Data Mining for M.Sc. students, CS, Nanjing University

Lecture 12: Data Mining III Mining Link Data

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

Position

link data

What is link data

vector data

link data
= graph
chain tree acyclic graph graph
multi-graph
directed undirected
nodes may have features, but we focus on the information of the edges at the moment

Why care links

pervasive and easy to obtain

hyperlink

any relationship...

friendship

Blah blah blah blah blah, blah blah blah blah blah blah blah. Blah blah blah blah blahr btak blah blah. Blah blah blah, blah blah blah blah blah According to Lee (2005) something very interesting was the result. Something somethine sonsetting something, samething something, Blah blah blah blah blah blah. Smith (2005) reports on some key effect: of e-something on something, and suggests another interesting point. Something something blah something

However a recent study indicates sopething even more interesting; blah something blah something blah something (Jones ef of, 2006). Blah

Jones, C., Smith, A. Garcia, D. \& Lee, A. B. (2006). Challenges in e-something. Somverhing inferesting t0, ppso-55.
Lee, A. B. (2005). An Orgamisarional Theory Of Somerhing. New York, NY: Reference Books.

Smith, A. (2005). E-something. Int Black, A. \& White, B. (Eds.), An Introduction To Somedhing 30-52. Edinburgh: Textbook.

Why care links

more explicit semantic

(city, job, age, salary) are they friends?

sometimes feature vectors are used to obtain links
e.g. find neighbor instances

Why care links

relax i.i.d. assumption
in supervised learning, we commonly assume objects are i.i.d. drawn from a fixed distribution

link data explicitly expresses the relationship among objects

Goals in mining link data

many tasks could be performed with link data
object ranking
object classification
object clustering

link prediction

Object ranking

ranking the importance of nodes in a directed graph

Object ranking

PageRank [PagePage, et al., 1998]
Randomly surf in the web
The importance of a web be the fraction of time staying in the web after infinite surfing time

transition matrix M

	w_{1}	w_{2}	w_{3}
	0.5	0.5	0
w_{1}	0.5		
w_{2}	0.33	0.33	0.33
w_{3}	1	0	0

current state w_{1}, next state: $(1,0,0) * M=(0.5,0.5,0)$
next state: $(0.5,0.5,0)^{*} M=(1,0,0)^{*} M^{*} M=(0.416,0.416,0.167)$
next state: $(1,0,0) * M^{3}=(0.514,0.347,0.139)$
after 10 steps: $(0,5,0.375,0.125)$ stationary distribution

Object ranking

PageRank [Page, et al., 1998]
Let \boldsymbol{r} be the stationary distribution:

$$
\boldsymbol{r}=M^{\top} \boldsymbol{r}
$$

r is the eigenvector of M^{T} with the eigenvalue 1

	w_{1}			w_{2}
w_{3}				
	w_{1}	0.5	0.5	0
transition	w_{2}	0.33	0.33	0.33
			0	0

A PageRank voting view:

$$
\boldsymbol{r}\left(x_{i}\right)=\boldsymbol{r}\left(x_{1}\right) P\left(x_{i} \mid x_{1}\right)+\ldots+\boldsymbol{r}\left(x_{n}\right) P\left(x_{i} \mid x_{n}\right)
$$

Object ranking

PageRank [Page, et al., 1998]

The problem with absorbing states
PageRank:

$$
w_{1}=1, w_{2}=w_{3}=0
$$

Add a full graph:
jump to a random state with a small probability (restart)

Object ranking

PageRank [Page, et al., 1998]
Damping factor: the surfing process restarts with probability $1-d$ ($\mathrm{d}=0.85$)

A PageRank voting view:

$$
\boldsymbol{r}\left(x_{i}\right)=(1-d) \frac{1}{n}
$$

$$
+d\left(\boldsymbol{r}\left(x_{1}\right) P\left(x_{i} \mid x_{1}\right)+\ldots+\boldsymbol{r}\left(x_{n}\right) P\left(x_{i} \mid x_{n}\right)\right)
$$

Matrix form:

$$
\boldsymbol{r}=\frac{1-d}{n} \mathbf{1}+d M^{\top} \boldsymbol{r}
$$

\boldsymbol{r} solution: $\boldsymbol{r}=\left(I-d M^{\top}\right)^{-1} \frac{1-d}{n} \mathbf{1}$

	w_{1}			w_{2}
w_{3}				
	w_{1}	0.5	0.5	0
transition	w_{2}	0.33	0.33	0.33
	matrix M	w_{3}	1	0
	w_{3}	0		

recursive solution: $\boldsymbol{r}_{t+1}=\frac{1-d}{n} \mathbf{1}+d M^{\top} \boldsymbol{r}_{t}$

Object ranking

Figure 6: Comparison of Query for "University"

Object ranking

```
40) Location: hhtp://walus.stanford.edu/diglib/pub/people.html
    What'sNew? What's Cool? Destinations Net Search People Soltware
```


Stanford University_ Participants

```
The Database group
Prof. Hector Garcia-Molina-, Misturu Akizawa (Visiting Scholar from Hitachi), Edward Chang, , Chen-Chuan K. Changm, Arturo Crespon , Luis Gravanon , Matt Jacobsenu, Steven Ketchpele , Yusuke Mishina (Visiting Scholar from Hitachi), Narayanan Shivakumar-
The Project on People Computers and Design
Prof. Terry Winograd- , Michelle Q Wang Baldonadon, Steve Cousinsn , Mauria Finley , Frankie Jamesn , Larry Page , Christian P. Rohrer, , Martin Röscheisen- , Alan Steremberg-, Trace Wax
The Nobots group,
Prof. Daphne Koller, Prof. Yoav Shohamm , Marko Balabanovic , Avi Pfeffer , Mehran Sahamim , Katsumi Tanaka (Visiting Scholar)
The Testbed group,
Scott Hassann , Andy Kacsmari , Andreas Paepckem, Tom Schirmer
Stanford Libraries and Academic Information Resources
Rebecca Lashere , Vicky Reich
Engineering-Economic Systems
Tim Stanley,
Alumni from the Stanford Digital Libraries Project
Perry Arnold, , Kenichi Kamiva, James Kittock , Christian Mogensen- , Tak Yan
```


Corporate Affiliates

```
Association for Computing Machinery

\section*{Object classification}

\section*{Incorporate link information could improve the classification accuracy}


\section*{Object classification}

Classification of web pages
[Chakrabarti, et al., SIGMOD98]
use pure text for classification: 36\% error

\section*{Object classification}

\section*{Classification of web pages}
[Chakrabarti, et al., SIGMOD98]
use pure text for classification: 36\% error use neighbor predicted classes:
34\% error, 22.1\% error hyperlink forms a neighborhood relationship


Given test node \(\delta_{0}\) Construct a radius-r subgraph \(G_{r}\left(\delta_{0}\right)\) around \(\delta_{0}\) Assign initial classes to all \(\delta \in G_{r}\left(\delta_{0}\right)\) using local text Iterate until consistent:

Recompute the class for each \(\delta\) based on local text and class of neighbors

\section*{Object classification}

Classification of web pages
[Chakrabarti, et al., SIGMOD98]
use pure text for classification: 36\% error use neighbor predicted classes:
34\% error, 22.1\% error


\section*{Object clustering}

Clustering nodes using link information
community discovery in social networks


\section*{Object clustering}

Presenting the graph into an adjoint matrix
\begin{tabular}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline 0 & 1 & 1 \\
\hline
\end{tabular}

many clustering algorithms utilize only the adjoint matrix
hierarchical clustering
graph-cut
k-medoids

\section*{Object clustering}

Defining the distance
between any two nodes as the shortest path length

all clustering algorithms can be used

\section*{Link prediction}

Predict the existence of a link between two nodes

\section*{recommendations in social network}


A common solution: compute a similarity among any pairs of nodes the pairs with high similarity is predicted as a link \(\operatorname{score}(x, y)\)

\section*{Link prediction}

Similarities among nodes: neighbor-based Common neighbors [Newman, PRL:01]
\[
\begin{aligned}
& \operatorname{score}(x, y):=|\Gamma(x) \cap \Gamma(y)| \\
& \Gamma(x) \text { is the set of neighbor nodes of } x
\end{aligned}
\]
two persons shares a lot of friends are likely to be friends

\section*{Link prediction}

Similarities among nodes: neighbor-based Jaccard's coefficient [salton and McGill,83]
\[
\operatorname{score}(x, y):=|\Gamma(x) \cap \Gamma(y)| /|\Gamma(x) \cup \Gamma(y)|
\]
\(\Gamma(x)\) is the set of neighbor nodes of \(x\)
consider the relative counting

\section*{Link prediction}

Similarities among nodes: neighbor-based Preferential attachment [Mitzenmacher, Accccoon]
\[
\operatorname{score}(x, y):=|\Gamma(x)| \cdot|\Gamma(y)|
\]
\(\Gamma(x)\) is the set of neighbor nodes of \(x\)
the probability that a new edge involves node \(x\) is proportional to \(|\Gamma(x)|\)

\section*{Link prediction}

Similarities among nodes: path-based
Katz [Psychometrika'53]
\(\operatorname{score}(x, y):=\sum_{\ell=1}^{\infty} \beta^{\ell} \cdot \mid\) paths \(_{x, y}^{\langle\ell\rangle} \mid\)
paths \({ }_{x, y}^{\langle\ell\rangle}\) is the set of all length- \(\ell\) paths from \(x\) to \(y\)

\section*{weighted average of path length}

\section*{Link prediction}

Similarities among nodes: path-based Random walk
commute time: \(\operatorname{score}(x, y)=H_{x, y}+H_{y, x}\)
\(H_{x, y}\) is the hitting time of random walk from \(x\) to \(y\)
normalized commute time:
\[
\operatorname{score}(x, y):=-\left(H_{x, y} \cdot \pi_{y}+H_{y, x} \cdot \pi_{x}\right)
\]
\(\pi_{x}\) is the probability of \(x\) in the stationary distribution

\section*{Link prediction}

\section*{Similarities among nodes: meta methods SimRank [Jeh and Widom, KDD02]}
\[
\operatorname{similarity}(x, y):=\gamma \cdot \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \operatorname{similarity}(a, b)}{|\Gamma(x)| \cdot|\Gamma(y)|}
\]
recursively compute the similarity

PageRank算法的思想是什么？```

