9/12: Introduction (Download PDF)
| |
Reading material:
Z.-H. Zhou. Three perspectives of data mining. Artificial Intelligence, 2003, 143(1): 139-146.
H.-P. Kriegel, et al. Future trends in data mining. Data Mining and Knowledge Discovery, 2007, 15(1): 87-97.
Q. Yang and X. Wu. 10 challenging problems in data mining research. International Journal of Information Technology & Decision Making, 2006, 5(4): 597-604.
|
|
9/19: Data, Measurements, and Visualization (Download PDF)
| |
Reading material:
M. C. F. de Oliveira and H. Levkowitz. From visual data exploration to visual data mining: A survey. IEEE TVCG, 2003, 9(3): 378-394.
H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An enabling technique. DMKD, 2002, 6(4): 393-423.
J. Dougherty, R. Kohavi, M. Sahami. Supervised and unsupervised discretization of continuous features. In Proceedings of ICML'95, 194-202, Tahoe City, CA.
X. Zhu and X. Wu. Class noise vs. attribute noise: A qualitative study of their impacts. AI Review, 2004, 22(3-4): 177-210.
Link: A javascript for simple data visualization
|
|
9/26: Supervised Learning (Download PDF)
| |
Reading material:
Chapter 2 of Introduction to Machine Learning (E. Alpaydin, MIT Press, 2010).
L. Valiant. A theory of the learnable. Communication of the ACM, 27(11):1134-1142, 1984.
|
|
10/10: Decision Tree and Neural Networks (Download PDF)
| |
Reading material:
Chapters 9 and 11 of Introduction to Machine Learning (E. Alpaydin, MIT Press, 2010).
R. Quinlan. Induction of decision trees. MLJ, 1:81-106, 1986.
A. Roy. Artificial neural networks - A science in trouble. SIGKDD Explorations, 2000, 1(2): 33-38.
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313:504-507, 2006.
|
|
10/17: Linear Models and Kernel Trick (Download PDF)
| |
Reading material:
Chapters 3, 4, 6, and 7 of Pattern Recognition and Machine Learning (C. M. Bishop, Springer, 2007) (You may find the ebook to download using Baidu.com)
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. DMKD, 1998, 2(2): 121-167.
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE TNN, 2001, 12(2): 181-201.
|
|
10/24: Bayesian Methods and Lazy Methods (Download PDF)
| |
Reading material:
D. Heckerman. Bayesian networks for data mining. DMKD, 1997, 1(1): 79-119.
H. Zhang. The Optimality of Naive Bayes. FLAIRS Conference 2004.
F. Zheng and G. I. Webb. A Comparative Study of Semi-naive Bayes Methods in Classification Learning. In AusDM'05, 141-156.
|
|
10/31: Discussion of Assignment 1
|
|
(The following arrangement is tentative) |
|
|
11/7: Ensemble Methods
|
|
|
11/14: Clustering
|
|
|
11/21: Handling Big Data
|
|
|
11/28: Experiment Design and Analysis / Discussion of Assignment 2
|
|
|
12/5: Feature Extraction
|
|
|
12/12: Score Functions and Optimization / Discussion of Assigment 3
|
|
|
12/19: Content-based Information Retrieval
|
|
|
12/26: Discussion of Assignment 4
|
|
|
1/2: Q & A
|
|
|