

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2013, Yang Yu

Lecture 12: Data Mining III Mining Link Data

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

What is link data

vector data

link data = graph chain tree acyclic graph graph multi-graph ... directed undirected

nodes may have features, but we focus on the information of the edges at the moment

Why care links

pervasive and easy to obtain

hyperlink

any relationship...

friendship

However a recent study indicates something even more interesting; blah something blah something blah something (Jones et al, 2006). Blah blah, blah blah, blah blah blah.

Reference List

Jones, C., Smith, A., Garcia, D. & Lee, A. B. (2006). Challenges in e-something. Something Interesting, 40, pp50-55.

Lee, A. B. (2005). An Organisational Theory Of Something. New York, NY: Reference Books.

Smith, A. (2005). E-something. In: Black, A. & White, B. (Eds.), An Introduction To Something, 30-52. Edinburgh: Textbook.

citation

Why care links

more explicit semantic

(city, job, age, salary) are they friends?

sometimes feature vectors are used to obtain links e.g. find neighbor instances

Why care links

relax i.i.d. assumption

in supervised learning, we commonly assume objects are i.i.d. drawn from a fixed distribution

link data explicitly expresses the relationship among objects

Goals in mining link data

many tasks could be performed with link data

object ranking object classification object clustering

link prediction

ranking the importance of nodes in a directed graph

PageRank [PagePage, et al., 1998]

Randomly surf in the web

The importance of a web be the fraction of time staying in the web after infinite surfing time

	VVI	VVZ	6 44
w_1	0.5	0.5	0
W 2	0.33	0.33	0.33
<i>W</i> 3	1	0	0

115

11/1

current state w_1 , next state: $(1,0,0)^*M=(0.5,0.5,0)$ next state: $(0.5,0.5,0)^*M = (1,0,0)^*M^*M = (0.416,0.416,0.167)$ next state: $(1,0,0)^*M^3 = (0.514, 0.347, 0.139)$ after 10 steps: (0,5, 0.375, 0.125) stationary distribution

115

PageRank [Page, et al., 1998]

Let *r* be the stationary distribution:

$$\boldsymbol{r} = \boldsymbol{M}^{\top} \boldsymbol{r}$$

 \pmb{r} is the eigenvector of $M^{\rm T}$ with the eigenvalue 1

A PageRank voting view:

 $\boldsymbol{r}(x_i) = \boldsymbol{r}(x_1)P(x_i|x_1) + \ldots + \boldsymbol{r}(x_n)P(x_i|x_n)$

PageRank [Page, et al., 1998]

The problem with absorbing states

PageRank:

 $w_1 = 1$, $w_2 = w_3 = 0$

Add a full graph:

jump to a random state with a small probability (restart)

transition matrix M

	W_1	W_2	W_3
W_1	1	0	0
W_2	0.33	0.33	0.33
W 3	1	0	0

PageRank [Page, et al., 1998]

Damping factor: the surfing process restarts with probability 1-d (d=0.85)

A PageRank voting view:

$$\boldsymbol{r}(x_i) = (1-d)\frac{1}{n}$$
$$+ d(\boldsymbol{r}(x_1)P(x_i|x_1) + \ldots + \boldsymbol{r}(x_n)P(x_i|x_n)$$

Matrix form:

$$\boldsymbol{r} = \frac{1-d}{n} \boldsymbol{1} + dM^{\top} \boldsymbol{r}$$

r solution: $r = (I - dM^{\top})^{-1} \frac{1 - d}{n} \mathbf{1}$ recursive solution: $r_{t+1} = \frac{1 - d}{n} \mathbf{1} + dM^{\top} r_t$

		W_1	W_2	W_3
	w_1	0.5	0.5	0
transition matrix M	W_2	0.33	0.33	0.33
	W 3	1	0	0

Figure 6: Comparison of Query for "University"

[Page, et al., 1998]

NAN IN THE PARTY

Figure 7: PageRank Proxy

[Page, et al., 1998]

Object classification

Incorporate link information could improve the classification accuracy

Classification of web pages [Chakrabarti, et al., SIGMOD98]

Classification of web pages [Chakrabarti, et al., SIGMOD98]

use pure text for classification: 36% error

Object classification

Classification of web pages [Chakrabarti, et al., SIGMOD98]

use pure text for classification: 36% error use neighbor predicted classes: 34% error, 22.1% error

hyperlink forms a neighborhood relationship

Given test node δ_0 Construct a radius-r subgraph $G_r(\delta_0)$ around δ_0 Assign initial classes to all $\delta \in G_r(\delta_0)$ using local text Iterate until consistent:

Recompute the class for each δ based on local text and class of neighbors

Object classification

Classification of web pages [Chakrabarti, et al., SIGMOD98]

use pure text for classification: 36% error use neighbor predicted classes: 34% error, 22.1% error

Object clustering

Clustering nodes using link information

community discovery in social networks

Object clustering

Presenting the graph into an adjoint matrix

1	0	1
1	1	0
0	1	1

many clustering algorithms utilize only the adjoint matrix

hierarchical clustering graph-cut *k*-medoids

Object clustering

Defining the distance between any two nodes as the shortest path length

all clustering algorithms can be used

Predict the existence of a link between two nodes

recommendations in social network

A common solution: compute a similarity among any pairs of nodes the pairs with high similarity is predicted as a link score(x, y)

NANHAR UNITED

Similarities among nodes: neighbor-based Common neighbors [Newman, PRL'01]

 $\mathrm{score}(x,y):=|\Gamma(x)\cap\Gamma(y)|$

 $\Gamma(x)$ is the set of neighbor nodes of x

two persons shares a lot of friends are likely to be friends

Similarities among nodes: neighbor-based Jaccard's coefficient [Salton and McGill,83]

 $\mathsf{score}(x,y) := |\Gamma(x) \cap \Gamma(y)| / |\Gamma(x) \cup \Gamma(y)|$

 $\Gamma(x)$ is the set of neighbor nodes of x

consider the relative counting

Similarities among nodes: neighbor-based Preferential attachment [Mitzenmacher, ACCCC'01]

 $score(x,y) := |\Gamma(x)| \cdot |\Gamma(y)|$ $\Gamma(x)$ is the set of neighbor nodes of x

the probability that a new edge involves node *x* is proportional to $|\Gamma(x)|$

Similarities among nodes: path-based Katz [Psychometrika'53]

$$\operatorname{score}(x,y) := \sum_{\ell=1}^\infty \beta^\ell \cdot |\operatorname{paths}_{x,y}^{\langle \ell \rangle}|$$

 $\mathsf{paths}_{x,y}^{\langle \ell \rangle}$ is the set of all length- ℓ paths from x to y

weighted average of path length

Similarities among nodes: path-based Random walk

commute time: $score(x, y) = H_{x,y} + H_{y,x}$

 $H_{x,y}$ is the hitting time of random walk from x to y

normalized commute time: $score(x, y) := -(H_{x,y} \cdot \pi_y + H_{y,x} \cdot \pi_x)$ π_x is the probability of x in the stationary distribution

Similarities among nodes: meta methods SimRank [Jeh and Widom, KDD02]

$$\mathsf{similarity}(x,y) := \gamma \cdot \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \mathsf{similarity}(a,b)}{|\Gamma(x)| \cdot |\Gamma(y)|}$$

recursively compute the similarity

PageRank算法的思想是什么?