
Lecture	 1:	 Introduc.on

Artificial Intelligence, CS, Nanjing University
Spring, 2016, Yang Yu

http://lamda.nju.edu.cn/yuy/course_ai16.ashx

What is artificial intelligence?

“ to make computers be capable of doing
things that when done by a human, would
be thought to require intelligence ”

“ It is the science and engineering of making
intelligent machines, especially intelligent
computer programs. It is related to the
similar task of using computers to
understand human intelligence, but AI does
not have to confine itself to methods that are
biologically observable.”

John McCarthy:

Marvin Minsky:

1927-2016

1927-2011

1956 Dartmouth meeting: “Artificial Intelligence”

we will discuss the concept and the history of AI in the last class

What we call AI in movies

A.I. Artificial Intelligence
2001

2001: A Space Odyssey
1968

Interstellar
2014

I, Robot
2004

The Matrix
1999

The Terminator
1984

Wall-E
2008

What AI we do have

⼈人脸检测、识别

S.I.R.I.

下棋

推荐系统

BigDog

⾃自动驾驶

Current top AI systems

AlphaGo

AlphaGo v.s. 韩国职业选⼿手
李世乭（九段）

将于3月9、10、12、13、
15日在Youtube上现场直播

Current top AI systems

Atlas

What we will learn

Search 搜索与规划

Knowledge 知识表达与处理

Uncertainty 不确定建模

Learning 机器学习

What we will do

Search 搜索与规划

Knowledge 知识表达与处理

Uncertainty 不确定建模

Learning 机器学习

General
Game Player

Agent
Agents and environments

?

agent

percepts

sensors

actions
environment

actuators

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

f : P∗ → A

The agent program runs on the physical architecture to produce f

Chapter 2 4

Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Example: Vacuum-cleaner world

Vacuum-cleaner world

A B

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

Chapter 2 5

Vacuum-cleaner world

A B

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

Chapter 2 5

A vacuum-cleaner agent
A vacuum-cleaner agent

Percept sequence Action
[A, Clean] Right
[A, Dirty] Suck
[B, Clean] Left
[B, Dirty] Suck
[A, Clean], [A, Clean] Right
[A, Clean], [A, Dirty] Suck
... ...

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the right function?
Can it be implemented in a small agent program?

Chapter 2 6

P. E. A. S.

Performance measure?
Environment?
Actuators?
Sensors?

To design an agent, we need to specify
four-dimensions:

Examples of PEAS

40 Chapter 2. Intelligent Agents

2.3 THE NATURE OF ENVIRONMENTS

Now that we have a definition of rationality, we are almost ready to think about building
rational agents. First, however, we must think about task environments, which are essen-TASK ENVIRONMENT

tially the “problems” to which rational agents are the “solutions.” We begin by showing how
to specify a task environment, illustrating the process with a number of examples. We then
show that task environments come in a variety of flavors. The flavor of the task environment
directly affects the appropriate design for the agent program.

2.3.1 Specifying the task environment

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify
the performance measure, the environment, and the agent’s actuators and sensors. We group
all these under the heading of the task environment. For the acronymically minded, we call
this the PEAS (Performance, Environment, Actuators, Sensors) description. In designing anPEAS

agent, the first step must always be to specify the task environment as fully as possible.
The vacuum world was a simple example; let us consider a more complex problem: an

automated taxi driver. We should point out, before the reader becomes alarmed, that a fully
automated taxi is currently somewhat beyond the capabilities of existing technology. (page 28
describes an existing driving robot.) The full driving task is extremely open-ended. There is
no limit to the novel combinations of circumstances that can arise—another reason we chose
it as a focus for discussion. Figure 2.4 summarizes the PEAS description for the taxi’s task
environment. We discuss each element in more detail in the following paragraphs.

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast, legal,
comfortable trip,
maximize profits

Roads, other
traffic,
pedestrians,
customers

Steering,
accelerator,
brake, signal,
horn, display

Cameras, sonar,
speedometer,
GPS, odometer,
accelerometer,
engine sensors,
keyboard

Figure 2.4 PEAS description of the task environment for an automated taxi.

First, what is the performance measure to which we would like our automated driver
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic
laws and disturbances to other drivers; maximizing safety and passenger comfort; maximiz-
ing profits. Obviously, some of these goals conflict, so tradeoffs will be required.

Next, what is the driving environment that the taxi will face? Any taxi driver must
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways.
The roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles,

42 Chapter 2. Intelligent Agents

Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
reduced costs

Patient, hospital,
staff

Display of
questions, tests,
diagnoses,
treatments,
referrals

Keyboard entry
of symptoms,
findings, patient’s
answers

Satellite image
analysis system

Correct image
categorization

Downlink from
orbiting satellite

Display of scene
categorization

Color pixel
arrays

Part-picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts; bins

Jointed arm and
hand

Camera, joint
angle sensors

Refinery
controller

Purity, yield,
safety

Refinery,
operators

Valves, pumps,
heaters, displays

Temperature,
pressure,
chemical sensors

Interactive
English tutor

Student’s score
on test

Set of students,
testing agency

Display of
exercises,
suggestions,
corrections

Keyboard entry

Figure 2.5 Examples of agent types and their PEAS descriptions.

we list the dimensions, then we analyze several task environments to illustrate the ideas. The
definitions here are informal; later chapters provide more precise statements and examples of
each kind of environment.

Fully observable vs. partially observable: If an agent’s sensors give it access to theFULLY OBSERVABLE

PARTIALLY

OBSERVABLE
complete state of the environment at each point in time, then we say that the task environ-
ment is fully observable. A task environment is effectively fully observable if the sensors
detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the
performance measure. Fully observable environments are convenient because the agent need
not maintain any internal state to keep track of the world. An environment might be partially
observable because of noisy and inaccurate sensors or because parts of the state are simply
missing from the sensor data—for example, a vacuum agent with only a local dirt sensor
cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other
drivers are thinking. If the agent has no sensors at all then the environment is unobserv-
able. One might think that in such cases the agent’s plight is hopeless, but, as we discuss inUNOBSERVABLE

Chapter 4, the agent’s goals may still be achievable, sometimes with certainty.
Single agent vs. multiagent: The distinction between single-agent and multiagent en-SINGLE AGENT

MULTIAGENT

Environment types
Section 2.3. The Nature of Environments 45

Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete

Poker Partially Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous

Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller Partially Single Stochastic Sequential Dynamic Continuous
Interactive English tutor Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.

batch of defective parts, the robot should learn from several observations that the distribution
of defects has changed, and should modify its behavior for subsequent parts. We have not
included a “known/unknown” column because, as explained earlier, this is not strictly a prop-
erty of the environment. For some environments, such as chess and poker, it is quite easy to
supply the agent with full knowledge of the rules, but it is nonetheless interesting to consider
how an agent might learn to play these games without such knowledge.

Several of the answers in the table depend on how the task environment is defined. We
have listed the medical-diagnosis task as single-agent because the disease process in a patient
is not profitably modeled as an agent; but a medical-diagnosis system might also have to
deal with recalcitrant patients and skeptical staff, so the environment could have a multiagent
aspect. Furthermore, medical diagnosis is episodic if one conceives of the task as selecting a
diagnosis given a list of symptoms; the problem is sequential if the task can include proposing
a series of tests, evaluating progress over the course of treatment, and so on. Also, many
environments are episodic at higher levels than the agent’s individual actions. For example,
a chess tournament consists of a sequence of games; each game is an episode because (by
and large) the contribution of the moves in one game to the agent’s overall performance is
not affected by the moves in its previous game. On the other hand, decision making within a
single game is certainly sequential.

The code repository associated with this book (aima.cs.berkeley.edu) includes imple-
mentations of a number of environments, together with a general-purpose environment simu-
lator that places one or more agents in a simulated environment, observes their behavior over
time, and evaluates them according to a given performance measure. Such experiments are
often carried out not for a single environment but for many environments drawn from an en-
vironment class. For example, to evaluate a taxi driver in simulated traffic, we would want toENVIRONMENT

CLASS

run many simulations with different traffic, lighting, and weather conditions. If we designed
the agent for a single scenario, we might be able to take advantage of specific properties
of the particular case but might not identify a good design for driving in general. For this

In six-dimensions:

Agent types
Agent types

Four basic types in order of increasing generality:
– simple reflex agents
– reflex agents with state
– goal-based agents
– utility-based agents

All these can be turned into learning agents

Chapter 2 19

Simple reflex agents
Simple reflex agents

Agent
Environm

ent
Sensors

What the world
is like now

What action I
should do nowCondition−action rules

Actuators

Chapter 2 20

Example

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

(setq joe (make-agent :name ’joe :body (make-agent-body)
:program (make-reflex-vacuum-agent-program)))

(defun make-reflex-vacuum-agent-program ()
#’(lambda (percept)

(let ((location (first percept)) (status (second percept)))
(cond ((eq status ’dirty) ’Suck)

((eq location ’A) ’Right)
((eq location ’B) ’Left)))))

Chapter 2 21

Reflex agents with state
Reflex agents with state

Agent

Environm
ent

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules

Actuators

What the world
is like now

Chapter 2 22

Example

function Reflex-Vacuum-Agent([location,status]) returns an action
static: last A, last B, numbers, initially ∞

if status = Dirty then . . .

(defun make-reflex-vacuum-agent-with-state-program ()
(let ((last-A infinity) (last-B infinity))
#’(lambda (percept)

(let ((location (first percept)) (status (second percept)))
(incf last-A) (incf last-B)
(cond
((eq status ’dirty)
(if (eq location ’A) (setq last-A 0) (setq last-B 0))
’Suck)

((eq location ’A) (if (> last-B 3) ’Right ’NoOp))
((eq location ’B) (if (> last-A 3) ’Left ’NoOp)))))))

Chapter 2 23

Goal-based agents
Goal-based agents

Agent

Environm
ent

Sensors

What it will be like
 if I do action A

What action I
should do now

State

How the world evolves

What my actions do

Goals

Actuators

What the world
is like now

Chapter 2 24

Utility-based agents
Utility-based agents

Agent

Environm
ent

Sensors

What it will be like
 if I do action A

How happy I will be
 in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

Actuators

What the world
is like now

Chapter 2 25

Learning agents
Learning agents

Performance standard

Agent

Environm
ent
Sensors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

Actuators

Chapter 2 26

