Data Mining for M.Sc. students, CS, Nanjing University Fall, 2013, Yang Yu

Lecture 5:
 Bayesian Classifiers

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
f(x)=\underset{y}{\arg \max } P(y \mid \boldsymbol{x})
$$

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
\begin{aligned}
f(x) & =\underset{y}{\arg \max } P(y \mid \boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y) / P(\boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
\end{aligned}
$$

how the
probabilities be estimated

Naive Bayes

$f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)$
estimation the a priori by frequency:
$P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)$
assume features are conditional independence given the class (naive assumption):

$$
\begin{aligned}
P(\boldsymbol{x} \mid y) & =P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y\right) \\
& =P\left(x_{1} \mid y\right) \cdot P\left(x_{2} \mid y\right) \cdot \ldots P\left(x_{n} \mid y\right)
\end{aligned}
$$

decision function:

$$
f(x)=\underset{y}{\arg \max } \tilde{P}(y) \prod_{i} \tilde{P}\left(x_{i} \mid y\right)
$$

Naive Bayes

graphic representation no assumption:

naive Bayes assumption:

$$
P(\boldsymbol{x} \mid y)=\prod_{i} P\left(x_{i} \mid y\right)
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$$
f(y \mid \text { color }=3, \text { weight }=3) \rightarrow
$$

$$
P(\text { color }=3 \mid y=y e s) P(\text { weight }=3 \mid y=\text { yes }) P(y=\text { yes })=0.5 \times 0.5 \times 0.4=0.1
$$

$$
P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

$$
\begin{aligned}
& P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$f(y \mid$ color $=0$, weight $=1) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight=\{0,1,2,3,4\}

color	weight	sweet?		
3	4	yes		$P(y=y e s)=2 / 5$
2	3	yes	$P(y=$ no $)=3 / 5$	
0	3	no	$P($ color $=3 \mid y=y e s)=1 / 2$	
3	2	no	...	
1	4	no		

$$
\begin{aligned}
& f(y \mid \text { color }=3, \text { weight }=3) \rightarrow \\
& \quad P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& \quad P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=y e s) P(\text { weight }=1 \mid y=y e s) P(y=y e s)=0
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=0
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?			
3	4			color	sweet?
2	3	yes		0	yes
0	3	yes			1
3	2	no		yes	
1	4	no		2	yes

smoothed (Laplacian correction) probabilities:

$$
\begin{aligned}
& P(\text { color }=0 \mid y=y e s)=(0+1) /(2+4) \\
& P(y=y e s)=(2+1) /(5+2)
\end{aligned}
$$

for counting frequency, assume every event has happened once.

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=\text { yes }) P(\text { weight }=1 \mid y=\text { yes }) P(y=\text { yes })=\frac{1}{6} \times \frac{1}{7} \times \frac{3}{7}=0.01
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=\frac{2}{7} \times \frac{1}{8} \times \frac{4}{7}=0.02
$$

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally

Relaxation of naive Bayes assumption

assume features are conditional independence given the class
if the assumption holds, naive Bayes
classifier will have excellence performance
if the assumption does not hold ...

Relaxation of naive Bayes assumption

assume features are conditional independence given the class
if the assumption holds, naive Bayes
classifier will have excellence performance
if the assumption does not hold ...

- Naive Bayes classifier may also have good performance
- Reform the data to satisfy the assumption
- Invent algorithms to relax the assumption

Reform the data

clustering to generate data with subclasses

Semi-naive Bayes classifiers

TreeNB
train an NB classifier in each leaf node of a rough decision tree

Semi-naive Bayes classifiers

TAN (Tree Augmented NB)
extends NB by allowing every feature to have one more parent feature other than the class, which forms a tree structure

fully connected

TAN

Semi-naive Bayes classifiers

fully connected graph $=\sum_{x_{i}, x_{i}, y} P\left(x_{i}, x_{i}, y\right) \log \frac{P\left(x_{i}, x_{i} \mid y\right)}{P\left(x_{i} y\right) P\left(x_{j} \mid y\right)}$ among features

Semi-naive Bayes classifiers

AODE (average one-dependent estimators)
expand a posterior probability with one-dependent estimators
$P(\boldsymbol{x} \mid y)=P\left(x_{2}, \ldots, x_{n} \mid x_{1}, y\right) P\left(x_{1} \mid y\right)$ $=P\left(x_{1} \mid y\right) \prod_{i} P\left(x_{i} \mid x_{1}, y\right)$

- the conditional independency is less important
- harder to estimate (fewer data)

AODE: average ODEs

$f(x)=\underset{y}{\arg \max } \sum_{i} I\left(\operatorname{count}\left(x_{i} \geq m\right)\right) \cdot \tilde{P}(y) \cdot \tilde{P}\left(x_{i} \mid y\right) \cdot \prod_{j} \tilde{P}\left(x_{j} \mid x_{i}, y\right)$

Handling numerical features

Discretization

recall what we have talked about in Lecture 2

Estimate probability density ($\mathrm{P}(\mathrm{X}) \rightarrow \mathrm{p}(\mathrm{x})$)
Gaussian model:

$$
p(x)=\frac{1}{\sqrt{2 \pi \delta^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \delta^{2}}}
$$

$p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$
training: calculate mean and covariance test: calculate density

Bayesian networks

inference in a graphic model representation a model simplified by conditional independence a clear description of how things are going

$P(C=T)$	$P(C=F)$
0.8	0.2

$P(S=T)$	$P(S=F)$
0.02	0.98

Judea Pearl Turing Award 2011
"for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Bayesian networks/Graphic models

Hidden Markov Model (HMM)

voice
words

Topic Model: Latent Dirichlet Allocation

α, β parameters
θ document
z topic
w words

朴素贝叶斯假设是指数据的属性之间相互独立？
朴素贝叶斯假设不满足时，朴素贝叶斯的性能一定不好？

