
Lecture	11:	Learning	1

Artificial Intelligence, CS, Nanjing University

Spring, 2018, Yang Yu

http://cs.nju.edu.cn/yuy/course_ai18.ashx

Previously...

Propositional Logic
First Order Logic (FOL)

Search

Knowledge

Path-based search
Iterative improvement search

Uncertainty

Bayesian network

Learning
Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance

Chapter 18, Sections 1–3 3

Learning agents

Performance standard

Agent

Environm
ent

Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

Chapter 18, Sections 1–3 4

Inductive LearningInductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair x, f(x), e.g.,
O O X

X
X

, +1

Problem: find a(n) hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:
– Ignores prior knowledge

– Assumes a deterministic, observable “environment”
– Assumes examples are given

– Assumes that the agent wants to learn f—why?)

Chapter 18, Sections 1–3 6

Attribute-based representations

color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

taste ?
price ?

Attribute-based representations Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

Chapter 18, Sections 1–3 13

X ! {�1,+1}

f

Learning task: Classification

(color, weight) → sweet ?

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

color

w
ei

g
h

t

–

+

–
–

–

–

–––

+

+
+

+

+

– –

ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

learning: find an fˊ that is close to f

f

X ! [0,+1]

Learning task: Regression

(color, weight) → price

Features: color, weight
Label: price [0,1]

color

w
ei

g
h

t

ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

learning: find an fˊ that is close to f

Learning task: Regression
Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 7

Learning task: Regression
Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 8

Learning task: Regression
Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 10

Learning task: Regression
Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 11

how to learn? why it can learn?

Learning algorithms

Decision tree

Neural networks

Linear classifiers

Bayesian classifiers

Lazy classifiers

...

Why different classifiers?

 heuristics

 viewpoint

 performance

Decision tree learning
Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

Chapter 18, Sections 1–3 14

what is a decision tree

Expressiveness
Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B
F F F
F T T
T F T
T T F

F

F F

 T

 T T

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Prefer to find more compact decision trees

Chapter 18, Sections 1–3 15

Hypothesis spaces
(all possible trees)Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Each attribute can be in (positive), in (negative), or out
⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set

⇒ may get worse predictions

Chapter 18, Sections 1–3 22

Decision tree learning algorithm
Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification
else if attributes is empty then return Mode(examples)
else

best←Choose-Attribute(attributes, examples)
tree← a new decision tree with root test best

for each value vi of best do

examplesi← {elements of examples with best = vi}
subtree←DTL(examplesi,attributes− best,Mode(examples))
add a branch to tree with label vi and subtree subtree

return tree

Chapter 18, Sections 1–3 23

Choosing an attribute
Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

Information
Information

Information answers questions

The more clueless I am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior ⟨0.5, 0.5⟩

Information in an answer when prior is ⟨P1, . . . , Pn⟩ is

H(⟨P1, . . . , Pn⟩) = Σn
i =1 − Pi log2 Pi

(also called entropy of the prior)

Chapter 18, Sections 1–3 25

Information
Information contd.

Suppose we have p positive and n negative examples at the root
⇒ H(⟨p/(p+n), n/(p+n)⟩) bits needed to classify a new example

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which (we hope)
needs less information to complete the classification

Let Ei have pi positive and ni negative examples
⇒ H(⟨pi/(pi+ni), ni/(pi+ni)⟩) bits needed to classify a new example
⇒ expected number of bits per example over all branches is

Σi
pi + ni

p + n
H(⟨pi/(pi + ni), ni/(pi + ni)⟩)

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

⇒ choose the attribute that minimizes the remaining information needed

Chapter 18, Sections 1–3 26

Example

H(X) = �
X

i

ratio(classi) ln ratio(classi) = 0.6902

I(X; split) =
X

i
ratio(spliti)H(spliti)

=
4

13
0.5623 +

4

13
0.6931 +

5

13
0.6730 = 0.6452

Gain(X; split) = H(X)� I(X; split) = 0.045

information gain:
entropy before split:

entropy after split:

information gain:

id color taste
1 red sweet
2 red sweet
3 half-red sweet
4 not-red sweet
5 not-red not-sweet
6 half-red sweet
7 red not-sweet
8 not-red not-sweet
9 not-red sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

+

–
+ +
+ + +

–
–

+

red half-red not-red

– –
–

color taste ?

Decision tree learning algorithm
Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification
else if attributes is empty then return Mode(examples)
else

best←Choose-Attribute(attributes, examples)
tree← a new decision tree with root test best

for each value vi of best do

examplesi← {elements of examples with best = vi}
subtree←DTL(examplesi,attributes− best,Mode(examples))
add a branch to tree with label vi and subtree subtree

return tree

Chapter 18, Sections 1–3 23

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

Example of learned treeExample contd.

Decision tree learned from the 12 examples:

No Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t jus-
tified by small amount of data

Chapter 18, Sections 1–3 27

Continuous attribute

id weight taste
1 110 sweet
2 105 sweet
3 100 sweet
4 93 sweet
5 80 not-sweet
6 98 sweet
7 95 not-sweet
8 102 not-sweet
9 98 sweet
10 90 not-sweet
11 108 sweet
12 101 not-sweet
13 89 not-sweet

– + ––– + ++++– – +
80 110

weight taste ?

I(X; split) =
X

i
ratio(spliti)H(spliti)

=
5

13
0.5004 +

8

13
0.5623 = 0.5385

Gain(X; split) = H(X)� I(X; split) = 0.1517

Continuous attribute

– + ––– + ++++– – +
80 110

H(X) = �
X

i

ratio(classi) ln ratio(classi) = 0.6902

information gain:
entropy before split:

entropy after split:

information gain:

for every split point

not-sweet sweet

Non-generalizable feature

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-red 100 sweet
4 not-red 93 sweet
5 not-red 80 not-sweet
6 half-red 98 sweet
7 red 95 not-sweet
8 not-red 102 not-sweet
9 not-red 98 sweet
10 half-red 90 not-sweet
11 red 108 sweet
12 half-red 101 not-sweet
13 not-red 89 not-sweet

the system may not know
non-generalizable features

IG = H(X)� 0

Gain ratio(X) =
H(X)� I(X; split)

IV (split)

IV (split) = H(split)

Gain ratio as a correction:

IG = H(X)� 0.6132

IG = H(X)� 0.5514

Gini(X) = 1�
X

i

p2i

#left

#all
Gini(left) +

#right

#all
Gini(right)

IG = H(X)� 0.5192

Gini = 0.3438 Gini = 0.4427

Gini = 0.3667

Alternative to information: Gini index

Gini index (CART):

–+ – – –
– – –– + +++ +– – –+ – – –

– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

Gini:

Gini after split:

Training error v.s. Information gain

–+ – – –
– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

training error: 4

training error: 4

IG = H(X)� 0.5192

IG = H(X)� 0.5514information gain:

information gain:

training error is less smooth

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling
missing values

CART: gini index

Leo Breiman 1928-2005 Jerome H. Friedman

Ross Quinlan

Nearest Neighbor Classifier

Nearest neighbor

what looks similar are similar

Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) majority of the k-NN

for classification:

Nearest neighbor

1-nearest neighbor: k-nearest neighbor:

Predict the label as that of the NN
or the (weighted) average of the k-NN

for regression:

Search for the nearest neighbor

Linear search

...

n times of distance calculations
O(dn ln k)

d is the dimension, n is the number of samples

Nearest neighbor classifier

‣ as classifier, asymptotically less than 2 times of
the optimal Bayes error
‣ naturally handle multi-class
‣ no training time
‣ nonlinear decision boundary

‣ slow testing speed for a large training data set
‣ have to store the training data
‣ sensitive to similarity function

nonparametric method

Naive Bayes Classifier

f(x) =

8
><

>:

+1, P (y = +1 | x) > P (y = �1 | x)
�1, P (y = +1 | x) < P (y = �1 | x)
random, otherwise

f(x) = argmax
y

P (y | x)

Bayes rule

classification using posterior probability

for binary classification

in general

= argmax
y

P (x | y)P (y)/P (x)

= argmax
y

P (x | y)P (y)

how the
probabilities be
estimated

f(x) = argmax
y

P (x | y)P (y)

P (y) P̃ (y) =
1

m

X

i

I(yi = y)

Naive Bayes

estimation the a priori by frequency:

P (red | sweet) = 1

P (half-red | sweet) = 0

P (not-red | sweet) = 0

P (sweet) = 4/13

P (red | not-sweet) = 0

P (half-red | not-sweet) = 4/9

P (not-red | not-sweet) = 5/9

P (not-sweet) = 9/13

Consider a very simple case

color taste ?

id color taste
1 red sweet
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

Consider a very simple case

what the fˊ would be?

perfect
but not realistic

id color taste
1 red sweet
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

f(x) = argmax
y

P (x | y)P (y)

P (red | sweet)P (sweet) = 4/13

P (red | not-sweet)P (not-sweet) = 0

P (half-red | sweet)P (sweet) = 0

P (half-red | not-sweet)P (not-sweet) =
4

9
⇥ 9

13
=

4

13

f(x) = argmax
y

P (x | y)P (y)

P (x | y) = P (x1, x2, . . . , xn | y)
= P (x1 | y) · P (x2 | y) · . . . P (xn | y)

P (y) P̃ (y) =
1

m

X

i

I(yi = y)

f(x) = argmax
y

P̃ (y)
Y

i

P̃ (xi | y)

Naive Bayes

estimation the a priori by frequency:

assume features are conditional independence given
the class (naive assumption):

decision function:

P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) = 0

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) = 0

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 0, weight = 1) !

P (color = 0 | y = yes) = (0 + 1)/(2 + 4)

P (y = yes) = (2 + 1)/(5 + 2)

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) =
2

7
⇥ 1

8
⇥ 4

7
= 0.02

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) =
1

6
⇥ 1

7
⇥ 3

7
= 0.01

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

+

color sweet?

0 yes

1 yes

2 yes

3 yes

smoothed (Laplacian correction) probabilities:

f(y | color = 0, weight = 1) !

for counting frequency,
assume every event
has happened once.

O(mn)

O(n)

Naive Bayes

advantages:

disadvantages:

very fast:
 scan the data once, just count:
 store class-conditional probabilities:
 test an instance: (c the number of classes)

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)

the strong assumption may harm the accuracy
does not handle numerical features naturally

