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What is link data

vector data link data
= graph

nodes may have features, but we focus on 
the information of the edges at the moment

chain
tree
acyclic graph
graph
multi-graph
...
directed
undirected



Why care links

pervasive and easy to obtain

friendship

hyperlink

citationany relationship...



Why care links

more explicit semantic

friendship

(city, job, age, salary)

are they friends?

sometimes feature vectors are used to obtain links

e.g. find neighbor instances



Why care links

relax i.i.d. assumption

in supervised learning, we 
commonly assume objects 
are i.i.d. drawn from a fixed 
distribution

link data explicitly expresses 
the relationship among 
objects



Goals in mining link data

object ranking

object classification

many tasks could be performed with link data

object clustering

link prediction



Object ranking

ranking the importance of nodes in a 
directed graph



Object ranking

Randomly surf in the web

The importance of a web 
be the fraction of time 
staying in the web after 
infinite surfing time 
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current state w1, next state: (1,0,0)*M=(0.5,0.5,0)
next state: (0.5,0.5,0)*M = (1,0,0)*M*M = (0.416,0.416,0.167)
next state: (1,0,0)*M3 = (0.514, 0.347, 0.139)
after 10 steps: (0,5, 0.375, 0.125)  stationary distribution

PageRank [PagePage, et al., 1998]



r(xi) = r(x1)P (xi|x1) + . . .+ r(xn)P (xi|xn)

r = M>r

Object ranking

Let r be the stationary distribution:
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r is the eigenvector of MT with the 
eigenvalue 1

A PageRank voting view:

PageRank [Page, et al., 1998]



Object ranking

1 0 0
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PageRank: 
    w1 = 1, w2 = w3 = 0

The problem with absorbing states

w1

w2

w3

Add a full graph: 

jump to a random state with a 
small probability (restart)

PageRank [Page, et al., 1998]



r(xi) = (1� d)
1

n

+ d(r(x1)P (xi|x1) + . . .+ r(xn)P (xi|xn))
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Object ranking

PageRank [Page, et al., 1998]

Matrix form:
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recursive solution:

A PageRank voting view:

Damping factor: the surfing process 
restarts with probability 1-d (d=0.85)
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Object ranking

[Page, et al., 1998]



Object ranking

[Page, et al., 1998]



Object classification

Incorporate link information 
could improve the classification 
accuracy

[Chakrabarti, et al., SIGMOD98]

Classification of web pages



Object classification

use pure text for classification: 36% error

[Chakrabarti, et al., SIGMOD98]

Classification of web pages



Object classification

[Chakrabarti, et al., SIGMOD98]

Classification of web pages

use neighbor predicted classes: 
34% error, 22.1% error

hyperlink forms a neighborhood relationship

2
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use pure text for classification: 36% error



Object classification

[Chakrabarti, et al., SIGMOD98]

Classification of web pages

use neighbor predicted classes: 
34% error, 22.1% error

use pure text for classification: 36% error



Object clustering

Clustering nodes using link 
information

community discovery in 
social networks



Object clustering

Presenting the graph into 
an adjoint matrix

1 0 1

1 1 0

0 1 1

many clustering algorithms utilize only the adjoint 
matrix

hierarchical clustering 

graph-cut

k-medoids



Object clustering

Defining the distance 
between any two nodes as 
the shortest path length

all clustering algorithms can be used



Link prediction

Predict the existence of a 
link between two nodes

recommendations in 
social network

A common solution:
compute a similarity among any pairs of nodes
the pairs with high similarity is predicted as a link

graph distance (negated) length of shortest path between x and y

common neighbors |Γ(x) ∩ Γ(y)|
Jaccard’s coefficient |Γ(x)∩Γ(y)|

|Γ(x)∪Γ(y)|
Adamic/Adar

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)|

preferential attachment |Γ(x)| · |Γ(y)|
Katzβ

∑∞
ℓ=1 βℓ · |paths⟨ℓ⟩x,y|

where paths⟨ℓ⟩x,y := {paths of length exactly ℓ from x to y}
weighted: paths⟨1⟩x,y := number of collaborations between x, y.
unweighted: paths⟨1⟩x,y := 1 iff x and y collaborate.

hitting time −Hx,y

stationary-normed −Hx,y · πy

commute time −(Hx,y + Hy,x)
stationary-normed −(Hx,y · πy + Hy,x · πx)

where Hx,y := expected time for random walk from x to reach y
πy := stationary distribution weight of y

(proportion of time the random walk is at node y)
rooted PageRankα stationary distribution weight of y under the following random walk:

with probability α, jump to x.
with probability 1 − α, go to random neighbor of current node.

SimRankγ

{
1 if x = y

γ · a∈Γ(x) b∈Γ(y) score(a,b)

|Γ(x)|·|Γ(y)| otherwise

Figure 2: Values for score(x, y) under various predictors; each predicts pairs ⟨x, y⟩ in descending
order of score(x, y). The set Γ(x) consists of the neighbors of the node x in Gcollab .

Evaluating a link predictor. Each link predictor p that we consider outputs a ranked list Lp of
pairs in A×A−Eold ; these are predicted new collaborations, in decreasing order of confidence. For
our evaluation, we focus on the set Core, so we define E∗

new := Enew ∩(Core×Core) and n := |E∗
new |.

Our performance measure for predictor p is then determined as follows: from the ranked list Lp, we
take the first n pairs in Core × Core, and determine the size of the intersection of this set of pairs
with the set E∗

new .

3 Methods for Link Prediction

In this section, we survey an array of methods for link prediction. All the methods assign a
connection weight score(x, y) to pairs of nodes ⟨x, y⟩, based on the input graph Gcollab , and then
produce a ranked list in decreasing order of score(x, y). Thus, they can be viewed as computing a
measure of proximity or “similarity” between nodes x and y, relative to the network topology. In
general, the methods are adapted from techniques used in graph theory and social network analysis;
in a number of cases, these techniques were not designed to measure node-to-node similarity, and
hence need to be modified for this purpose. Figure 2 summarizes most of these measures; below we
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Link prediction

Similarities among nodes: neighbor-based
Common neighbors [Newman, PRL’01]

two persons shares a lot of 
friends are likely to be friends

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs ⟨x, y⟩ by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
⟨x, y⟩ is more likely to form if edges ⟨x, z⟩ and ⟨z, y⟩ are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.
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discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs ⟨x, y⟩ by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
⟨x, y⟩ is more likely to form if edges ⟨x, z⟩ and ⟨z, y⟩ are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.
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is the set of neighbor nodes of x



Link prediction

Similarities among nodes: neighbor-based
Jaccard’s coefficient [Salton and McGill,83]

consider the relative counting

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs ⟨x, y⟩ by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
⟨x, y⟩ is more likely to form if edges ⟨x, z⟩ and ⟨z, y⟩ are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.
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is the set of neighbor nodes of x

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs ⟨x, y⟩ by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
⟨x, y⟩ is more likely to form if edges ⟨x, z⟩ and ⟨z, y⟩ are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.
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Link prediction

Similarities among nodes: neighbor-based
Preferential attachment [Mitzenmacher, ACCCC’01]

the probability that a new edge involves 
node x is proportional to |Γ(x)|

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs ⟨x, y⟩ by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
⟨x, y⟩ is more likely to form if edges ⟨x, z⟩ and ⟨z, y⟩ are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.
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is the set of neighbor nodes of x

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs ⟨x, y⟩ by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
⟨x, y⟩ is more likely to form if edges ⟨x, z⟩ and ⟨z, y⟩ are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.
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Link prediction

Similarities among nodes: path-based
Katz [Psychometrika’53]

weighted average of path length

• Katz [12] defines a measure that directly sums over this collection of paths, exponentially
damped by length to count short paths more heavily. This leads to the measure

score(x, y) :=
∞∑

ℓ=1

βℓ · |paths⟨ℓ⟩x,y|,

where paths⟨ℓ⟩x,y is the set of all length-ℓ paths from x to y. (A very small β yields predictions much
like common neighbors, since paths of length three or more contribute very little to the summation.)
One can verify that the matrix of scores is given by (I − βM)−1 − I , where M is the adjacency
matrix of the graph. We consider two variants of this Katz measure: (1) unweighted, in which
paths⟨1⟩x,y = 1 if x and y have collaborated and 0 otherwise, and (2) weighted, in which paths⟨1⟩x,y is
the number of times that x and y have collaborated.

• Hitting time, PageRank, and variants. A random walk on Gcollab starts at a node x, and
iteratively moves to a neighbor of x chosen uniformly at random. The hitting time Hx,y from x to y
is the expected number of steps required for a random walk starting at x to reach y. Since the hitting
time is not in general symmetric, it is also natural to consider the commute time Cx,y := Hx,y+Hy,x.
Both of these measures serve as natural proximity measures, and hence (negated) can be used as
score(x, y).

One difficulty with hitting time as a measure of proximity is that Hx,y is quite small whenever y
is a node with a large stationary probability πy, regardless of the identity of x. To counterbalance this
phenomenon, we also consider normalized versions of the hitting and commute times, by defining
score(x, y) := −Hx,y · πy or score(x, y) := −(Hx,y · πy + Hy,x · πx).

Another difficulty with these measures is their sensitive dependence to parts of the graph far
away from x and y, even when x and y are connected by very short paths. A way of counteracting
this is to allow the random walk from x to y to periodically “reset,” returning to x with a fixed
probability α at each step; in this way, distant parts of the graph will almost never be explored.
Random resets form the basis of the PageRank measure for Web pages [3], and we can adapt it
for link prediction as follows: Define score(x, y) under the rooted PageRank measure to be the
stationary probability of y in a random walk that returns to x with probability α each step, moving
to a random neighbor with probability 1 − α.

• SimRank [10] is a fixed point of the following recursive definition: two nodes are similar to
the extent that they are joined to similar neighbors. Numerically, this is specified by defining
similarity(x, x) := 1 and

similarity(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) similarity(a, b)

|Γ(x)| · |Γ(y)|

for some γ ∈ [0, 1]. We then define score(x, y) := similarity(x, y). SimRank can also be interpreted
in terms of a random walk on the collaboration graph: it is the expected value of γℓ, where ℓ is a
random variable giving the time at which random walks started from x and y first meet.

Higher-level approaches. We now discuss three “meta-approaches” that can be used in con-
junction with any of the methods discussed above.

• Low-rank approximation. Since the adjacency matrix M can be used to represent the graph
Gcollab , all of our link prediction methods have an equivalent formulation in terms of this matrix M .
In some cases, this was noted explicitly above (for example in the case of the Katz similarity score);
but in many cases the matrix formulation is quite natural. For example, the common neighbors
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• Katz [12] defines a measure that directly sums over this collection of paths, exponentially
damped by length to count short paths more heavily. This leads to the measure

score(x, y) :=
∞∑

ℓ=1

βℓ · |paths⟨ℓ⟩x,y|,

where paths⟨ℓ⟩x,y is the set of all length-ℓ paths from x to y. (A very small β yields predictions much
like common neighbors, since paths of length three or more contribute very little to the summation.)
One can verify that the matrix of scores is given by (I − βM)−1 − I , where M is the adjacency
matrix of the graph. We consider two variants of this Katz measure: (1) unweighted, in which
paths⟨1⟩x,y = 1 if x and y have collaborated and 0 otherwise, and (2) weighted, in which paths⟨1⟩x,y is
the number of times that x and y have collaborated.

• Hitting time, PageRank, and variants. A random walk on Gcollab starts at a node x, and
iteratively moves to a neighbor of x chosen uniformly at random. The hitting time Hx,y from x to y
is the expected number of steps required for a random walk starting at x to reach y. Since the hitting
time is not in general symmetric, it is also natural to consider the commute time Cx,y := Hx,y+Hy,x.
Both of these measures serve as natural proximity measures, and hence (negated) can be used as
score(x, y).

One difficulty with hitting time as a measure of proximity is that Hx,y is quite small whenever y
is a node with a large stationary probability πy, regardless of the identity of x. To counterbalance this
phenomenon, we also consider normalized versions of the hitting and commute times, by defining
score(x, y) := −Hx,y · πy or score(x, y) := −(Hx,y · πy + Hy,x · πx).

Another difficulty with these measures is their sensitive dependence to parts of the graph far
away from x and y, even when x and y are connected by very short paths. A way of counteracting
this is to allow the random walk from x to y to periodically “reset,” returning to x with a fixed
probability α at each step; in this way, distant parts of the graph will almost never be explored.
Random resets form the basis of the PageRank measure for Web pages [3], and we can adapt it
for link prediction as follows: Define score(x, y) under the rooted PageRank measure to be the
stationary probability of y in a random walk that returns to x with probability α each step, moving
to a random neighbor with probability 1 − α.

• SimRank [10] is a fixed point of the following recursive definition: two nodes are similar to
the extent that they are joined to similar neighbors. Numerically, this is specified by defining
similarity(x, x) := 1 and

similarity(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) similarity(a, b)

|Γ(x)| · |Γ(y)|

for some γ ∈ [0, 1]. We then define score(x, y) := similarity(x, y). SimRank can also be interpreted
in terms of a random walk on the collaboration graph: it is the expected value of γℓ, where ℓ is a
random variable giving the time at which random walks started from x and y first meet.

Higher-level approaches. We now discuss three “meta-approaches” that can be used in con-
junction with any of the methods discussed above.

• Low-rank approximation. Since the adjacency matrix M can be used to represent the graph
Gcollab , all of our link prediction methods have an equivalent formulation in terms of this matrix M .
In some cases, this was noted explicitly above (for example in the case of the Katz similarity score);
but in many cases the matrix formulation is quite natural. For example, the common neighbors
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Link prediction

Similarities among nodes: path-based
Random walk

• Katz [12] defines a measure that directly sums over this collection of paths, exponentially
damped by length to count short paths more heavily. This leads to the measure

score(x, y) :=
∞∑

ℓ=1

βℓ · |paths⟨ℓ⟩x,y|,

where paths⟨ℓ⟩x,y is the set of all length-ℓ paths from x to y. (A very small β yields predictions much
like common neighbors, since paths of length three or more contribute very little to the summation.)
One can verify that the matrix of scores is given by (I − βM)−1 − I , where M is the adjacency
matrix of the graph. We consider two variants of this Katz measure: (1) unweighted, in which
paths⟨1⟩x,y = 1 if x and y have collaborated and 0 otherwise, and (2) weighted, in which paths⟨1⟩x,y is
the number of times that x and y have collaborated.

• Hitting time, PageRank, and variants. A random walk on Gcollab starts at a node x, and
iteratively moves to a neighbor of x chosen uniformly at random. The hitting time Hx,y from x to y
is the expected number of steps required for a random walk starting at x to reach y. Since the hitting
time is not in general symmetric, it is also natural to consider the commute time Cx,y := Hx,y+Hy,x.
Both of these measures serve as natural proximity measures, and hence (negated) can be used as
score(x, y).

One difficulty with hitting time as a measure of proximity is that Hx,y is quite small whenever y
is a node with a large stationary probability πy, regardless of the identity of x. To counterbalance this
phenomenon, we also consider normalized versions of the hitting and commute times, by defining
score(x, y) := −Hx,y · πy or score(x, y) := −(Hx,y · πy + Hy,x · πx).

Another difficulty with these measures is their sensitive dependence to parts of the graph far
away from x and y, even when x and y are connected by very short paths. A way of counteracting
this is to allow the random walk from x to y to periodically “reset,” returning to x with a fixed
probability α at each step; in this way, distant parts of the graph will almost never be explored.
Random resets form the basis of the PageRank measure for Web pages [3], and we can adapt it
for link prediction as follows: Define score(x, y) under the rooted PageRank measure to be the
stationary probability of y in a random walk that returns to x with probability α each step, moving
to a random neighbor with probability 1 − α.

• SimRank [10] is a fixed point of the following recursive definition: two nodes are similar to
the extent that they are joined to similar neighbors. Numerically, this is specified by defining
similarity(x, x) := 1 and

similarity(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) similarity(a, b)

|Γ(x)| · |Γ(y)|

for some γ ∈ [0, 1]. We then define score(x, y) := similarity(x, y). SimRank can also be interpreted
in terms of a random walk on the collaboration graph: it is the expected value of γℓ, where ℓ is a
random variable giving the time at which random walks started from x and y first meet.

Higher-level approaches. We now discuss three “meta-approaches” that can be used in con-
junction with any of the methods discussed above.

• Low-rank approximation. Since the adjacency matrix M can be used to represent the graph
Gcollab , all of our link prediction methods have an equivalent formulation in terms of this matrix M .
In some cases, this was noted explicitly above (for example in the case of the Katz similarity score);
but in many cases the matrix formulation is quite natural. For example, the common neighbors
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• Katz [12] defines a measure that directly sums over this collection of paths, exponentially
damped by length to count short paths more heavily. This leads to the measure

score(x, y) :=
∞∑

ℓ=1

βℓ · |paths⟨ℓ⟩x,y|,

where paths⟨ℓ⟩x,y is the set of all length-ℓ paths from x to y. (A very small β yields predictions much
like common neighbors, since paths of length three or more contribute very little to the summation.)
One can verify that the matrix of scores is given by (I − βM)−1 − I , where M is the adjacency
matrix of the graph. We consider two variants of this Katz measure: (1) unweighted, in which
paths⟨1⟩x,y = 1 if x and y have collaborated and 0 otherwise, and (2) weighted, in which paths⟨1⟩x,y is
the number of times that x and y have collaborated.

• Hitting time, PageRank, and variants. A random walk on Gcollab starts at a node x, and
iteratively moves to a neighbor of x chosen uniformly at random. The hitting time Hx,y from x to y
is the expected number of steps required for a random walk starting at x to reach y. Since the hitting
time is not in general symmetric, it is also natural to consider the commute time Cx,y := Hx,y+Hy,x.
Both of these measures serve as natural proximity measures, and hence (negated) can be used as
score(x, y).

One difficulty with hitting time as a measure of proximity is that Hx,y is quite small whenever y
is a node with a large stationary probability πy, regardless of the identity of x. To counterbalance this
phenomenon, we also consider normalized versions of the hitting and commute times, by defining
score(x, y) := −Hx,y · πy or score(x, y) := −(Hx,y · πy + Hy,x · πx).

Another difficulty with these measures is their sensitive dependence to parts of the graph far
away from x and y, even when x and y are connected by very short paths. A way of counteracting
this is to allow the random walk from x to y to periodically “reset,” returning to x with a fixed
probability α at each step; in this way, distant parts of the graph will almost never be explored.
Random resets form the basis of the PageRank measure for Web pages [3], and we can adapt it
for link prediction as follows: Define score(x, y) under the rooted PageRank measure to be the
stationary probability of y in a random walk that returns to x with probability α each step, moving
to a random neighbor with probability 1 − α.

• SimRank [10] is a fixed point of the following recursive definition: two nodes are similar to
the extent that they are joined to similar neighbors. Numerically, this is specified by defining
similarity(x, x) := 1 and

similarity(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) similarity(a, b)

|Γ(x)| · |Γ(y)|

for some γ ∈ [0, 1]. We then define score(x, y) := similarity(x, y). SimRank can also be interpreted
in terms of a random walk on the collaboration graph: it is the expected value of γℓ, where ℓ is a
random variable giving the time at which random walks started from x and y first meet.

Higher-level approaches. We now discuss three “meta-approaches” that can be used in con-
junction with any of the methods discussed above.

• Low-rank approximation. Since the adjacency matrix M can be used to represent the graph
Gcollab , all of our link prediction methods have an equivalent formulation in terms of this matrix M .
In some cases, this was noted explicitly above (for example in the case of the Katz similarity score);
but in many cases the matrix formulation is quite natural. For example, the common neighbors
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commute time:

Hx,y is the hitting time of random walk from x to y

• Katz [12] defines a measure that directly sums over this collection of paths, exponentially
damped by length to count short paths more heavily. This leads to the measure

score(x, y) :=
∞∑

ℓ=1

βℓ · |paths⟨ℓ⟩x,y|,

where paths⟨ℓ⟩x,y is the set of all length-ℓ paths from x to y. (A very small β yields predictions much
like common neighbors, since paths of length three or more contribute very little to the summation.)
One can verify that the matrix of scores is given by (I − βM)−1 − I , where M is the adjacency
matrix of the graph. We consider two variants of this Katz measure: (1) unweighted, in which
paths⟨1⟩x,y = 1 if x and y have collaborated and 0 otherwise, and (2) weighted, in which paths⟨1⟩x,y is
the number of times that x and y have collaborated.

• Hitting time, PageRank, and variants. A random walk on Gcollab starts at a node x, and
iteratively moves to a neighbor of x chosen uniformly at random. The hitting time Hx,y from x to y
is the expected number of steps required for a random walk starting at x to reach y. Since the hitting
time is not in general symmetric, it is also natural to consider the commute time Cx,y := Hx,y+Hy,x.
Both of these measures serve as natural proximity measures, and hence (negated) can be used as
score(x, y).

One difficulty with hitting time as a measure of proximity is that Hx,y is quite small whenever y
is a node with a large stationary probability πy, regardless of the identity of x. To counterbalance this
phenomenon, we also consider normalized versions of the hitting and commute times, by defining
score(x, y) := −Hx,y · πy or score(x, y) := −(Hx,y · πy + Hy,x · πx).

Another difficulty with these measures is their sensitive dependence to parts of the graph far
away from x and y, even when x and y are connected by very short paths. A way of counteracting
this is to allow the random walk from x to y to periodically “reset,” returning to x with a fixed
probability α at each step; in this way, distant parts of the graph will almost never be explored.
Random resets form the basis of the PageRank measure for Web pages [3], and we can adapt it
for link prediction as follows: Define score(x, y) under the rooted PageRank measure to be the
stationary probability of y in a random walk that returns to x with probability α each step, moving
to a random neighbor with probability 1 − α.

• SimRank [10] is a fixed point of the following recursive definition: two nodes are similar to
the extent that they are joined to similar neighbors. Numerically, this is specified by defining
similarity(x, x) := 1 and

similarity(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) similarity(a, b)

|Γ(x)| · |Γ(y)|

for some γ ∈ [0, 1]. We then define score(x, y) := similarity(x, y). SimRank can also be interpreted
in terms of a random walk on the collaboration graph: it is the expected value of γℓ, where ℓ is a
random variable giving the time at which random walks started from x and y first meet.

Higher-level approaches. We now discuss three “meta-approaches” that can be used in con-
junction with any of the methods discussed above.

• Low-rank approximation. Since the adjacency matrix M can be used to represent the graph
Gcollab , all of our link prediction methods have an equivalent formulation in terms of this matrix M .
In some cases, this was noted explicitly above (for example in the case of the Katz similarity score);
but in many cases the matrix formulation is quite natural. For example, the common neighbors
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normalized commute time:

    is the probability of x in the stationary distribution

• Katz [12] defines a measure that directly sums over this collection of paths, exponentially
damped by length to count short paths more heavily. This leads to the measure

score(x, y) :=
∞∑

ℓ=1

βℓ · |paths⟨ℓ⟩x,y|,

where paths⟨ℓ⟩x,y is the set of all length-ℓ paths from x to y. (A very small β yields predictions much
like common neighbors, since paths of length three or more contribute very little to the summation.)
One can verify that the matrix of scores is given by (I − βM)−1 − I , where M is the adjacency
matrix of the graph. We consider two variants of this Katz measure: (1) unweighted, in which
paths⟨1⟩x,y = 1 if x and y have collaborated and 0 otherwise, and (2) weighted, in which paths⟨1⟩x,y is
the number of times that x and y have collaborated.

• Hitting time, PageRank, and variants. A random walk on Gcollab starts at a node x, and
iteratively moves to a neighbor of x chosen uniformly at random. The hitting time Hx,y from x to y
is the expected number of steps required for a random walk starting at x to reach y. Since the hitting
time is not in general symmetric, it is also natural to consider the commute time Cx,y := Hx,y+Hy,x.
Both of these measures serve as natural proximity measures, and hence (negated) can be used as
score(x, y).

One difficulty with hitting time as a measure of proximity is that Hx,y is quite small whenever y
is a node with a large stationary probability πy, regardless of the identity of x. To counterbalance this
phenomenon, we also consider normalized versions of the hitting and commute times, by defining
score(x, y) := −Hx,y · πy or score(x, y) := −(Hx,y · πy + Hy,x · πx).

Another difficulty with these measures is their sensitive dependence to parts of the graph far
away from x and y, even when x and y are connected by very short paths. A way of counteracting
this is to allow the random walk from x to y to periodically “reset,” returning to x with a fixed
probability α at each step; in this way, distant parts of the graph will almost never be explored.
Random resets form the basis of the PageRank measure for Web pages [3], and we can adapt it
for link prediction as follows: Define score(x, y) under the rooted PageRank measure to be the
stationary probability of y in a random walk that returns to x with probability α each step, moving
to a random neighbor with probability 1 − α.

• SimRank [10] is a fixed point of the following recursive definition: two nodes are similar to
the extent that they are joined to similar neighbors. Numerically, this is specified by defining
similarity(x, x) := 1 and

similarity(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) similarity(a, b)

|Γ(x)| · |Γ(y)|

for some γ ∈ [0, 1]. We then define score(x, y) := similarity(x, y). SimRank can also be interpreted
in terms of a random walk on the collaboration graph: it is the expected value of γℓ, where ℓ is a
random variable giving the time at which random walks started from x and y first meet.

Higher-level approaches. We now discuss three “meta-approaches” that can be used in con-
junction with any of the methods discussed above.

• Low-rank approximation. Since the adjacency matrix M can be used to represent the graph
Gcollab , all of our link prediction methods have an equivalent formulation in terms of this matrix M .
In some cases, this was noted explicitly above (for example in the case of the Katz similarity score);
but in many cases the matrix formulation is quite natural. For example, the common neighbors
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Link prediction

Similarities among nodes: meta methods
SimRank [Jeh and Widom, KDD02]

recursively compute the similarity

• Katz [12] defines a measure that directly sums over this collection of paths, exponentially
damped by length to count short paths more heavily. This leads to the measure

score(x, y) :=
∞∑

ℓ=1

βℓ · |paths⟨ℓ⟩x,y|,

where paths⟨ℓ⟩x,y is the set of all length-ℓ paths from x to y. (A very small β yields predictions much
like common neighbors, since paths of length three or more contribute very little to the summation.)
One can verify that the matrix of scores is given by (I − βM)−1 − I , where M is the adjacency
matrix of the graph. We consider two variants of this Katz measure: (1) unweighted, in which
paths⟨1⟩x,y = 1 if x and y have collaborated and 0 otherwise, and (2) weighted, in which paths⟨1⟩x,y is
the number of times that x and y have collaborated.

• Hitting time, PageRank, and variants. A random walk on Gcollab starts at a node x, and
iteratively moves to a neighbor of x chosen uniformly at random. The hitting time Hx,y from x to y
is the expected number of steps required for a random walk starting at x to reach y. Since the hitting
time is not in general symmetric, it is also natural to consider the commute time Cx,y := Hx,y+Hy,x.
Both of these measures serve as natural proximity measures, and hence (negated) can be used as
score(x, y).

One difficulty with hitting time as a measure of proximity is that Hx,y is quite small whenever y
is a node with a large stationary probability πy, regardless of the identity of x. To counterbalance this
phenomenon, we also consider normalized versions of the hitting and commute times, by defining
score(x, y) := −Hx,y · πy or score(x, y) := −(Hx,y · πy + Hy,x · πx).

Another difficulty with these measures is their sensitive dependence to parts of the graph far
away from x and y, even when x and y are connected by very short paths. A way of counteracting
this is to allow the random walk from x to y to periodically “reset,” returning to x with a fixed
probability α at each step; in this way, distant parts of the graph will almost never be explored.
Random resets form the basis of the PageRank measure for Web pages [3], and we can adapt it
for link prediction as follows: Define score(x, y) under the rooted PageRank measure to be the
stationary probability of y in a random walk that returns to x with probability α each step, moving
to a random neighbor with probability 1 − α.

• SimRank [10] is a fixed point of the following recursive definition: two nodes are similar to
the extent that they are joined to similar neighbors. Numerically, this is specified by defining
similarity(x, x) := 1 and

similarity(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) similarity(a, b)

|Γ(x)| · |Γ(y)|

for some γ ∈ [0, 1]. We then define score(x, y) := similarity(x, y). SimRank can also be interpreted
in terms of a random walk on the collaboration graph: it is the expected value of γℓ, where ℓ is a
random variable giving the time at which random walks started from x and y first meet.

Higher-level approaches. We now discuss three “meta-approaches” that can be used in con-
junction with any of the methods discussed above.

• Low-rank approximation. Since the adjacency matrix M can be used to represent the graph
Gcollab , all of our link prediction methods have an equivalent formulation in terms of this matrix M .
In some cases, this was noted explicitly above (for example in the case of the Katz similarity score);
but in many cases the matrix formulation is quite natural. For example, the common neighbors

6



习题

PageRank算法的思想是什么？


