
Stabilizing Reinforcement Learning in Dynamic Environment
with Application to Online Recommendation∗

Shi-Yong Chen
National Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, Jiangsu, China
chensy@lamda.nju.edu.cn

Yang Yu
National Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, Jiangsu, China
yuy@nju.edu.cn

Qing Da
Alibaba Group

Hangzhou, Zhejiang, China
daqing.dq@alibaba-inc.com

Jun Tan
Alibaba Group

Hangzhou, Zhejiang, China
tanjun.tj@alibaba-inc.com

Hai-Kuan Huang
Alibaba Group

Hangzhou, Zhejiang, China
haikuan.hhk@alibaba-inc.com

Hai-Hong Tang
Alibaba Group

Hangzhou, Zhejiang, China
haihong.thh@alibaba-inc.com

ABSTRACT
Deep reinforcement learning has shown great potential in improv-
ing systemperformance autonomously, by learning from iterations
with the environment. However, traditional reinforcement learn-
ing approaches are designed to work in static environments. In
many real-world problems, the environments are commonly dy-
namic, in which the performance of reinforcement learning ap-
proaches can degrade drastically. A direct cause of the performance
degradation is the high-variance and biased estimation of the re-
ward, due to the distribution shifting in dynamic environments. In
this paper, we propose two techniques to alleviate the unstable re-
ward estimation problem in dynamic environments, the stratified
sampling replay strategy and the approximate regretted reward,
which address the problem from the sample aspect and the reward
aspect, respectively. Integrating the two techniques with Double
DQN, we propose the Robust DQNmethod. We apply Robust DQN
in the tip recommendation system in Taobao online retail trading
platform. We firstly disclose the highly dynamic property of the
recommendation application. We then carried out online A/B test
to examine Robust DQN. The results show that Robust DQN can
effectively stabilize the value estimation and, therefore, improves
the performance in this real-world dynamic environment.

KEYWORDS
reinforcement learning, dynamic environment, stratified sampling
replay, approximate regretted reward, recommendation

∗This work is supported by Jiangsu SF (BK20170013), and Collaborative Innovation
Center of Novel Software Technology and Industrialization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08…$15.00
https://doi.org/10.1145/3219819.3220122

ACM Reference Format:
Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-
Hong Tang. 2018. Stabilizing Reinforcement Learning in Dynamic Environ-
ment with Application to Online Recommendation. In KDD ’18: The 24th
ACM SIGKDD International Conference on Knowledge Discovery Data Min-
ing, August 19–23, 2018, London, United Kingdom.ACM,NewYork, NY, USA,
10 pages. https://doi.org/10.1145/3219819.3220122

1 INTRODUCTION
Reinforcement learning aims at learning a policy from trial and er-
ror that maximizes the cumulative reward by interacting with the
environment autonomously. It has achieved significant progress in
solving optimal sequential decision problems autonomously, such
as playing Atari games [10] and taking part of the AlphaGo system
[17, 18] for the game of Go. Sequential decision problems are ubiq-
uitous in real-world applications. For example, in an online recom-
mendation system, it interacts with the customer as recommend-
ing items and receiving customer actions iteratively, with goal that
the customer finds the desired item as soon as possible. Therefore,
it is ideal to employ reinforcement learning in solve real-world
problems.

However, applying reinforcement learning in online real-world
environments facesmany obstacles. Onemajor obstacle is that real-
world environments are commonly dynamic. But traditional rein-
forcement learningmethods are designed towork in static environ-
ments. For examples, Atari games, where reinforcement learning
can perform better than human players, all have static environ-
ments; even for the symmetric zero-sum game of Go, since it is
in a discrete state space, the dynamic opposite agent can be elim-
inated with the help of the Monte Carlo tree search. However, in
real-world applications such as online recommendation, the envi-
ronment follows an unknown dynamic, and it is almost impossible
to simulator all of the possible dynamic environments. As a result,
we have noticed very few successful applications of reinforcement
learning in such environments.

The dynamic property of environments brings direct challenge
on the reward estimation in reinforcement learning. Taking online
recommendation system as the example, the distribution of the cus-
tomers changes.Therefore, in a batch of data collected from a short

https://doi.org/10.1145/3219819.3220122
https://doi.org/10.1145/3219819.3220122

period, the reward estimation can have a large variance. Moreover,
the customers’ behavior is naturally different in different time and
evolving long time. When the agent receives an increase of the re-
ward, it is unable to distinguish if the increase is the consequence
of the previous action, or is due to the environment change. As
a summary, the shifting distribution in a dynamic environment
would lead to a high-variance and biased estimation of the reward,
which probablymislead the reinforcement learning towards a poor
performance.

To improve the reward estimation in dynamic environments,
we propose two strategies in this paper. To address the variance
caused by the customer distribution changes, we propose the strat-
ified sampling replay, to replace the traditional experience replay
that is one of the frequently used technologies in deep reinforce-
ment learning. Stratified sampling replay introduces a prior cus-
tomer distribution, and assesses any batch of replay according to
the prior distribution. In such way the estimation variance can be
significantly reduced. To address the reward bias caused by envi-
ronment changes, it is ideal if the regret to the optimal decision is
known,which is unfortunately hard to obtain.We introduce the ap-
proximate regretted reward by taking the reference baseline from
a left alone sample of customers. We integrate the two strategies
into a version of the classical Q-learning algorithm, i.e., Double
DQN, resulting in the Robust DQN algorithm.

We apply Robust DQN to the tip recommendation in Taobao,
which is a service providing customers “shortcut” keywords among
the search results in order to refine the search queries. We firstly
verify that for the recommendation task, the environment changes
along time, as most online tasks. Then we conducted online A/B
test comparing Robust DQN with the original Double DQN. The
test results show that each of the proposed strategies can help
improve the reward estimation effectively. Consequently, Robust
DQNachieves improved performance in this dynamic environment.

The following sections describe in turn the background, the Ro-
bust DQN algorithm, the application to the tip recommendation in
Taobao, the experiments, and the conclusion.

2 BACKGROUND
2.1 Reinforcement Learning
In reinforcement learning, the agent learns the policy that can
maximize long-term cumulative reward through interacting with
the environment [19]. Markov Decision Process (MDP) is usually
adopted to study reinforcement learning which can be represented
with a tuple of (S,A,T ,R,γ), where S is the set of states, A is the
set of action, T (st+1 |st ,a) : S × A × S → R is the transition prob-
ability of reaching state st+1 after executing action a on state st ,
R(s,a) : S ×A→ R is the immediate reward after executing action
a from state st , and γ is the discount factor. The goal of reinforce-
ment learning is to learning an optimal policy that maximizes the
discounted accumulated rewards π∗ = argmaxπ E

π { ∑∞
t=0 γ

t rt }.
For deriving a policy, the state-action value function (Q value

function) can evaluate how good it is to choose a particular actiona
when in a state s under a stochastic policy π , which can be defined
as Qπ (s,a) = Eπ

[∑∞
τ=t γ

τ−t rτ |st = s,at = a
]
.

Due to the Markov property, it can be calculated recursively
with dynamic programming:

Qπ (s,a) = Es ′
[
r + γEa′∼π (s ′)[Q

π (s ′,a′)]
]
,

where r is the immediate reward of executing action a on state
s . Given the Q value function, a policy can be derived from the
value as π(s) = argmaxa Q

π (s,a). When the update equation con-
verges,

Qπ (s,a) = Es ′
[
r + γ maxa′∼π (s ′)[Qπ (s ′,a′)]

]
,

the optimal Q value as well as an optimal policy is obtained.

2.2 Q-Learning
A major branch of reinforcement learning approaches focus on es-
timating the value function, among them Q-Learning [24] has at-
tracted lots of attention for its simplicity as well as effectiveness.
Q-learning in a discrete state space uses an online off-policy up-
date,

Qπ (s,a) = Qπ (s,a) + α(r + γ max
a′

Q(s ′,a′) −Q(s,a)),

for the estimation of the Q value. Armed with deep neural net-
work, Q-Learning demonstrates its superiority on the successful
applications in the Atari Games [9], with its deep version coined
deep Q-network (DQN) [11]. In DQN, the loss function at iteration
i that needs to be optimized is the following:

Li (θi) = Es,a,r,s ′
[
(ŷi −Q(s,a;θi))2

]
,

where ŷi = r + γ maxa′ Q(s ′,a′;θ
′
), and θ

′ denotes the parame-
ters of the separate target network, which is the same as the online
network except that its parameters are copied every fixed number
of steps from the online networkQ(s ′,a′;θi), and kept fixed on all
other steps. And the gradient update of the online network is as
follows:

∇θi Li (θi) = Es,a,r,s ′
[
(ŷi −Q(s,a;θi))∇θiQ(s,a;θi)

]
Experience replay is another import ingredient of DQN as it can re-
duce the correlation among the samples and reduces the variance
[11, 14]. The agent accumulates a buffer D = {t1, t2,ti } with
experiences ti = (si ,ai , ri , si+1) frommany episodes. And the net-
work would be trained by sampling from D uniformly at random
instead of directly using the current samples. And the loss function
can be expressed as:

Li (θi) = Es,a,r,s ′∼u(D)

[
(ŷi −Q(s,a;θi))2

]
However, both Q-learning and DQN are known to overestimate
action values under certain conditions, as the max operator uses
the same values to both select and evaluate an action [20, 21]. So
the Deep Double Q-network (DDQN) is proposed to alleviate such
issue, where the target is replaced as:

ŷi = r + γQ(s ′, argmaxa′ Q(s
′,a′;θi);θ−)

And the other parts are as the same as DQN. Some other vari-
ants of DQN include prioritized experience replay [16], dueling
network [22], bootstrapped DQN [13] and etc. Although there are
further improvements from DDQN to better estimate the Q value,
we will base on DDQN due to its simplicity.

2.3 Related Work
Reinforcement learning has shown its strong learning ability on
many issues, however, most of them are designed for the static
environment. When these traditional approaches are used directly
in the complex real world, the learning performance may degrade
drastically due to the dynamic environments.

In order to apply reinforcement learningmethod to the dynamic
environments, Wiering et al. proposed to instantiate information
about dynamics objects in environment model and to replan when
this information changes [25]. Nagayoshi et al. proposed a detec-
tion method of environmental changes to adapt to dynamic envi-
ronments [12]. These methods try to model the environment or
detect environmental changes, which are very difficult to use in
real world environments. Abdallah et al. introduced repeated up-
date Q-learning which aims to resolve the undesirable artifact of
Q-learning in dynamic environment [1]. Pieters et al. proposed
two variations of experience replay, where experiences are reused
based on time or based on the obtained reward [15]. However,
these methods do not pay attention to the problem of reward es-
timation caused by dynamic changes in the environment as men-
tioned before.

3 ROBUST DQN
3.1 Stratified Random Sampling
Stratified sampling is a probability sampling technique wherein
the entire population would be broken up into different L sub-
groups, known as Strata, then the final subjects are randomly se-
lected from the different strata [5, 7]. Suppose that for stratum l ,
there are Nl units from the population (

∑L
l=1

Nl = N) and the
value for the units in stratum l areX1l ,X2l,XNl l

. LetWl =
Nl
N

and µl = 1
Nl

∑Nl
i=1 Xil . It is obvious that we can take a stratified

random sampling of size nl from each stratum (
∑L
l=1

nl = n) in-
stead of taking samples of n units from the total population. And
the mean and variance of sampling the stratum l are:

X̄l =
1

nl

nl∑
i=1

Xil , S
2
l =

1

nl − 1

nl∑
i=1

(Xil − X̄l)2

Then an estimate of the population mean µ is

X̄S =
L∑

l=1

Nl
N

X̄l =
L∑

l=1

Wl X̄l

And we have:

E[X̄S] =
L∑

l=1

WlE[X̄l] =
L∑

l=1

Wl µl =
1

N

L∑
l=1

Nl∑
i=1

Xil = µ

This means that X̄S is an unbiased estimate of µ. And the variance
then is

Var(X̄S) =
L∑

l=1

W 2
l Var(X̄l) =

L∑
l=1

W 2
l

1

nl
(1 − nl − 1

Nl − 1
)σ2

l (1)

where σ2
l = 1

nl
∑nl
i=1(xil − µl)

2. It can be seen from (1) that it is
import to decide how to allocate for stratified sampling as it can
depend Var(X̄S) There are two main allocation schemes:

1) Proportional allocation: n1

N1
= n2

N2
= ... = nL

NL
, which leads

to: nl = n Nl
N = nWl . The sampling variance then is Var(X̄SP) =

1
n

∑L
l=1

Wlσ
2
l , then the variance reduction can be written as:

Var (X̄) −Var (X̄SP) =
1

n

(
L∑

l=1

Wlσ
2
l +

L∑
l=1

Wl (µl − µ)2
)
− 1

n

L∑
l=1

Wlσ
2
l

=
1

n

L∑
l=1

Wl (µl − µ)2 ≥ 0

It suggests that stratified sampling with proportional allocation
can lead to a smaller variance.

2) Optimal allocation: For a given total sample size n, we choose
n1,n2, ...,nl to minimizeVar(X̄S) , which gives nl = n Wlσl∑L

k=1
Wkσk

and the sampling variance Var(X̄SO) = 1
n

(∑L
l=1

Wlσ
2
l

)2
. Then

the variance reduction of X̄SO over X̄SP is

Var(X̄SP) −Var(X̄SO) =
1

n

L∑
l=1

Wlσ
2
l −

1

n

(L∑
l=1

Wlσ
2
l

)2
=
1

n

L∑
l=1

Wl (σl − σ̄)2 ≥ 0

It can be seen that optimal allocation could bring smaller variance
while it is necessary to know the variances for each strata to get
the sample sizes as well as the fraction of units falling into each
strata is only need for proportional sampling.

3.2 Stratified Sampling Replay
In the original DQN, experiences are stored in a replay memory,
and the agent samples from the memory uniformly rather than us-
ing the current experience as standard temporal difference learn-
ing [11]. Previous experimental results show that experience re-
play has greatly improved the learning performance, partly be-
cause it can reduce the correlation between the samples. Now this
strategy has been widely used in deep reinforcement learning [21,
23].

In a dynamic environment, it is improper to have a large replay
pool from a long time period [15]. However, in a short time pe-
riod, the customer distribution may not match the true distribu-
tion closely, or even has a large difference. For example, after some
production promotion, particular customer group acts more than
average temporally; more over, different customer groups are ac-
tive usually in different time. If the agent is not aware of temporal
difference, the estimatedQ value could vibrate and has a large vari-
ance.

In order to alleviate the sample variance problem, stratified sam-
pling replay strategy is proposed to replace the original experience
replay. Firstly, from a long period of time, we select some attributes
on which the customer distributions seems to be stable along time,
such as gender, age, and geography. We count the customer ra-
tios in each value of the multiple attributes. These attributes are
used as the Strata. During learning, the agent still accumulates ex-
perience into memory as before. When these experience are used,
stratified random sampling is conducted according to these Strata,
rather than uniformly random sampling.

Stratified sampling replay strategy, as mentioned earlier, can ef-
fectively reduce the volatility caused by changes in the data distri-
bution and reduce the variance of reward estimation, thereby im-
proving the learning performance in dynamic environments.More-
over, stratified sampling replay allows us to use a larger replay
pool from older samples, instead of only very recent samples, for
achieving an even better performance.

3.3 Approximate Regretted Reward
Through stratified sampling replay strategy, the impact of the changes
in data distribution could be reduced, which would lead to lower
variance of reward estimation. However, in addition to the above
mentioned problems, there will be many changes and fluctuations
in the dynamic environments. For example, on some e-commerce
platforms, the click-through rate of commodity may be higher at
some time of the day and lower in other time periods, which is may
be caused by the intrinsic properties of the physical world and has
nothing to do with the ranking or recommendation algorithm. Ob-
viously, this kind of change in the environment will lead to a very
large fluctuation in the reward estimation, thus affecting the final
learning performance.

In order to alleviate this problem, we propose another strategy:
approximate regretted reward. In multi-armed bandit, the regret ρ
after T rounds is defined as the expected difference between the
reward sum associated with an optimal policy and the sum of the
collected rewards: ρ = T µ∗ − ∑T

t=1 rt , where µ∗ is the maximal
reward mean, u∗ = maxk µk , and rt is the reward in round t [2].
The regret can measure the gap between the current policy and
the optimal policy, thus can fairly evaluate the learning perfor-
mance in dynamic environment. However, the optimal policy is
not available in the real world, and naturally, the regret can not be
obtained. In situations where the optimal policy is not available,
we believe that the performance of other policy can also be used to
measure the changes in dynamic environments, thereby reducing
the reward fluctuation. In order to eliminate the influence brought
by the change of the policy itself, we propose to apply an off-line
training model and collect the average reward in real time which
can measure the environmental conditions.

For example, for an online retail trading platform, we can ran-
domly select a subset of the customers as our benchmark users.
Then we apply a well-trained off-line model to these users and col-
lect the averaged reward rb in real-time, which can be regarded
as a benchmark reward to reflect the real-time nature of the envi-
ronment. At the same time, our reinforcement learning approach
will be applied to other users and collect the immediate reward
rt . Finally, we choose to take the difference between rt and rb as
our ultimate reward, which canmeasure the actual learning perfor-
mance of our method by mitigating the impact of environmental
fluctuations, as well as guide our method to perform better than
the off-line model. It is worth noting that this approach can also be
applied to other environments where there are large fluctuations.

3.4 Robust DQN Algorithm
Stratified sampling replay strategy and the approximate regretted
reward are proposed in this paper to improve the reward estima-
tion in dynamic environment. Applying the two strategies with

Algorithm 1 Robust DQN
Input:

Nr : Replay buffer maximum size
Nb : Training batch size
N
′ : Target network replacement freq

rb : Real-time benchmark reward.
1: Initialize network parameters θ , θ ′

2: D ← �
3: for each episode e ∈{1,2,3,…} do
4: for t ∈ 0, 1, ... do
5: Obtain state st , action at , reward rt , next state st+1 from

environment E
6: Generate approximated regretted reward: r̃t = rt − rb
7: D ← D ∪ {(st ,at , r̃t , st+1)}
8: if |D| ≥ Nr then
9: Replacing the oldest tuples

10: end if
11: Sample a minibatch of Nb tuples (s,a, r , s ′) ∼ SRS(D)
12: Let a∗(s ′;θ) = argmaxa′ Q(s

′,a′;θ), and for 1 ≤ i ≤ Nb ,
calculate the target ŷi as

ŷi =

{
r if s ′ is terminal
r + γQ(s ′,a∗(s ′;θ);θ

′
) otherwise

,

13: Do a gradient descent tominimize
∑Nb
i=1 | |ŷi−Q(s,a;θ)| |

2

14: Replace target parameters θ ′ ← θ every N
′ steps

15: end for
16: end for

Double DQN, we propose the Robust DQN as it not only takes ad-
vantage of the strong learning ability of Double DQN that has been
demonstrated in many problems, but also can adapt to dynamic en-
vironment steadily.

Algorithm 1 shows how Robust DQN works. From line 3 to line
5, the agent accumulates original transition tuple through inter-
acting with environment E. Then, the reward would be modified
using the approximate regretted reward strategy in line 6 and the
transition tuple (st ,at , r̃t , st+1) would be stored to replay buffer
D in line 7. The network is trained by sampling mini-batches of
experiences fromD with stratified random sampling(SRS) method
instead of traditional uniform random sampling in line 11, where
the subgroups design depends on specific tasks. The other parts of
this algorithm remains the same as Double DQN. Robust DQNwith
the proposed two strategies can alleviate the unstable reward esti-
mation problem in dynamic environment from the sample aspect
and the reward aspect.

4 APPLICATION TO TIP RECOMMENDATION
IN TAOBAO

4.1 Tip Recommendation in Taobao
Customers can search for what they want from over one billion
of commodities by entering a keyword, also called a query, on
Taobao’s search engine. However, queries are often not clear enough
to limit the range of commodities that the customers really want,

Engine

Page
Request

Click

……Page 1 Page 2 Page n New Session
Page 1

Page
Request

Page
Request

Engine Engine Engine

Action Action Action Action

Figure 1: Tip Recommendation in Taobao.

which would lead customers to spend more time to satisfy their
needs. For example, when a customer’s query is ”shirt”, what he
really wants may be just a long-sleeved black shirt while others
will be ignored by him. To help customers find the needed com-
modity more quickly, Taobao offers a product called tip, which is
actually quite a shopping guide to provide such options. Usually, a
tip can be displayed as a text box with a lot of phrases. When the
customer is browsing, a tip may be displayed among the commodi-
ties, and when one of the phrases in the tip is clicked, a new search
request will be initiated by combining this phrase with the original
query, and then jump to a new session, as demonstrated in Figure
1. In addition, a tip can also be a form of interactive question-and-
answer, which may pose a question like ”do you need a pair of blue
pants?” with two candidate answers, ”yes” and ”no”, as long as one
of the answers is clicked, a new session will be entered similarly.

There are more than 20,000 types of tips on Taobao, each plays
a different role. A common type is ”age”, which consists primar-
ily of a number of age-limiting phrases, such as ”18-24,” ”30-35,”
etc. Other types of tips, such as ”sleeve length”, ”skirt length” and
”style” are similar to the ”age”, except for the phrases displayed in
it. It becomes very important to choose a suitable type of tip to dis-
play on the current page as there are too many types with different
functions, which means that it is very necessary to design a recom-
mendation system for the tip. A recommendation system that aims
to recommend items that a user may be interested in among many
items has been widely used in many websites and has changed the
way of communication between websites and customers.There are
many popular approaches for recommendation systems, the most
widely used of which is collaborative filtering [4]. Among the appli-
cations of recommendation system, some are also implemented by
using reinforcement learning, as it is not just a one-step prediction
problem, but a continuous sequential decision problem [3]. Lieb-
man et al. present a novel reinforcement-learning framework for

real-time
logs

long-term
features

experiences storage calculation

output

data
processing

training

learning module recommendation module

s

Q(s, a)

Figure 2: Architecture of the recommendation system.

music recommendation and it can provide a significant improve-
ment over more straightforward approaches [8]. Hu et al. propose
to use reinforcement learning to learn an optimal ranking policy
in e-commerce search engine and the experimental results demon-
strate that the algorithm performs much better than the state-of-
the-art LTR methods [6].

However, traditional reinforcement learning approaches are ap-
plied in these problemswithout exploring the impact of non-stationary
environment, which would reduce the learning performance. Ro-
bust DQN which is more adaptive to dynamic environment is ap-
plied here to the recommendation systemwith the desire to achieve
better performance.

4.2 The Robust DQN based Tip
Recommendation System

In order to make full use of customers’ real-time feedback and
adapt to delayed feedback, we choose reinforcement learning for
tip recommendation in Taobao. Therefore, we have designed the

…

state

action

…
…

… …

Q(s, a)

…

32 units 32 units

32 units

16 units

16 units

Figure 3: Network structure for tip recommendation.

framework of the recommendation system adapted to reinforce-
ment learning approaches, as well as other components.

4.2.1 System Architecture. For security reasons, we divide the
recommendation system into two parts: learning module and rec-
ommendation module, as shown in Figure 2. In learning module,
the agent could obtain user logs, as well as user features, commod-
ity features and so on in real time, which can be extracted into
states, actions and rewards through data processing, so as to train
and update the network. At the same time, the state and network
parameters would be saved in the storage area.

The recommendation module is a part of the engine, which re-
computes the Q value by obtaining information of state and net-
work parameters in real time from the storage area, thereby deter-
mining the type of the tip that should currently be displayed.

4.2.2 State. A state is expected to express the customer’s fea-
tures, preference, and recent behavior. So the state includes: the
customer’s gender, age, purchasing power and some other basic
features, the features of the current query, the customer prefer-
ence for tip, as well as some more real-time features, such as the
features of tip and goods that the customer recently clicks, etc. The
dimension of a state is 156.

4.2.3 Action. The system aims to learn a policy that can deter-
mine which type of tip should be displayed on the current page, as
well as the displayed tip would be clicked more, so the action here
is designed to be an ID that can be mapped to a type of tip. Now
there are over twenty thousand kinds of tip, which is the size of
the action space.

4.2.4 Reward. Customers’ click on a tip indicates that this dis-
play is valuable, implying that a positive reward should be given
at this time, which aims to lead the system to provide more help-
ful guide to customers. In addition, the sooner the user clicks, the
more valuable this display should be, as the tip is designed to guide
users to find the needed goods faster. So the page number of the
current tip displayed should also be considered in the reward de-
sign as: r1 = I ∗ (1 + ρ ∗ e−x), where I is 1 if click occurs else is 0,
x is the current page number, and ρ is a coefficient.

An obvious fact is that different customers have great differ-
ences in the use of tip, some customers are very accustomed to
using the tip, while others are rarely used, which means it’s not

fair to give them the same reward. A reasonable design is to offer
a higher reward if the tip is clicked by users who rarely use it. So,
we propose this form of reward: r2 = I ∗ e−y , where y is the num-
ber of times the customers click on tip in the last 100 page views
(PV).

Moreover, in order to promote the transaction, we give a pos-
itive reward when the customer has successfully purchased the
product through the tip: r3 = c , where c I is 1 if transaction occurs
else is 0. Finally, reward can be expressed in the following form:
r = r1 + α ∗ r2 + β ∗ r3, where α and β are coefficients.

4.2.5 Policy. In the traditional Double DQN, the Q values of
all actions could be output in the last layer of the network, how-
ever, this is not applicable in our problem as there are more than
20,000 actions. In order to solve this problem, we adopt the fol-
lowing method: An action first goes through the embedding layer
and then enters the network while the network outputs only the
Q value of this action. Figure 3 shows the network structure used
in this system.

There are also some preparations to do for applying Robust DQN
in this problem. In order to use stratified sampling replay strat-
egy, we need to determine which attributes to stratify on. Here,
we choose gender, purchasing power, and gender with the addi-
tion of purchasing power, while the third refers to considering the
both attributes, such as a customer is a woman with the first level
of purchasing power. Moreover, it is necessary to know the vari-
ances for each strata to get the sample sizes for optimal allocation
as well as the fraction of units falling into each strata is need for
proportional sampling. In order to make a valid estimate, we col-
lect the customer logs on Taobao in real time, and then we use the
data of the recent seven days to estimate the mean and variance
of each strata according to the above three attributes, so that the
stratified samplingwith the two allocation schemes can be realized.
So far, the stratified sampling replay strategy with two allocation
schemes and three attributes to stratify on has been completed.

In order to get approximate regretted reward, we randomly se-
lect a small number of users as benchmark users and we apply the
offline model for tip recommendation among them. For the offline
model, we can use the same network structure as reinforcement
learning to expect similar responses to environmental changes.Then,
we record the feedback of these users in real time to get the aver-
age reward. Asmentioned earlier, it can be used to get approximate
regretted reward to improve learning performance.

5 EXPERIMENTS
Weapply Robust DQN in the tip recommendation system in Taobao
and empirically evaluate it addressing the following questions:

Q1. Is this a dynamic environment thatwill deteriorate the learn-
ing performance as previously described?

Q2. Is it appropriate to apply reinforcement learning to this prob-
lem? How does it compare with the offline supervised learning?
How does it compare with the online supervised learning?

Q3. Stratified sampling replay is used to replace random replay,
does this strategy work in the system?

Q4. Approximate regretted reward is also adopted to mitigate
the adverse effects caused by shifting distribution, does it work in
the system?

0 5 10 15 20 25

Hour

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

p
o
rt

io
n

Female

Male

(a) Gender

0 5 10 15 20 25

Hour

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n

Power_1

Power_2

Power_3

(b) Purchasing Power

Figure 4: Proportion of different types of customers in a
given day.

Q5. Is it possible to achieve better performance if applying the
proposed two strategies with Double DQN to this recommendation
system?

5.1 Experiment Settings
Bucket test or called A/B test is adopted for our experiments. All
customers of Taobao are divided into many buckets in some way
while the number and property of the customers in each bucket
are basically the same. Other components of the system except the
model, such as the position and frequency of tip display, remain
the same in all the experiments, which aims to make an effective
and fair comparison.

We first train an offline model, using the same network struc-
ture as in the Figure 3. As offline model can not introduce those
real time features, some other features are used instead. And the
label here indicates whether or not a tip is clicked. We denote this
method as ”off-DL”. This is also the model used in the section of
approximated regretted reward, which can provide benchmark re-
ward for the reinforcement learning model. Besides, we also adopt
a method of online learning denoted as”on-DL”. Its features and
network structure are exactly as the same as Robust DQN, while
the label of it is just like ”off-DL”. And Double DQN is also adopted
here as a comparison. In order to investigate the role of stratified
sampling replay(SSR), experiments are conducted by applying it

1 2 3 4
Day

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
T

R

Male

Female

(a) Gender

1 2 3 4

Day

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
T

R

Power_1

Power_2

Power_3

(b) Purchasing Power

Figure 5: CTR performance of different types of customers
during 4 days.

with Double DQN, while the proportional allocation as well as op-
timal allocation are examined, respectively, denoted as ”SSR-PA”
and ”SSR-OA”. We also test the performance of the second pro-
posed strategy, approximate regretted reward, which is abbrevi-
ated to ”ARR” here. The coefficients in the reward: α is 1, β is 0.5,
and ρ is 0.5. For all of the experiments, the discount factor (γ) is
0.99.

For evaluation metrics, The following two are mainly consid-
ered: 1) CTR: CTR is the ratio of actual number of clicks to the num-
ber of Tip displayed; 2) UV CTR: UV CTR is the ratio of number of
customers who click on Tip to the number of total customers who
view Tip. CTR in our system can be calculated in real time, while
UV CTR need to be obtained only by day. Due to the company’s
data security requirements, the data presented in the following fig-
ures are converted in some form.

5.2 Experiment Results
To addressQ1, we count the number of customers of different gen-
ders and purchasing powers at different times of a given day.There
are two kinds of genders (male, female) and three kinds of purchas-
ing powers (0-2). It can be seen from Figure 4 that the proportion
of male and female customers is constantly changing in this day, as
well as customers with different purchasing powers. And Figure 5
shows the click-through rate of different types of customers within
four days while the model of this recommendation system comes

0 5 10 15 20 25

Hour

0.053

0.054

0.055

0.056

C
T

R

off-DL
on-DL
DDQN

(a) CTR

1 2 3 4

Day

0.21

0.215

0.22

0.225

0.23

0.235

0.24

U
V

 C
T

R

off-DL
on-DL
DDQN

(b) UV CTR

1 2 3 4

Day

7

7.5

8

8.5

9

9.5

10

10.5

11

C
on

ve
rs

io
n

R
at

e

10-3

off-DL
on-DL
DDQN

(c) Conversion rate

Figure 6: Comparion on the performance of off-DL, on-DL and DDQN.

1 2 3 4

Day

0.75

0.8

0.85

0.9

0.95

V
ar

ia
nc

e

DDQN
SSR-PA
SSR-OA

(a) SSR-Gender

1 2 3 4

Day

0.75

0.8

0.85

0.9

0.95

V
ar

ia
nc

e

DDQN
SSR-PA
SSR-OA

(b) SSR-Purchasing Power

1 2 3 4

Day

0.75

0.8

0.85

0.9

0.95

V
ar

ia
nc

e

DDQN
SSR-PA
SSR-OA

(c) SSR-Together

Figure 7: Comparion on the variance of stratified sampling replay (SSR) during 4 days.

0 5 10 15 20 25

Hour

0.053

0.054

0.055

0.056

0.057

0.058

C
T

R

DDQN
SSR-PA
SSR-OA

(a) SSR-Gender

0 5 10 15 20 25

Hour

0.052

0.053

0.054

0.055

0.056

0.057

0.058

C
T

R

DDQN
SSR-PA
SSR-OA

(b) SSR-Purchasing Power

0 5 10 15 20 25

Hour

0.052

0.053

0.054

0.055

0.056

0.057

0.058

C
T

R

DDQN
SSR-PA
SSR-OA

(c) SSR-Together

Figure 8: Comparison on the CTR performance of stratified sampling replay (SSR) during 24 hours.

1 2 3 4

Day

0.22

0.225

0.23

0.235

0.24

U
V

 C
T

R

DDQN
SSR-PA
SSR-OA

(a) SSR-Gender

1 2 3 4

Day

0.22

0.225

0.23

0.235

0.24

U
V

 C
T

R

DDQN
SSR-PA
SSR-OA

(b) SSR-Purchasing Power

day1 day2 day3 day4

Day

0.22

0.225

0.23

0.235

0.24

U
V

 C
T

R

DDQN
SSR-PA
SSR-OA

(c) SSR-Together

Figure 9: Comparison on the UV CTR performance of stratified sampling replay (SSR) during 4 days.

1 2 3 4

Day

0.75

0.8

0.85

0.9

0.95

V
ar

ia
nc

e

DDQN
ARR

(a) Variance

0 5 10 15 20 25

Hour

0.052

0.053

0.054

0.055

0.056

0.057

0.058

C
T

R

DDQN
ARR

(b) CTR

1 2 3 4

Day

0.22

0.225

0.23

0.235

0.24

U
V

 C
T

R

DDQN
ARR

(c) UV CTR

Figure 10: Comparison on the performance of approximate regretted reward (ARR).

from offline training, which is a fixed model. It can be seen that
different types of customers have different usage patterns, and the
proportion of different customers is also changing, which could re-
ally lead to a great change in the estimation of reward. Besides, off-
DL in Figure 6 shows how the CTR changes in one day when the
model of recommendation system is from off-line training, which
further proves that this is a dynamic environment that could cause
high-variance and biased reward estimation.

To address Q2, we first compare the performance of Double
DQN, off-DL and on-DL, which can be seen in Figure 6. It can
be observed that the three approaches have the consistent rank
of performance in almost all of the time. Off-DL has the worst per-
formance, as it lacks real time features and the model is always
fixed. On-DL has a better performance than off-DL, as it knows
more information and can update the model in real time. However,
Double DQN still achieves the best performance, not only on the
CTR, but also on the UV CTR. And then, we’re going to focus on
the conversion rate, which refers to the ratio of items purchased
by customers after clicking on the tip. Figure 6(c) shows the con-
version rate during 4 days and Double DQN also has the highest
conversion rate. As mentioned earlier, Double DQN and on-DL use
the same features and the same network structure, which implies
that Double DQN can take into account the long-term impact and
the characteristics of sequential decision making.

To addressQ3, we explore the role of stratified sampling replay
strategy. For our experiments, we carry out stratified sampling in
three ways: according to gender, purchasing power, and gender
with the addition of purchasing power, while they are denoted as
”SSR-Gender”, ”SSR-purchasing power” and ”SSR-Together”. The
third way will divide customers into six subgroups. Figure 7 shows
the variance of reward over each method, which proves that SSR
does reduce the variance effectively. In addition, it can be observed
that the variance of SSR-OA is lower than SSR-PA, implying that
the optimal allocation really plays a role. We also notice that SSR-
Together has a higher CTR and UV CTR than SSR-Gender and SSR-
Purchasing power, as shown in Figure 8 and 9, which means that
this more fine-grained stratified sampling strategy can also make
sense. Moreover, the rank of the performance of CTR and UV CTR
is consistent with the rank of the variance of reward, which proves
that the decrease in the variance of reward brings about an promo-
tion of the performance.

To address Q4, we investigate the effect of approximate regret-
ted reward. We firstly observe in Figure 10(a) that approximate
regretted reward strategy can lead to a lower variance of reward,
implying that it can improve the reward estimation in dynamic en-
vironments. And we also observe that it achieves a higher CTR and
UV CTR as shown in Figure 10(b) and Figure 10(c). So it can be con-
cluded that approximate regretted reward can really improve the
learning performance by improving the reward estimation.

Finally, to address Q5, experiments are conducted by applying
the proposed two strategies together with Double DQN, which is
also called Robust DQN as mentioned before. For the stratified
sampling replay strategy, the best performance comes from SSR-
together with optimal allocation, so when this strategy is applied
later, this is the way it would be used. Figure 11 shows the perfor-
mance of Robust DQN and other methods during two weeks. Here,
”DL” refers on-DL. It can be observed that DL has the worst perfor-
mance every day, which is in line with our expectations. Moreover,
we can observe that the stratified sampling replay and the approx-
imate regretted reward both effectively improve the performance
in two weeks, as explained earlier. And Robust DQN has achieved
the best performance as it takes advantage of the previous two
strategies, proving that it can better adapt to Taobao online retail
trading platform which is really a highly dynamic environment.

6 CONCLUSION
This paper explores how to apply reinforcement learning to more
complex real world and propose two strategies, stratified sampling
replay and approximated regretted reward, to improve the reward
estimation in dynamic environments. Then, we propose Robust
DQN by applying the proposed strategies with Double DQN. Fur-
ther, we apply Robust DQN in the tip recommendation system in
Taobao which is a highly dynamic environment. Experiment re-
sults verify that stratified sampling replay and approximate regret-
ted reward can evidently reduce the variance of reward and im-
prove the performance. Moreover, the stratified sampling replay
strategy would has better performance thanks to optimal alloca-
tion and more fine-grained stratified sampling, since they can re-
duce the variance further. Finally, when the proposed two strate-
gies are used together, it improves the performance further, lead-
ing more customers to use the tip and more tip to be clicked. It is
worth noting that the proposed strategies here can be used not only

0 5 10 15

Day

0.054

0.056

0.058

0.06

0.062

0.064

C
T

R

DL
DDQN
SSR
ARR
Robust DQN

(a) CTR

0 5 10 15

Day

0.22

0.23

0.24

0.25

U
V

C

T
R

DL
DDQN
SSR
ARR
Robust DQN

(b) UV CTR

Figure 11: Performance of these methods during 14 days.

in this system, but also in many dynamic environments, especially
online systems and can lead to better learning performance.

The strategies proposed in this paper can improve the estima-
tion of reward, thus effectively increasing the accuracy of recom-
mendations, however, the distribution of observed data in real-
world environments is still wide. Even if the exact same sequence
of behavior might end up with a huge difference in rewards, mean-
ing the variance of the reward is still very large, and we will study
how to solve these problems effectively in the future.

REFERENCES
[1] Sherief Abdallah and Michael Kaisers. 2016. Addressing Environment Non-

Stationarity by Repeating Q-learning Updates. Journal of Machine Learning Re-
search 17 (2016), 46:1–46:31.

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of
the Multiarmed Bandit Problem. Machine Learning 47, 2-3 (2002), 235–256.

[3] Sungwoon Choi, Heonseok Ha, Uiwon Hwang, Chanju Kim, Jung-Woo Ha, and
Sungroh Yoon. 2018. Reinforcement Learning based Recommender System using

Biclustering Technique. CoRR abs/1801.05532 (2018). http://arxiv.org/abs/1801.
05532

[4] Debashis Das, Laxman Sahoo, and Sujoy Datta. 2017. A Survey on Recommen-
dation System. International Journal of Computer Applications 160, 7 (2017).

[5] Mohammad Shahrokh Esfahani and Edward R. Dougherty. 2014. Effect of sepa-
rate sampling on classification accuracy. Bioinformatics 30, 2 (2014), 242–250.

[6] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforce-
ment Learning to Rank in E-Commerce Search Engine: Formalization, Analysis,
and Application. In Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. London, UK.

[7] Andreas Karlsson. 2008. Survey sampling: theory and methods. Metrika 67, 2
(2008), 241–242.

[8] Elad Liebman, Maytal Saar-Tsechansky, and Peter Stone. 2015. DJ-MC: A
Reinforcement-Learning Agent for Music Playlist Recommendation. In Proceed-
ings of the 14th International Conference on Autonomous Agents and Multiagent
Systems. Istanbul, Turkey, 591–599.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). http://arxiv.org/abs/
1312.5602

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[11] VolodymyrMnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
2015. Human-level control through deep reinforcement learning. Nature 518,
7540 (2015), 529–533.

[12] Masato Nagayoshi, Hajime Murao, and H. Tamaki. 2013. Reinforcement learn-
ing for dynamic environment: a classification of dynamic environments and a
detection method of environmental changes. Artificial Life and Robotics 18, 1
(2013), 104–108.

[13] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep Exploration via Bootstrapped DQN. CoRR abs/1602.04621 (2016). http:
//arxiv.org/abs/1602.04621

[14] Joseph O’Neill, Barty Pleydell-Bouverie, David Dupret, and Jozsef Csicsvari.
2010. Play it again: reactivation of waking experience and memory. Trends
in neurosciences 33, 5 (2010), 220–229.

[15] Mathijs Pieters and Marco A. Wiering. 2016. Q-learning with experience replay
in a dynamic environment. In 2016 IEEE Symposium Series on Computational
Intelligence. Athens, Greece, 1–8.

[16] Tom Schaul, JohnQuan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
Experience Replay. CoRR abs/1511.05952 (2015). http://arxiv.org/abs/1511.05952

[17] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Gowith deep neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[18] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354.

[19] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA.

[20] Hado van Hasselt. 2010. Double Q-learning. In Advances in Neural Information
Processing Systems 24. Vancouver, British Columbia, 2613–2621.

[21] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence. Phoenix, Arizona, 2094–2100.

[22] Ziyu Wang, Nando de Freitas, and Marc Lanctot. 2015. Dueling Network Ar-
chitectures for Deep Reinforcement Learning. CoRR abs/1511.06581 (2015).
http://arxiv.org/abs/1511.06581

[23] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33th International Conference onMachine Learning.
New York City, NY, 1995–2003.

[24] Christopher John CornishHellabyWatkins. 1989. Learning from delayed rewards.
Ph.D. Dissertation. King’s College, Cambridge.

[25] Marco Wiering. 2001. Reinforcement Learning in Dynamic Environments using
Instantiated Information. In Proceedings of the 18th International Conference on
Machine Learning. Williamstown, MA, 585–592.

http://arxiv.org/abs/1801.05532
http://arxiv.org/abs/1801.05532
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1602.04621
http://arxiv.org/abs/1602.04621
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.06581

	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Q-Learning
	2.3 Related Work

	3 Robust DQN
	3.1 Stratified Random Sampling
	3.2 Stratified Sampling Replay
	3.3 Approximate Regretted Reward
	3.4 Robust DQN Algorithm

	4 Application to Tip Recommendation in Taobao
	4.1 Tip Recommendation in Taobao
	4.2 The Robust DQN based Tip Recommendation System

	5 Experiments
	5.1 Experiment Settings
	5.2 Experiment Results

	6 Conclusion
	References

