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Previously...

Path-based search

Iterative-improvement search

Basic ability: search

Adversarial search

Constraint satisfaction problems



Knowledge



Knowledge bases 
Knowledge bases

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them
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A simple knowledge-based agent 
A simple knowledge-based agent

function KB-Agent(percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB,Make-Percept-Sentence(percept, t))
action←Ask(KB,Make-Action-Query(t))
Tell(KB,Make-Action-Sentence(action, t))
t← t + 1
return action

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions
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Wumpus World PEAS description 
Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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Wumpus world characterization  

Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature
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Exploring a wumpus world Exploring a wumpus world
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Exploring a wumpus world Exploring a wumpus world
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Other tight spots Other tight spots

A

B OK

OK OK

A

B

A

P?

P?
P?

P?

Breeze in (1,2) and (2,1)
⇒ no safe actions

Assuming pits uniformly distributed,
(2,2) has pit w/ prob 0.86, vs. 0.31

A

S

Smell in (1,1)
⇒ cannot move

Can use a strategy of coercion:
shoot straight ahead
wumpus was there ⇒ dead ⇒ safe
wumpus wasn’t there ⇒ safe
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Logic in general  
Logic in general

Logics are formal languages for representing information
such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;
i.e., define truth of a sentence in a world

E.g., the language of arithmetic

x + 2 ≥ y is a sentence; x2 + y > is not a sentence

x + 2 ≥ y is true iff the number x + 2 is no less than the number y

x + 2 ≥ y is true in a world where x = 7, y = 1
x + 2 ≥ y is false in a world where x = 0, y = 6
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Entailment (蕴涵／蕴含) 
Entailment

Entailment means that one thing follows from another:

KB |= α

Knowledge base KB entails sentence α
if and only if

α is true in all worlds where KB is true

E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”

E.g., x + y = 4 entails 4 = x + y

Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

Note: brains process syntax (of some sort)
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Model (模型)
Models

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

M(α) is the set of all models of α

Then KB |= α if and only if M(KB) ⊆ M(α)

E.g. KB = Giants won and Reds won
α = Giants won M(    )
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Entailment in the wumpus world 

Entailment in the wumpus world

Situation after detecting nothing in [1,1],
moving right, breeze in [2,1]

Consider possible models for ?s
assuming only pits

AA

B

?
?

?

3 Boolean choices ⇒ 8 possible models
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Wumpus models 
Wumpus models
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Wumpus models 
Wumpus models
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KB = wumpus-world rules + observations
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Wumpus models Wumpus models
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KB = wumpus-world rules + observations

α1 = “[1,2] is safe”, KB |= α1, proved by model checking
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Wumpus models Wumpus models
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Wumpus models Wumpus models
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KB = wumpus-world rules + observations

α2 = “[2,2] is safe”, KB ̸|= α2
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Inference
Inference

KB ⊢i α = sentence α can be derived from KB by procedure i

Consequences of KB are a haystack; α is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: i is sound if
whenever KB ⊢i α, it is also true that KB |= α

Completeness: i is complete if
whenever KB |= α, it is also true that KB ⊢i α

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and
complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the KB.
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Propositional logic (命题逻辑): Syntax 

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P1, P2 etc are sentences

If S is a sentence, ¬S is a sentence (negation)

If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)

If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)

If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)

If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)
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Propositional logic: Semantics Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1

true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true

S1 ⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true = true
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Truth tables for connectives  
（真值表）

Truth tables for connectives

P Q ¬P P ∧ Q P ∨ Q P⇒Q P⇔Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true
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Wumpus world sentences  
Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].
Let Bi,j be true if there is a breeze in [i, j].

¬P1,1

¬B1,1

B2,1

“Pits cause breezes in adjacent squares”

B1,1 ⇔ (P1,2 ∨ P2,1)

B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

“A square is breezy if and only if there is an adjacent pit”
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Truth tables for inference 

Truth tables for inference

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB
false false false false false false false true true true true false false
false false false false false false true true true false true false false

... ... ... ... ... ... ... ... ... ... ... ... ...
false true false false false false false true true false true true false

false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true

false true false false true false false true false false true true false
... ... ... ... ... ... ... ... ... ... ... ... ...

true true true true true true true false true true false true false

Enumerate rows (different assignments to symbols),
if KB is true in row, check that α is too
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Inference by enumeration Inference by enumeration

Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α
return TT-Check-All(KB,α, symbols, [ ])

function TT-Check-All(KB,α, symbols,model) returns true or false
if Empty?(symbols) then

if PL-True?(KB,model) then return PL-True?(α,model)
else return true

else do
P ←First(symbols); rest←Rest(symbols)
return TT-Check-All(KB,α, rest,Extend(P , true,model)) and

TT-Check-All(KB,α, rest,Extend(P , false,model))

O(2n) for n symbols; problem is co-NP-complete
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Logical equivalence 
Logical equivalence

Two sentences are logically equivalent iff true in same models:
α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α ∨ β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧
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Validity and satisfiability 
Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
KB |= α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:
KB |= α if and only if (KB ∧ ¬α) is unsatisfiable

i.e., prove α by reductio ad absurdum
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Proof methods 
Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
– Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms
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Forward and backward chaining 
Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
♦ proposition symbol; or
♦ (conjunction of symbols) ⇒ symbol

E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . ,αn, α1 ∧ · · · ∧ αn ⇒ β

β

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time
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Forward chaining （前向推理）Forward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P ⇒ Q

L ∧ M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B

Q

P

M

L

BA
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Forward chaining algorithm Forward chaining algorithm

function PL-FC-Entails?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses

q, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises

inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
p←Pop(agenda)
unless inferred[p] do

inferred[p]← true
for each Horn clause c in whose premise p appears do

decrement count[c]
if count[c] = 0 then do

if Head[c] = q then return true
Push(Head[c],agenda)

return false
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Forward chaining example 
Forward chaining example
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Forward chaining example 
Forward chaining example

Q

P

M

L

B

2

1

A

1 1

2

Chapter 7 46



Forward chaining example Forward chaining example
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Forward chaining example 
Forward chaining example
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Forward chaining example 
Forward chaining example
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Forward chaining example 
Forward chaining example
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Forward chaining example 
Forward chaining example
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Forward chaining example 
Forward chaining example

A B

0

L
0

M

0

P

0

0

Q

Chapter 7 52



Proof of completeness 
Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final state as a model m, assigning true/false to symbols

3. Every clause in the original KB is true in m
Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m
Then a1 ∧ . . . ∧ ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check α
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Backward chaining（后向推理）  

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed
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Backward chaining example 
Backward chaining example
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Backward chaining example 
Backward chaining example
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Backward chaining example 
Backward chaining example
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Backward chaining example 
Backward chaining example

M

A

Q

P

L

B

Chapter 7 58



Backward chaining example 
Backward chaining example
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Backward chaining example 
Backward chaining example
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Backward chaining example 
Backward chaining example
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Backward chaining example 
Backward chaining example
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Backward chaining example 
Backward chaining example

A

Q

P

L

B

M

Chapter 7 63



Backward chaining example 
Backward chaining example

A

Q

P

L

B

M

Chapter 7 64



Comparison

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB
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Resolution （消解）
Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals

︸ ︷︷ ︸

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Resolution inference rule (for CNF): complete for propositional logic

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨ mn

ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨ mn

where ℓi and mj are complementary literals. E.g.,

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete for propositional logic
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Conversion to CNF Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)
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Resolution algorithm 
Resolution algorithm

Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α
new← { }
loop do

for each Ci, Cj in clauses do
resolvents←PL-Resolve(Ci,Cj)
if resolvents contains the empty clause then return true
new←new ∪ resolvents

if new ⊆ clauses then return false
clauses← clauses ∪new
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Resolution example 

Resolution example

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 α = ¬P1,2

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2
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Summary
Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundess: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated informa-
tion, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power
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