Page History: Data Mining (Fall, 2012)

Compare Page Revisions



« Older Revision - Back to Page History - Newer Revision »


Page Revision: 2012/09/19 23:07


(Back to homepage)

Information

  • Course Number: 081202B3
  • To: M. Sc. students of Department of Computer Science and Technology, Nanjing University.
  • Classroom: 221, Computer Science and Technology Building, Xianlin Campus
  • Time: 16:00 -- 17:50, Wednesday
  • Office Hour: 14:30 - 15:30, Wednesday (Rm 917)
  • Text Book: D. Hand, H. Mannila, P. Smyth. Principles of Data Mining. MIT Press, MA:Cambridge, 2001.
  • Main Reference Books:
    • J. Han, M. Kamber. Data Mining: Concepts and Techniques, 2nd edition. Morgan Kaufmann Publishers, 2006
    • I. H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, 3rd edition. Morgan Kaufmann Publishers, 2011
    • P.-N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining, Addison-Wesley, 2006.
    • E. Alpaydin. Introduction to Machine Learning, 2nd edition. The MIT Press, 2010.
  • Grading: Final exam (30%) + assignment 1 (20%) + assignment 2 (15%) + assignment 3 (15%) + assignment 4 (20%)
  • TA: Mr. Teng Zhang and Mr. Chao Qian

Assignments

Assignment 1: Write a report on data mining applications         Due on Sept. 26, 2012         TA page

Assignment 2: A classification task         Due on Oct. 17, 2012         TA page

Assignment 3: A clustering task         Due on Nov. 7, 2012         TA page

Assignment 4: Mining from a real-world data set         Due on Dec. 5, 2012         TA page

Lecture slides

  
9/12: Introduction (Download PDF) Reading material:
Z.-H. Zhou. Three perspectives of data mining. Artificial Intelligence, 2003, 143(1): 139-146.
H.-P. Kriegel, et al. Future trends in data mining. Data Mining and Knowledge Discovery, 2007, 15(1): 87-97.
Q. Yang and X. Wu. 10 challenging problems in data mining research. International Journal of Information Technology & Decision Making, 2006, 5(4): 597-604.
 
9/19: Data, Measurements, and Visualization (Download PDF) Reading material:
M. C. F. de Oliveira and H. Levkowitz. From visual data exploration to visual data mining: A survey. IEEE TVCG, 2003, 9(3): 378-394.
H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An enabling technique. DMKD, 2002, 6(4): 393-423.
J. Dougherty, R. Kohavi, M. Sahami. Supervised and unsupervised discretization of continuous features. In Proceedings of ICML'95, 194-202, Tahoe City, CA.
X. Zhu and X. Wu. Class noise vs. attribute noise: A qualitative study of their impacts. AI Review, 2004, 22(3-4): 177-210.
Link: A javascript for simple data visualization
9/26: (TBD)

Links

  • Weka An open source (Java) machine learning/data mining algorithms software.



  • KDnuggets A website for data mining resources.

Major academic venues


The end