Page History: Data Mining (Fall, 2012)

Compare Page Revisions



« Older Revision - Back to Page History - Newer Revision »


Page Revision: 2012/09/11 23:39


(Back to homepage)

Information

  • Course Number: 081202B3
  • To: M. Sc. students of Department of Computer Science and Technology, Nanjing University.
  • Classroom: 233, Computer Science and Technology Building, Xianlin Campus
  • Time: 16:00 -- 17:50, Wednesday
  • Office Hour: 14:30 - 15:30, Wednesday (Rm 917)
  • Text Book: D. Hand, H. Mannila, P. Smyth. Principles of Data Mining. MIT Press, MA:Cambridge, 2001.
  • Main Reference Books:
    • J. Han, M. Kamber. Data Mining: Concepts and Techniques, 2nd edition. Morgan Kaufmann Publishers, 2006
    • I. H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, 3rd edition. Morgan Kaufmann Publishers, 2011
    • P.-N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining, Addison-Wesley, 2006.
    • E. Alpaydin. Introduction to Machine Learning, 2nd edition. The MIT Press, 2010.
  • Grading: Final exam (50%) + assignment 1 (15%) + assignment 2 (10%) + assignment 3 (10%) + assignment 4 (15%)
  • TA: Mr. Teng Zhang and Mr. Chao Qian

Assignments

Assignment 1: Write a report on data mining applications         Due on Sept. 26, 2012         TA page

Assignment 2: A classification task         Due on Oct. 17, 2012         TA page

Assignment 3: A clustering task         Due on Nov. 7, 2012         TA page

Assignment 4: Mining from a real-world data set         Due on Dec. 5, 2012         TA page

Lecture slides

9/12: Introduction
9/19: Data quality
9/26: (TBD)

Links

  • Weka An open source (Java) machine learning/data mining algorithms software.



  • KDnuggets A website for data mining resources.

Major Academic Venues

  • Journals in data mining: DMKD, TKDD, TKDE, KAIS
  • Journals in machine learning: MLJ, JMLR
  • Journals in database: TODS, VLDBJ
  • Journals in information retrieval: TOIS, IP&M, IRJ
  • Journals in web search and mining: WWWJ, TOIT, TWeb
  • Conferences in data mining: KDD, ICDM, SDM, ECMLPKDD, PAKDD
  • Conferences in machine learning: ICML, NIPS, COLT
  • Conferences in database: SIGMOD, VLDB, ICDE
  • Conferences in information retrieval: SIGIR, CIKM
  • Conferences in web search and mining: WWW, WSDM

The end