To analyze its
generalization property, we employ the standard Rademacher complexity technique. The Rademacher
random variable σ is defined as Pr(σ = +1) = Pr(σ = −1) = 1/2. Given a function class F and
a dataset Z = (z1, z2, · · · , zm) that is i.i.d. drawn from distribution µ, the empirical Rademacher
complexity R̂(m)

µ (F) = Eσ[supf∈F
1
m

∑m
i=1 σif(zi)] measures the richness of function class F

by the ability to fit random variables [32, 42]. The generalization ability of GAIL is analyzed in
[13] under a different definition. They focused on how many trajectories, rather than our focus on
state-action pairs, are sufficient to guarantee generalization. Importantly, we further disclose the
policy value gap in Theorem 2 based on the neural network distance.
Lemma 2 (Generalization of neural network distance). Consider a discriminator class set D with
∆-bounded value functions, i.e., |D(s, a)| ≤ ∆, for all (s, a) ∈ S × A, D ∈ D. Given an expert
policy πE and an imitated policy πI with dD(ρ̂πE , ρ̂πI)− infπ∈Π dD(ρ̂πE , ρ̂π) ≤ ε̂, then ∀δ ∈ (0, 1),
with probability at least 1− δ, we have

dD(ρπE , ρπI) ≤ inf
π∈Π

dD(ρ̂πE , ρ̂π)︸ ︷︷ ︸
Appr(Π)

+ 2R̂(m)
ρπE

(D) + 2R̂(m)
ρπI

(D) + 12∆

√
log(2/δ)

m︸ ︷︷ ︸
Estm(D,m,δ)

+ε̂.

The proof can be found in Appendix B.3. Here Appr(Π) corresponds to the approximation error
induced by the limited policy class Π. Estm(D,m, δ) denotes the estimation error of GAIL regarding
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to the complexity of discriminator class and the number of samples. Lemma 2 implies that GAIL
generalizes if the complexity of discriminator class D is properly controlled. Concretely, a simpler
discriminator class reduces the estimation error, then tends to reduce the neural network distance.
Here we provide an example of neural networks with ReLU activation functions to illustrate this.

Example 1 (Neural Network Discriminator Class). We consider the neural networks with ReLU
activation functions (σ1, . . . , σL). We use bs to denote the spectral norm bound and bn to denote the
matrix (2, 1) norm bound. The discriminator class consists of L-layer neural networks DA:

D :=
{
DA : A = (A1, . . . , AL), ‖Ai‖σ ≤ bs, ‖A>i ‖2,1 ≤ bn,∀i ∈ {1, . . . , L}

}
,

where DA(s, a) = σL(AL · · ·σ1(A1[s>, a>]>)). Then the spectral normalized complexity RA of
network DA is O(L

3
2 bs

L−1bn) (see [9] for more details). Derived by the Theorem 3.4 in [9] and
Lemma 2, with probability at least 1− δ, we have

dD(ρπE , ρπI) ≤ O
(
L

3
2 bs

L−1bn
m

(
1 + log

(
m

L
3
2 bL−1

s bn

))
+ ∆

√
log(1/δ)

m

)
+ infπ∈Π dD(ρ̂πE , ρ̂π) + ε̂.

From a theoretical view, reducing the number of layers L could reduce the spectral normalized
complexity RA and the neural network distance dD(ρπE , ρπI). However, we did not empirically
observe that this operation significantly affects the performance of GAIL. On the other hand, con-
sistent with [28, 29], we find the gradient penalty technique [21] can effectively control the model
complexity since this technique gives preference for 1-Lipschitz continuous functions. In this way,
the number of candidate functions decreases, and thus the Rademacher complexity of discriminator
class is controlled. We also note that the information bottleneck [2] technique helps to control the
model complexity and to improve GAIL’s performance in practice [36] but the rigorous theoretical
explanation is unknown.

However, when the discriminator class is restricted to a set of neural networks with relatively small
complexity, it is not safe to conclude that the policy value gap VπE−VπI is small when dD(ρπE , ρπI) is
small. As an extreme case, if the function classD only contains constant functions, the neural network
distance always equals to zero while the policy value gap could be large. Therefore, we still need a
richer discriminator set to distinguish different policies. To substantiate this idea, we introduce the
linear span of the discriminator class: span(D) = {c0 +

∑n
i=1 ciDi : c0, ci ∈ R, Di ∈ D, n ∈ N}.

Furthermore, we assume that span(D), rather than D, has enough capacity such that the ground truth
reward function r lies in it and define the compatible coefficient as:

‖r‖D = inf

{
n∑
i=1

|ci| : r =

n∑
i=1

ciDi + c0,∀n ∈ N, c0, ci ∈ R, Di ∈ D
}
.

Here, ‖r‖D measures the minimum number of functions in D required to represent r and ‖r‖D
decreases when the discriminator class becomes richer. Now we present the result on generalization
ability of GAIL in the view of policy value gap.

Theorem 2 (GAIL Generalization). Under the same assumption of Lemma 2 and suppose that the
ground truth reward function r lies in the linear span of discriminator class, with probability at least
1− δ, the following inequality holds.

VπE − VπI ≤
‖r‖D
1− γ

(
Appr(Π) + Estm(D,m, δ) + ε̂

)
.

The proof can be found in Appendix B.4. Theorem 2 discloses that the policy value gap grows linearly
with the effective horizon, due to the global structure of state-action distribution matching. This is
an advantage of GAIL when only a few expert demonstrations are provided. Moreover, Theorem 2
suggests seeking a trade-off on the complexity of discriminator class: a simpler discriminator class
enjoys a smaller estimation error, but could enlarge the compatible coefficient. Finally, Theorem 2
implies the generalization ability holds when provided with some state-action pairs, explaining the
phenomenon that GAIL still performs well when only having access to incomplete trajectories [28].
One of the limitations of our result is that we do not deeply consider the approximation ability of the
policy class and its computation properties with stochastic policy gradient descent.
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5 Bounds on Imitating Environments

The task of environment learning is to recover the transition model of MDP,Mθ, from data collected in
the real environmentM∗, and it is the core of model-based reinforcement learning (MBRL). Although
environment learning is typically a separated topic with imitation learning, it has been noticed that
learning environment transition model can also be treated by imitation learning [51, 44, 43]. In
particular, a transition model takes the state s and action a as input and predicts the next state s′,
which can be considered as a dual agent, so that the imitation learning can be applied. The learned
transition probability Mθ(s

′|s, a) is expected to be close to the true probability M∗(s′|s, a). Under
the background of MBRL, we assess the quality of the learned transition model Mθ by the evaluation
error of an arbitrary policy π, i.e., |VM∗π − VMθ

π |, where VM
∗

π is the true value and VMθ
π is the

value in the learned transition model. Note that we focus on learning the transition model, while
assuming the true reward function is always available2. For simplicity, we only present the error
bounds here and it’s feasible to extend our results with the concentration measures to obtain finite
sample complexity bounds.

5.1 Imitating Environments with Behavioral Cloning

Similarly, we can directly employ behavioral cloning to minimize the one-step prediction errors when
imitating environments, which is formulated as the following optimization problem.

min
θ

E(s,a)∼ρM∗πD

[
DKL

(
M∗(·|s, a),Mθ(·|s, a)

)]
:= E(s,a)∼ρM∗πD ,s

′∼M∗(·|s,a)

[
log

M∗(s′|s, a)

Mθ(s′|s, a)

]
,

where πD denotes the data-collecting policy and ρM
∗

πD denotes its state-action distribution. We will
see that the issue of compounding errors also exists in model-based policy evaluation. Intuitively,
if the learned environment cannot capture the transition model globally, the policy evaluation error
blows up regarding the model-bias, which degenerates the effectiveness of MBRL. In the following,
we formally state this result for self-containing, though similar results have been appeared in [31, 25].

Lemma 3. Given a true MDP with transition model M∗, a data-collecting policy πD, and a
learned transition modelMθ with E(s,a)∼ρM∗πD

[
DKL

(
M∗(·|s, a),Mθ(·|s, a)

)]
≤ εm, for an arbitrary

bounded divergence policy π, i.e., maxsDKL
(
π(·|s), πD(·|s)

)
≤ επ, the policy evaluation error is

bounded by |VM∗π − VMθ
π | ≤

√
2Rmaxγ

(1−γ)2
√
εm + 2

√
2Rmax

(1−γ)2
√
επ .

Note that the policy evaluation error contains two terms, the inaccuracy of the learned model measured
under the state-action distribution of the data-collecting policy πD, and the policy divergence between
π and πD. We realize that the 1/(1− γ)2 dependency on the policy divergence επ is inevitable (see
also the Theorem 1 in TRPO [41]). Hence, we mainly focus on how to reduce the model-bias term.

5.2 Imitating Environments with GAIL

As shown in Lemma 1, GAIL mitigates the issue of compounding errors via matching the state-action
distribution of expert policies. Inspired by this observation, we analyze the error bound of GAIL
for environment-learning tasks. Concretely, we train a transition model (also as a policy) that takes
state st and action at as inputs and outputs a distribution over next state st+1; at the meantime, we
also train a discriminator that learns to recognize whether a state-action-next-state tuple (st, at, st+1)
comes from the “expert” demonstrations, where the “expert” demonstrations should be explained as
the transitions collected by running the data-collecting policy in the true environment. This procedure
is summarized in Algorithm 1 in Appendix C.3. It is easy to verify that all the occupancy measure
properties of GAIL for imitating policies are reserved by 1) augmenting the action space into the new
state space; 2) treating the next state space as the action space when imitating environments. In the
following, we show that, by GAIL, the dependency on the effective horizon is only linear in the term
of model-bias.

2In the case where the reward function is unknown, we can directly learn the reward function with supervised
learning and the corresponding sample complexity is a lower order term compared to the one of learning the
transition model [7].
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We denote µMθ as the state-action-next-state distribution of the data-collecting policy πD in the
learned transition model, i.e., µMθ (s, a, s′) = Mθ(s

′|s, a)ρMθ
πD (s, a); and µM

∗
as that in the true

transition model. The proof of Theorem 3 can be found in Appendix C.
Theorem 3. Given a true MDP with transition modelM∗, a data-collecting policy πD, and a learned
transition model Mθ with DJS(µMθ , µM

∗
) ≤ εm, for an arbitrary bounded divergence policy π,

i.e. maxsDKL
(
π(·|s), πD(·|s)

)
≤ επ, the policy evaluation error is bounded by |VMθ

π − VM∗π | ≤
2
√

2Rmax
1−γ

√
εm + 2

√
2Rmax

(1−γ)2
√
επ .

Theorem 3 suggests that recovering the environment transition with a GAIL-style learner can mitigate
the model-bias when evaluating policies. We provide the experimental evidence in Section 6.2.
Combing this model-imitation technique with all kinds of policy optimization algorithms is an
interesting direction that we will explore in the future.

6 Experiments

6.1 Imitating Policies

We evaluate imitation learning methods on three MuJoCo benchmark tasks in OpenAI Gym [10],
where the agent aims to mimic locomotion skills. We consider the following approaches: BC [37],
DAgger [40], GAIL [23], maximum entropy IRL algorithm AIRL [17] and apprenticeship learning
algorithms FEM [1] and GTAL [47]. In particular, FEM and GTAL are based on the improved versions
proposed in [24]. Besides GAIL, we also involve WGAIL (see Appendix D) in the comparisons.
We run the state-of-the-art algorithm SAC [22] to obtain expert policies. All experiments run with 3
random seeds. Experiment details are given in Appendix E.1.

Study of effective horizon dependency. We firstly compare the methods with different effective
planning horizons. All approaches are provided with only 3 expert trajectories, except for DAgger
that continues to query expert policies during training. When expert demonstrations are scanty, the
impact of the scaling factor 1/(1− γ) could be significant. The relative performance (i.e., Vπ/VπE )
of learned policies under MDPs with different discount factors γ is plotted in Figure 2. Note that the
performance of expert policies increases as the planning horizon increases, thus the decrease trends of
some curves do not imply the decrease trends of policy values. Exact results and learning curves are
given in Appendix E. Though some polices may occasionally outperform experts in short planning
horizon settings, we care mostly whether a policy can match the performance of expert policies when
the planning horizon increases. We can see that when the planning horizon increases, BC is worse
than GAIL, and possibly AIRL, FEM and GTAL. The observation confirms our analysis. Consistent
with [23], we also have empirically observed that when BC is provided lots of expert demonstrations,
the training error and generalization error could be very small. In that case, the discount scaling
factor does not dominate and BC’s performance is competitive.
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Figure 2: Relative performance of imitated policies under MDPs with different discount factors γ.

Study of generalization ability of GAIL. We then empirically validate the trade-off about the model
complexity of the discriminator set in GAIL. We realize that neural networks used by the discriminator
are often over-parameterized on MuJoCo tasks and find that carefully using the gradient penalty
technique [21] can control the model’s complexity to obtain better generalization results. In particular,
gradient penalty incurs a quadratic cost function to the gradient norm, which makes the discriminator
set a preference to 1-Lipschitz continuous functions. This loss function is multiplied by a coefficient
of λ and added to the original objective function. Learning curves of varying λ are given in Figure 3.
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Figure 3: Learning curves of GAIL (γ = 0.999) with different gradient penalty coefficients λ.

We can see that a moderate λ (e.g., 0.1 or 1.0) yields better performance than a large λ (e.g., 10) or
small λ (e.g., 0).

6.2 Imitating Environments

We conduct experiments to verify that generative adversarial learning could mitigate the model-bias
for imitating environments in the setting of model-based reinforcement learning. Here we only focus
on the comparisons between GAIL and BC for environment-learning. Both methods are provided
with 20 trajectories to learn the transition model. Experiment details are given in Appendix E.2.
We evaluate the performance by the policy evaluation error |VMθ

πD − VM
∗

πD |, where πD denotes the
data-collecting policy. As we can see in Figure 4, the policy evaluation errors are smaller on all three
environments learned by GAIL. Note that BC tends to over-fit, thus the policy evaluation errors do
not decrease on HalfCheetah-v2.
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Figure 4: Policy evaluation errors (γ = 0.999) on environment models trained by BC and GAIL.

7 Conclusion

This paper presents error bounds of BC and GAIL for imitating-policies and imitating-environments
in the infinite horizon setting, mainly showing that GAIL can achieve a linear dependency on the
effective horizon while BC has a quadratic dependency. The results can enhance our understanding
of imitation learning methods.

We would like to highlight that the result of the paper may shed some light for model-based rein-
forcement learning (MBRL). Previous MBRL methods mostly involve a BC-like transition learning
component that can cause a high model-bias. Our analysis suggests that the BC-like transition
learner can be replaced by a GAIL-style learner to improve the generalization ability, which also
partially addresses the reason that why GAIL-style environment model learning approach in [44, 43]
can work well. Learning a useful environment model is an essential way towards sample-efficient
reinforcement learning [52], which is not only because the environment model can directly be used
for cheap training, but it is also an important support for meta-reinforcement learning (e.g., [53]). We
hope this work will inspire future research in this direction.

Our analysis of GAIL focused on the generalization ability of the discriminator and further analysis
of the computation and approximation ability of the policy was left for future works.
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Broader Impact

This work focuses on the theoretical understanding about imitation learning methods in imitating
policies and environments, which does not present any direct societal consequence. This work
indicates possible improvement direction for MBRL, which might help reinforcement learning get
better used in the real world. There could be some consequence when reinforcement learning is
getting abused, such as manipulate information presentation to control people’s behaviors.
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A Analysis of Imitating-policies with BC

Here, we present an error propagation analysis to derive the compounding errors of BC under the
setting of infinite-horizon MDP. Our derivation is based on the framework of error-propagation
(see Figure 5), which illustrates the cause of compounding errors. Note that the error-propagation
framework focuses on the absolute value of policy value gap |Vπ − VπE |, and the one side bound
Vπ − VπE can be easily derived from it.

Policy Distribution Discrepancy

DTV(⇡,⇡E)
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Figure 5: Error propagation of behavioral cloning.

A.1 Error-propagation Analysis

We firstly introduce the following Lemma, which tells that how much state distribution discrepancy
grows based on the policy distribution discrepancy.

Lemma 4. For two policies π and πE, we have that

DTV(dπ, dπE) ≤ γ

1− γEs∼dπE

[
DTV

(
π(·|s), πE(·|s)

)]
.

Proof. The proof is based on the permutation theory presented in [41]. First, we show that

dπ = (1− γ)
∑∞

t=0
γt Pr(st = s|π, d0)

= (1− γ)(I − γPπ)−1d0,

where Pπ(s′|s) =
∑
a∈AM

∗(s′|s, a)π(a|s). Then we obtain that

dπ − dπE = (1− γ)[(I − γPπ)
−1 − (I − γPπE)

−1
] d0

= (1− γ)(Mπ −MπE) d0, (3)

where Mπ = (I − γPπ)
−1 and MπE = (I − γPπE)

−1
. For the term Mπ −MπE , we obtain that

Mπ −MπE = Mπ

(
M−1
πE
−M−1

π

)
MπE

= γMπ(Pπ − PπE)MπE .
(4)

Combining Eq. (3) with Eq. (4), we have

dπ − dπE = (1− γ)γMπ (Pπ − PπE)MπEd0

= γMπ (Pπ − PπE) dπE .
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Therefore, we obtain that

DTV(dπ, dπE) =
γ

2
‖Mπ(Pπ − PπE)dπE‖1

≤ γ

2
‖Mπ‖1‖(Pπ − PπE)dπE‖1. (5)

We can show that Mπ is bounded:

‖Mπ‖1 = ‖
∞∑
t=0

γtP tπ‖1 ≤
∞∑
t=0

γt‖Pπ‖t1 ≤
∞∑
t=0

γt =
1

1− γ .

Consequently, we show that ‖(Pπ − PπE)dπE‖1 is also bounded,

‖(Pπ − PπE)dπE‖1 ≤
∑
s,s′

|Pπ(s′|s)− PπE(s′|s)| dπE(s)

=
∑
s,s′

∣∣∣∣∣∑
a

M∗(s′|s, a)
(
π(a|s)− πE(a|s)

)∣∣∣∣∣ dπE(s)

≤
∑

(s,a),s′

M∗(s′|s, a)
∣∣π(a|s)− πE(a|s)

∣∣dπE(s)

=
∑
s

dπE(s)
∑
a

∣∣π(a|s)− πE(a|s)
∣∣

= 2Es∼dπE
[DTV

(
πE(·|s), π(·|s)

)
].

Combining Eq. (5) with the above two inequalities completes the proof.

Next, we further bound the state-action distribution discrepancy based on the policy discrepancy.

Lemma 5. For any two policies π and πE, we have that

DTV(ρπ, ρπE) ≤ 1

1− γEs∼dπE

[
DTV

(
π(·|s), πE(·|s)

)]
.

Proof. Note that the relationship ρπ(s, a) = π(a|s)dπ(s) for any policy π, we have

DTV(ρπ, ρπE)

=
1

2

∑
(s,a)

∣∣[πE(a|s)− π(a|s)
]
dπE(s) +

[
dπE(s)− dπ(s)

]
π(a|s)

∣∣
≤ 1

2

∑
(s,a)

∣∣πE(a|s)− π(a|s)
∣∣dπE(s) +

1

2

∑
(s,a)

π(a|s)
∣∣dπE(s)− dπ(s)

∣∣
= Es∼dπE

[DTV

(
π(·|s), πE(·|s)

)
] +DTV(dπ, dπE)

≤ 1

1− γEs∼dπE

[
DTV

(
π(·|s), πE(·|s)

)]
,

where the last inequality follows Lemma 4.

Finally, we bound the policy value gap (i.e., the difference between value of learned policy π and the
expert policy πE) based on the state-action distribution discrepancy.

Lemma 6. For any two policies π and πE, we have that

|Vπ − VπE | ≤
2Rmax

1− γ DTV (ρπ, ρπE) .
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Proof. It is a well-known fact that for any policy π, its policy value can be reformulated as V π =
1

1−γE(s,a)∼ρπ [r(s, a)] [38]. Based on this observation, we derive that

|Vπ − VπE | =
∣∣∣∣ 1

1− γE(s,a)∼ρπ [r(s, a)]− 1

1− γE(s,a)∼ρπE
[r(s, a)]

∣∣∣∣
≤ 1

1− γ
∑

(s,a)∈S×A

∣∣(ρπ(s, a)− ρπE(s, a)
)
r(s, a)

∣∣
≤ 2Rmax

1− γ DTV(ρπ, ρπE).

A.2 Proof of Theorem 1

Proof of Theorem 1. Suppose that the imitated policy πI optimizes the objective of BC up to an ε
error, i.e., Es∼dπE

[
DKL

(
πI(·|s), πE(·|s)

)]
≤ ε. Combining Lemma 5 and Lemma 6, we have that,

for policy πI and πE,

VπE − VπI ≤
2Rmax

1− γ DTV(ρπI , ρπE)

≤ 2Rmax

(1− γ)2
Es∼dπE

[
DTV

(
πI(·|s), πE(·|s)

)]
.

Thanks to Pinsker’s inequality [15] that for two arbitrary distributions µ and ν, DTV(µ, ν) ≤√
2DKL(µ, ν), we obtain that

VπE − VπI ≤
2Rmax

(1− γ)2
Es∼dπE

[√
2DKL

(
πI(·|s), πE(·|s)

)]
≤ 2
√

2Rmax

(1− γ)2

√
Es∼dπE

[
DKL

(
πI(·|s), πE(·|s)

)]
≤ 2
√

2Rmax

(1− γ)2

√
επ,

where the penultimate inequality follows Jensen’s inequality φ(E[X]) ≤ E[φ(X)], where φ(x) =
−√x.

Based on Theorem 1, we provide a sample complexity analysis of BC using classical learning theory.

Proof of Corollary 1. From Lemma 5 and Lemma 6, we obtain that

VπE − VπI ≤
2Rmax

(1− γ)2
Es∼dπE

[
DTV

(
πI(·|s), πE(·|s)

)]
. (6)

Here we consider that πI and πE are deterministic policies, thus we obtain that

Es∼dπE
[DTV(π(·|s), πE(·|s))] = Es∼dπE

[I(π(s) 6= πE(s))],

where I is the indicator function. The policy πI is obtained by solving Eq.(1), thus πI
(
s

(i)
πE

)
=

a
(i)
πE ,∀i ∈ {1, · · · ,m}. Since behavioral cloning employs supervised learning to learn a pol-

icy, we follow the standard argument in the classical learning theory [32] in the remaining
proof. We define the expected risk L(π) = Es∼dπE

[I(π(s) 6= πE(s))] and the empirical risk

Lm(π) = 1
m

∑m
i=1 I(π(s

(i)
πE ) 6= a

(i)
πE ). For a fixed ε > 0, we define the bad policy class

ΠB = {π ∈ Π : L(π) > ε}. Then we bound the probability of policy πI belongs to the bad
policy class ΠB:

Pr(L(πI) > ε) = Pr(πI ∈ ΠB).

Because the empirical risk of πI equals zero, we get that

Pr(πI ∈ ΠB) ≤ Pr(∃π ∈ Π, Lm(π) = 0).
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For a fixed π ∈ Π, Pr(Lm(π) = 0) = (1−L(π))m ≤ (1− ε)m ≤ e−εm, where the last step follows
1− a ≤ e−a. Then we obtain that

Pr(L(πI) > ε) ≤ Pr(∃π ∈ Π, Lm(π) = 0) ≤
∑
π∈ΠB

Pr(Lm(π) = 0) ≤ |Π|e−εm.

Setting the right-hand side to be equal to δ, we get that L(πI) ≤ 1
m

(
log(|Π|) + log( 1

δ )
)
. Combining

it with Eq. (6) completes the proof.

A.3 Tightness of Theorem 1

s0 s1s2
0
a1

0
a2

+1-1

Figure 6: A “hard” deterministic MDP corresponding to Theorem 1. Digits on arrows are correspond-
ing rewards. Initial state is s0 while s1 and s2 are two absorbing states.

Here we validate that the γ-dependence in Theorem 1 is tight by the simple example in Figure 6.
Note that the initial state is s0 and two absorbing states are s1 and s2. That is, the agent always
starts with s0 and takes an action a1 (a2); consequently, the system transits into the absorbing state
s1 (s2). Here we consider a sub-optimal expert policy πE that chooses a1 with probability of 0.9 and
chooses a2 with probability of 0.1 at s0, meaning that πE(a1|s0) = 0.9, πE(a2|s0) = 0.1 and we
can show that the policy value of expert policy πE is VπE = 4γ

5(1−γ) . In addition, we can show that
the state distribution of expert policy πE is dπE = (dπE(s0), dπE(s1), dπE(s2)) = (1− γ, 9

10γ,
1
10γ).

Consider a policy obtained by behavioral cloning πI that chooses a1 at s0 with probability of 0.85
and a2 with probability of 0.15, meaning that πI(a1|s0) = 0.85, πI(a2|s0) = 0.15. Similarly, we
can show that VπI = 7γ

10(1−γ) and the policy value gap VπE − VπI = γ
10(1−γ) . It is easy to verify that

the error bound Es∼dπE

[
DKL

(
πE(·|s), π(·|s)

)]
on the RHS of Eq. (1) is about 0.011(1 − γ) and

consequently VπE − VπI = C · 1
(1−γ)2Es∼dπE

[
DKL

(
πE(·|s), π(·|s)

)]
, where C is a constant. The

equality implies that in the worst case, the quadratic discount complexity is tight in Theorem 1.

B Analysis of Imitating-policies with GAIL

B.1 f -divergence

A large class of divergence measures called f -divergence [30] can be applied to depict the difference
between two probability distributions. Given two probability density function µ and ν with respect to
a base measure defined on the domain X , f -divergence is defined as

Df (µ, ν) =

∫
X
µ(x)f(

µ(x)

ν(x)
)dx,

where f(·) is a convex function that satisfies f(1) = 0. Different choices of f decides specific
measures. When f(u) = −(u+ 1) log( 1+u

2 ) + u log(u), f -divergence recovers the JS divergence
used in GAIL. Table 1 lists many of the common f -divergences and the f functions to which they
correspond (see also [35]). In the following, we provide a proof of Lemma 1. The proof is based on
the concentration between different f -divergences.

B.2 Proof of Lemma 1

Proof of Lemma 1. Here we prove that GAIL with f -divergence listed in Table 1 enjoys a linear
policy value gap. Derived from Lemma 6, we obtain that

VπE − Vπ ≤
2Rmax

1− γ DTV(ρπ, ρπE). (7)
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Table 1: List of f -divergences

Name Df (µ, ν) f(u)

Kullback-Leibler
∫
µ(x) log(µ(x)

ν(x) )dx u log(u)

Reverse KL
∫
ν(x) log( ν(x)

µ(x) )dx − log(u)

Pearsion χ2
∫ (µ(x)−ν(x))2

µ(x) dx (u− 1)2

Jensen-Shannon 1
2

∫
µ(x) log( 2µ(x)

µ(x)+ν(x) ) + ν(x) log( 2ν(x)
µ(x)+ν(x) )dx −(u+ 1) log(u+1

2 ) + u log(u)

Squared Hellinger
∫

(
√
µ(x)−

√
ν(x))2dx (

√
u− 1)2

JS divergence:
In the following, we connect the total variation with the JS divergence based on Pinsker’s inequality,

DJS

(
ρπI , ρπE

)
=

1

2

(
DKL

(
ρπI ,

ρπI + ρπE

2

)
+DKL

(
ρπE ,

ρπI + ρπE

2

))
≥ D2

TV

(
ρπI ,

ρπI + ρπE

2

)
+D2

TV

(
ρπE ,

ρπI + ρπE

2

)
=

1

2
D2

TV(ρπI , ρπE).

(8)

Combining Eq. (7) with Eq. (8), we get that

VπE − VπI ≤
2
√

2Rmax

1− γ
√
DJS(ρπI , ρπE).

KL divergence & Reverse KL divergence:
Again, thanks to Pinsker’s inequality, we obtain that the policy value gap is bounded by KL divergence
and Reverse KL divergence.

VπE − VπI ≤
√

2Rmax

1− γ
√
DKL(ρπI , ρπE).

VπE − VπI ≤
√

2Rmax

1− γ
√
DKL(ρπE , ρπI).

For χ2 divergence and Squared Hellinger divergence, we can build similar upper bounds of policy
value gap.

VπE − VπI ≤
Rmax

1− γ
√
χ2(ρπI , ρπE)

VπE − VπI ≤
2Rmax

1− γ
√
DH(ρπI , ρπE).

In conclusion, for policy πI imitated by GAIL with f -divergence listed in Table 1, we have that
VπE − VπI ≤ O

(
1

1−γ
√
Df (ρπI , ρπE)

)
, which finishes the proof.

B.3 Proof of Lemma 2

Proof of Lemma 2. When the policy πI optimizes the empirical GAIL loss dD(ρ̂πE , ρ̂π) up to an εopt
error, we have that

dD(ρ̂πE , ρ̂πI) ≤ inf
π∈Π

dD(ρ̂πE , ρ̂π) + εopt, (9)

where ρ̂πE denotes the expert demonstrations with m state-action pairs {(s(i)
πE , a

(i)
πE )}mi=1 and ρ̂πI is

the empirical version of population distribution ρπI with m samples {(s(i)
πI , a

(i)
πI )}mi=1 collected by πI.

By standard derivation, we get that

dD(ρπE , ρπI) ≤ dD(ρπE , ρπI)− dD(ρ̂πE , ρ̂πI) + inf
π∈Π

dD(ρ̂πE , ρ̂π) + εopt. (10)
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According to the definition of neural network distance dD(µ, ν), we prove that dD(ρπE , ρπI) −
dD(ρ̂πE , ρ̂πI) has an upper bound.

dD(ρπE , ρπI)− dD(ρ̂πE , ρ̂πI)

= sup
D∈D

[
E(s,a)∼ρπE

[D(s, a)]− E(s,a)∼ρπI
[D(s, a)]

]
− sup
D∈D

[
E(s,a)∼ρ̂πE

[D(s, a)]− E(s,a)∼ρ̂πI
[D(s, a)]

]
≤ sup
D∈D

{[
E(s,a)∼ρπE

[D(s, a)]− E(s,a)∼ρπI
[D(s, a)]

]
−
[
E(s,a)∼ρ̂πE

[D(s, a)]− E(s,a)∼ρ̂πI
[D(s, a)]

]}
≤ sup
D∈D

[
E(s,a)∼ρπE

[D(s, a)]− E(s,a)∼ρ̂πE
[D(s, a)]

]
+ sup
D∈D

[
E(s,a)∼ρ̂πI

[D(s, a)]− E(s,a)∼ρπI
[D(s, a)]

]
≤ sup
D∈D

∣∣∣E(s,a)∼ρπE
[D(s, a)]− E(s,a)∼ρ̂πE

[D(s, a)]
∣∣∣+ sup

D∈D

∣∣∣E(s,a)∼ρπI
[D(s, a)]− E(s,a)∼ρ̂πI

[D(s, a)]
∣∣∣ .

We first show that supD∈D
∣∣E(s,a)∼ρπE

[D(s, a)]−E(s,a)∼ρ̂πE
[D(s, a)]

∣∣ can be bounded. Note that the
assumption that the discriminator setD consists of bounded functions with ∆, i.e. sup

D∈D
‖D(s, a)‖∞ ≤

∆, ∀(s, a) ∈ S ×A. According to McDiarmid ’s inequality [32], with probability at least 1− δ
4 , the

following inequality holds.

sup
D∈D

∣∣∣E(s,a)∼ρπE
[D(s, a)]− E(s,a)∼ρ̂πE

[D(s, a)]
∣∣∣

≤ E
[

sup
D∈D

∣∣∣E(s,a)∼ρπE
[D(s, a)]− E(s,a)∼ρ̂πE

[D(s, a)]
∣∣∣]+ 2∆

√
log(4/δ)

2m
,

(11)

where the outer expectation is taken over the random choice of expert demonstrations ρ̂πE with m
state-action pairs. According to the Rademacher complexity theory [32], for the first term of Eq. (11)
we have that

E
[

sup
D∈D

∣∣∣E(s,a)∼ρπE
[D(s, a)]− E(s,a)∼ρ̂πE

[D(s, a)]
∣∣∣]

≤ 2Eσ,ρπE

[
sup
D∈D

m∑
i=1

1

m
σiD(s(i), a(i))

]
= 2R(m)

ρπE
(D).

(12)

Based on the connection between Rademacher complexity and empirical Rademacher complexity,
we have that with probability at least 1− δ

4 , the following inequality holds.

R(m)
ρπE

(D) ≤ R̂(m)
ρπE

(D) + 2∆

√
log(4/δ)

2m
, (13)

where R̂(m)
ρπE

(D) = Eσ

[
supD∈D

∑m
i=1

1
mσiD(s

(i)
πE , a

(i)
πE )
]
. Combining Eq. (11) with Eq. (13), with

probability at least 1− δ
2 , we have

sup
D∈D

∣∣E(s,a)∼ρπE
[D(s, a)]− E(s,a)∼ρ̂πE

[D(s, a)]
∣∣ ≤ 2R̂(m)

ρπE
(D) + 6∆

√
log(4/δ)

2m
. (14)

By a similar derivation, we obtain that with probability at least 1− δ
2 , the following inequality holds.

sup
D∈D

∣∣E(s,a)∼ρπI
[D(s, a)]− E(s,a)∼ρ̂πI

[D(s, a)]
∣∣ ≤ 2R̂(m)

ρπI
(D) + 6∆

√
log(4/δ)

2m
, (15)

where R̂(m)
ρπI

(D) = Eσ

[
supD∈D

∑m
i=1

1
mσiD(s

(i)
πI , a

(i)
πI )
]
. Combining Eq. (10) with Eq. (14) and

Eq. (15), we complete the proof.

B.4 Proof of Theorem 2

Proof of Theorem 2. We use the re-formulation of policy value Vπ = 1
1−γE(s,a)∼ρπ [r(s, a)] and

derive that
VπE − VπI ≤

1

1− γ
∣∣∣E(s,a)∼ρπI

[r(s, a)]− E(s,a)∼ρπE
[r(s, a)]

∣∣∣ .
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As we assume that the reward function r lies in the linear span of D, there exists n ∈ N, {ci ∈ R}ni=1
and {Di ∈ D}ni=1, such that r = c0 +

∑n
i=1 ciDi. Noticed by c0 will be eliminated by the difference

of policy value, we obtain that

VπE − VπI ≤
1

1− γ

∣∣∣∣∣
n∑
i=1

ciE(s,a)∼ρπI
[Di(s, a)]−

n∑
i=1

ciE(s,a)∼ρπE
[Di(s, a)]

∣∣∣∣∣
≤ 1

1− γ
n∑
i=1

∣∣ci∣∣∣∣E(s,a)∼ρπI
[Di(s, a)]− E(s,a)∼ρπE

[Di(s, a)]
∣∣

≤ 1

1− γ

( n∑
i=1

|ci|
)
dD(ρπI , ρπE)

≤ 1

1− γ ‖r‖DdD(ρπI , ρπE),

where ‖r‖D = inf{∑n
i=1 |ci| : r =

∑n
i=1 ciDi + c0,∀n ∈ N, c0, ci ∈ R, Di ∈ D}. Combining the

above inequality with Lemma 2 completes the proof.

C Analysis of Imitating-environments

We first introduce the error bound of policy evaluation without policy divergences, which will be
used to prove Lemma 3 later.
Lemma 7. Given an MDP with true transition model M∗, suppose the model error is εm,
i.e.,E(s,a)∼ρM∗πD

[
DKL

(
M∗(·|s, a),Mθ(·|s, a)

)]
≤ εm (see Eq. (3)), then for the data-collecting

policy πD we have ∣∣∣VMθ
πD − VM

∗

πD

∣∣∣ ≤ √2Rmaxγ

(1− γ)2

√
εm. (16)

Proof. The proof is similar to what we have done in Appendix A. First, we show that

dMθ
πD = (1− γ)

∞∑
t=0

γt Pr(st = s;πD,Mθ, d0) = (1− γ)(I − γPθ)−1d0. (17)

where Pθ(s′|s) =
∑
a∈AMθ(s

′|s, a)πD(a|s). Following the similar algebraic transformation in
Lemma 4, we obtain that

dMθ
πD − dM

∗

πD = γG(Pθ − P ∗)dM
∗

πD ,

where Gθ = (I − γPθ)−1 and G∗ = (I − γP ∗)−1. Based on the Cauchy–Schwarz inequality, we
have that

DTV(dMθ
πD , d

M∗

πD ) =
γ

2
‖Gθ(Pθ − P ∗)dM

∗‖1 ≤
γ

2
‖Gθ‖1‖(Pθ − P ∗)dM

∗

πD ‖1.

We first show that ‖Gθ‖1 is bounded as

‖Gθ‖1 = ‖
∞∑
t=0

γtP tθ‖1 ≤
∞∑
t=0

γt‖Pθ‖t1 ≤
∞∑
t=0

γt =
1

1− γ .

We then show that
∥∥(Pθ − P ∗)dM

∗

πD

∥∥
1

is bounded,∥∥∥(Pθ − P ∗)dM
∗

πD

∥∥∥
1
≤
∑
s′,s

|Pθ(s′|s)− P ∗(s′|s)|dM
∗

πD (s)

≤
∑
s′,s,a

|Mθ(s
′|s, a)−M∗(s′|s, a)|πD(a|s)dM∗πD (s)

= 2E(s,a)∼ρM∗πD
[DTV(Mθ(·|s, a),M∗(·|s, a))].

Thanks to Pinsker’s inequality and Jensen’s inequality, we can get that

DTV(dMθ
πD , d

M∗

πD ) ≤
√

2γ

2(1− γ)

√
εm. (18)
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From Lemma 6, we obtain that∣∣∣VMθ
πD − VM

∗

πD

∣∣∣ ≤ Rmax

1− γ
∑
(s,a)

∣∣∣ρMθ
πD (s, a)− ρM∗πD (s, a)

∣∣∣
≤ Rmax

1− γ
∑
s

∣∣∣dMθ
πD (s)− dM∗πD (s)

∣∣∣∑
a

πD(a|s)

≤
√

2Rmaxγ

(1− γ)2

√
εm,

which concludes the proof.

C.1 Proof of Lemma 3

Proof of Lemma 3. Derived by the triangle inequality, the evaluation error can be decomposed into
three parts.

|VM∗π − VMθ
π | ≤ |VM∗π − VM∗πD |+ |VM

∗

πD − VMθ
πD |+ |VMθ

πD − VMθ
π |.

For the second term on the RHS, according to Lemma 7, we have

|VM∗πD − VMθ
πD | ≤

√
2Rmaxγ

(1− γ)2

√
εm.

For the first term, applying Lemma 5 and Lemma 6, we get that

|VM∗π − VM∗πD | ≤
2Rmax

1− γ DTV(ρM
∗

π , ρM
∗

πD )

≤ 2Rmax

(1− γ)2
Es∼dM∗πD [DTV(π(·|s), πD(·|s))]

≤
√

2Rmax

(1− γ)2

√
επ.

Similar results hold for the third term, meaning that |VMθ
πD − VMθ

π | ≤
√

2Rmax

(1−γ)2
√
επ. Combining the

above three bounds completes the proof.

C.2 Proof of Theorem 3

Proof of Theorem 3. Due to Lemma 6, we obtain that

|VMπ − VM
∗

π | ≤ 2Rmax

1− γ DTV(ρMπ , ρ
M∗

π )

≤ 2Rmax

1− γ (DTV(ρMπ , ρ
M
πD ) +DTV(ρMπD , ρ

M∗

πD ) +DTV(ρM
∗

πD , ρ
M∗

π )).

The last inequality follows the triangle inequality. For the term DTV(ρMπD , ρ
M∗

πD ), we obtain that

DTV(ρMπD , ρ
M∗

πD ) =
1

2

∑
s,a

∣∣∑
s′

(
µM (s, a, s′)− µM∗(s, a, s′)

)∣∣
≤ 1

2

∑
s,a,s′

∣∣µM (s, a, s′)− µM∗(s, a, s′)
∣∣

= DTV(µM , µM
∗
).

From Eq.(8), we derive that

DTV(ρMπD , ρ
M∗

πD ) ≤
√

2DJS(ρMπD , ρ
M∗
πD ) ≤

√
2DJS(µM , µM∗).
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Derived by Lemma 5, for the first term DTV(ρMπ , ρ
M
πD ), we get that

DTV(ρMπ , ρ
M
πD ) ≤ 1

1− γEs∼dMπ
[
DTV

(
π(·|s), πD(·|s)

)]
≤

√
2

2(1− γ)
Es∼dMπ

[√
DKL

(
π(·|s), πD(·|s)

)]
.

≤
√

2

2(1− γ)

√
επ.

The last two inequalities follow Pinsker’s inequality and the definition of επ respectively. Similarly,
for the second term DTV(ρM

∗

πD , ρ
M∗

π ), we have that

DTV(ρM
∗

πD , ρ
M∗

π ) ≤
√

2

2(1− γ)

√
επ.

Combining the above three upper bounds completes the proof.

C.3 Environment-learning with GAIL

Algorithm 1 Environment-learning with GAIL
1: Input: data-collecting policy πD, total iterations N , model update iteration NG, discriminator

update iteration ND.
2: Initialize discriminator D, model Mθ, and empty dataset B∗ as well as B.
3: B∗ ← Collect samples using πD in model M∗.
4: for N iterations do
5: for NG iterations do
6: B ← Collect samples using πD in model Mθ.
7: Assign rewards to state-action-next-state pairs in B by discriminator D.
8: Update model Mθ by maximizing rewards with samples from B.
9: end for

10: for ND iterations do
11: Update discriminator D by maximizing the following function:∑

(s,a,s′)∈B

[log(D(s, a, s′))] +
∑

(s,a,s′)∈B∗
[log(1−D(s, a, s′))].

12: end for
13: end for
14: Output: environment model Mθ.

The process of applying GAIL to learn the environment transition model is summarized in Algorithm
1.

D Wasserstein GAIL

Similar to Wasserstein GAN (WGAN) [4], we can also introduce Wasserstein distance into GAIL.
We call such an algorithm as Wasserstein GAIL (WGAIL for short). Specifically, the discriminator is
selected from all 1-Lipschitz function classes by considering the following optimization problem.

max
D∈||D||Lip≤1

E(s,a)∼ρπE
[D(s, a)]− E(s,a)∼ρπ [D(s, a)]

Due to computation intractability, we cannot compute all 1-Lipschitz functions in practice, and thus
we are shifted to its neural network approximation, where D is parameterized by certain neural
networks. As our result suggests, this method can still generalize well when its model complexity
is controlled. However, ordinary neural networks are often not Lipschitz continuous. To maintain
a good approximation to 1-Lipschitz continuous function classes, the gradient penalty technique is
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Algorithm 2 Wasserstein GAIL
1: Input: Expert demonstrations B∗, total iterations N , policy update iterations NG, discriminator

update iterations ND.
2: Initialize discriminator D, policy π, and an empty dataset B.
3: for N iterations do
4: for NG iterations do
5: B ← Collect samples using policy π.
6: Assign scaled rewards to state-action pairs in B by discriminator D.
7: Update policy π by maximizing rewards with samples from B.
8: end for
9: for ND iterations do

10: Update discriminator D by maximizing Eq. (19) with samples from B∗ and B.
11: end for
12: end for
13: Output: policy π.

Table 2: Information about tasks in imitating policies.

Tasks State Dimension Action Dimension Episode Length

HalfCheetah-v2 17 6 1000
Hopper-v2 11 3 1000
Walker2d-v2 17 6 1000

introduced in WGAN [21]. This technique adds a regularization term that employs a quadratic cost to
the gradient norm. Hence, denoting (s, a) as z, the loss function for the discriminator in WGAIL is:

L(D) = Ez∼ρπ
[
D(z)

]
− Ez∼ρπE

[
D(z)

]
+ λEz∼ρ̃

[(
||∇zD(z)|| − 1

)2]
, (19)

where ρ̃ is a mixing distribution of ρπ and ρπE , and λ is a positive regularization coefficient (λ = 10
performs well in practice). Following [24], we also scale reward function (discriminator’s output)
properly to stabilize training. This is important because the optimization in WGAIL is different from
the one in WGAN. Concretely, reinforcement learning algorithms often use the evaluation value
rather than the gradient information to perform gradient descent. Without scaling, rewards given by
the discriminator often fluctuate, which may lead to an unstable optimization. To tackle this issue,
at each iteration, we firstly centralize the given rewards by subtracting the mean and subsequently
scale them by dividing the range (the difference between the maximal value the minimal value). The
algorithm procedure is outlined in Algorithm 2.

E Experiment Details

E.1 Imitating Policies

We evaluate the considered algorithms on OpenAI Gym [10] benchmark tasks. Information about
state dimension, action dimension, and episode length information is listed in Table 2. We run the
state-of-the-art algorithm SAC [22] for 1 million samples to obtain expert policies. All imitation
learning approaches use 2-layer MLP policy network with 100 hidden sizes and tanh activation
function. Except for DAgger that continues to collect new samples and query expert policies (i.e.,
DAgger collects 1000 samples and gets action labels from expert policies per 5000 iterations), all
methods are provided the same 3 expert trajectories with length 1000. Key parameters of BC and
DAgger are give in Table 3 and Table 4, respectively. Other methods including GAIL, FEM [1]
and GTAL [49] use TRPO [41] to optimize policies, and key parameters are given in Table 5. All
experiments run with 3 random seeds (namely, 100, 200 and 300). During the training process, we
periodically evaluate the learned policies on true environments with 10 trajectories. Learning curves
are given in Figure 7. The final performance of imitated policies and expert policies are listed in
Table 6. Please refer to our source code in supplementary materials for other details.
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Table 3: Key parameters of Behavioral Cloning.

Parameter Value

learning rate 3e-4
batch size 128
total number of iters 100k

Table 4: Key parameters of DAgger.

Parameter Value

learning rate 3e-4
batch size 128
number of total training iterations 100k
collecting frequency 5k
number of new demonstrations per iteration 1k

Table 5: Key parameters of GAIL, AIRL, FEM and GTAL.

Parameter Value

number of generator iterations 5
number of discriminator iterations 1
number of rollout samples per iteration 1k
total number of collecting samples 3M
maximal KL divergence 0.01

Table 6: Discounted returns of learned policies. We use ± to denote the standard deviation

Tasks Expert BC DAgger FEM GTAL GAIL WGAIL AIRL

γ = 0.9
HalfCheetah-v2 10.59± 0.00 4.02± 0.97 8.06± 0.33 −11.40± 1.67 −14.39± 4.37 1.86± 0.08 −2.13± 2.78 1.57± 1.78
Hopper-v2 10.85± 0.00 10.69± 0.10 10.86± 0.02 12.75± 0.81 13.93± 0.74 10.31± 0.19 11.30± 1.06 13.50± 0.56
Walker2d-v2 5.31± 0.00 5.60± 0.20 5.30± 0.11 9.86± 0.87 11.31± 0.49 5.24± 0.41 9.64± 1.30 5.96± 0.56

γ = 0.99
HalfCheetah-v2 511.99± 0.00 137.30± 70.70 465.37± 4.56 −148.64± 10.50 −193.40± 88.66 251.49± 22.00 315.21± 57.95 305.69± 94.93
Hopper-v2 275.81± 0.00 155.19± 16.27 276.10± 0.15 238.63± 7.24 227.96± 18.18 263.17± 3.47 178.17± 106.70 259.35± 5.48
Walker2d-v2 346.63± 0.00 244.67± 30.28 345.87± 1.79 129.21± 16.38 176.27± 22.33 338.60± 9.28 249.95± 27.41 314.11± 34.82

γ = 0.999
HalfCheetah-v2 4097.30± 0.00 536.68± 384.66 3730.81± 31.57 −1150.45± 235.64 −1509.39± 877.41 3338.52± 191.06 2670.44± 437.00 3303.42± 262.79
Hopper-v2 2223.49± 0.00 408.25± 222.42 1903.02± 83.18 1878.19± 122.06 1731.93± 233.34 2177.76± 43.64 1184.20± 805.75 2187.72± 17.90
Walker2d-v2 3151.77± 0.00 995.05± 330.00 2963.82± 26.59 1039.71± 231.21 1765.62± 212.79 2912.35± 335.22 1565.15± 1006.01 1877.53± 651.77

E.2 Imitating Environments

To evaluate algorithms for imitating environments, we add necessary information (e.g., robot position
information) to the original state space defined by OpenAI Gym [10]. This is important since we
need the learned environment model to predict the position information, upon which we can compute
rewards for policy evaluation in the learned environments. Followed prior works [31, 25], the true
reward function is assumed to be known in advance. We also normalize the robot position information
by dividing 10 (but the reward function is not normalized). We use SAC [22] to re-train a sub-optimal
policy as what we have done when imitating policies. We collect samples using this sub-optimality
on true environments. Algorithmic configuration for BC and GAIL is the same as the one of imitating
policies. Different from imitating-policies, the model output space (action space) is not bounded
between −1 and +1. To overcome this difficulty, we normalize the model’s outputs with statistics
obtained from given demonstrations. During the training process, we also periodically evaluate the
policy value of data-collecting policies on the learned environment models.
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Figure 7: Learning curves of imitation approaches (γ = 0.999) including DAgger, GAIL, AIRL,
WGAIL, FEM, GTAL, and BC. The solid lines are mean of results and the shaded region corresponds
to the stand deviation over 3 random seeds, while the dashed lines indicate the performance of expert
policies.
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