Artificial Intelligence, cs, Nanjing University Spring, 2016, Yang Yu

Lecture 6: Search 5

http://cs.nju.edu.cn/yuy/course_ai16.ashx

Previously...

Path-based search
Uninformed search Informed search

Adversarial search
Minimax Search
Alpha-Beta Pruning
More
Bandit
Monte-Carlo Tree Search
Iterative-improvement search

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box" -any old data structure that supports goal test, eval, successor

CSP:
state is defined by variables X_{i} with values from domain D_{i}
goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

Variables $W A, N T, Q, N S W, V, S A, T$
Tasmania
Domains $D_{i}=\{$ red, green, blue $\}$
Constraints: adjacent regions must have different colors
e.g., $W A \neq N T$ (if the language allows this), or

$$
(W A, N T) \in\{(\text { red, green }),(\text { red, blue }),(\text { green }, \text { red }),(\text { green }, \text { blue }), \ldots\}
$$

Example: Map-Coloring

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
$\{W A=$ red,$N T=$ green, $Q=$ red,$N S W=$ green,$V=$ red $, S A=b l u e, T=$ green $\}$

Varieties of CSPs

Discrete variables
finite domains; size $d \Rightarrow O\left(d^{n}\right)$ complete assignments
\diamond e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete) infinite domains (integers, strings, etc.)
\diamond e.g., job scheduling, variables are start/end days for each job
\diamond need a constraint language, e.g., StartJob ${ }_{1}+5 \leq$ StartJob $_{3}$
\diamond linear constraints solvable, nonlinear undecidable
Continuous variables
\diamond e.g., start/end times for Hubble Telescope observations
\diamond linear constraints solvable in poly time by LP methods

Varieties of CSPs

Unary constraints involve a single variable, e.g., $S A \neq$ green

Binary constraints involve pairs of variables, e.g., $S A \neq W A$

Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green often representable by a cost for each variable assignment
\rightarrow constrained optimization problems

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Notice that many real-world problems involve real-valued variables

Constraint graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Convert higher-order to binary

A higher-order constraint can be converted to binary constraints with a hidden-variable
variable: $\mathrm{A}, \mathrm{B}, \mathrm{C}$ domain: $\{1,2,3\}$ constraint: $\mathrm{A}+\mathrm{B}=\mathrm{C}$
all possible assignments: $(\mathrm{A}, \mathrm{B}, \mathrm{C})=(1,1,2),(1,2,3),(2,1,3)$
hidden-variable: h with domain: $\{1,2,3\}$
the constraint graph:

constraint:
$\mathrm{h}=1, \mathrm{C}=2$
$\mathrm{h}=2, \mathrm{C}=3$
$\mathrm{h}=3, \mathrm{C}=3$

Example: Cryptarithmetic

T W O
 $\mathrm{T} W \mathrm{O}$ +FOUR

Variables: FTUWRO $X_{1} X_{2} X_{3}$
Domains: $\{0,1,2,3,4,5,6,7,8,9\}$
Constraints

$$
\begin{aligned}
& \text { alldiff }(F, T, U, W, R, O) \\
& O+O=R+10 \cdot X_{1}, \text { etc. }
\end{aligned}
$$

auxiliary variables

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
\diamond Initial state: the empty assignment, $\}$
\diamond Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
\Rightarrow fail if no legal assignments (not fixable!)
\diamond Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
\Rightarrow use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) $b=(n-\ell) d$ at depth ℓ, hence $n!d^{n}$ leaves!!!!

Backtracking search

Variable assignments are commutative, i.e., [$W A=$ red then $N T=$ green $]$ same as $[N T=$ green then $W A=$ red $]$

Only need to consider assignments to a single variable at each node $\Rightarrow \quad b=d$ and there are d^{n} leaves

Depth-first search for CSPs with single-variable assignments is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for $n \approx 25$

Backtracking search

function BACKTRACKING-SEARCH ($c s p$) returns solution/failure

 return Recursive-Backtracking(\{ \}, csp)function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow SELECT-UnASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp) for each value in Order-Domain-Values (var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add $\{v a r=$ value $\}$ to assignment
result \leftarrow RECURSIVE-BACKTRACKING $($ assignment, csp)
if result \neq failure then return result
remove $\{$ var $=$ value $\}$ from assignment
return failure

Backtracking search example

Improving backtracking efficiency

backtracking is uninformed make it more informed

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:
choose the variable with the most constraints on remaining variables

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

$N T$ and $S A$ cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Arc consistency

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
$\left(X_{i}, X_{j}\right) \leftarrow$ Remove-First $(q u e u e)$
if Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ then for each X_{k} in Neighbors $\left[X_{i}\right]$ do add $\left(X_{k}, X_{i}\right)$ to queue
function Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ returns true iff succeeds removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in Domain $\left[X_{j}\right]$ allows (x, y) to satisfy the constraint $X_{i} \leftrightarrow X_{j}$ then delete x from Domain $\left[X_{i}\right]$; removed \leftarrow true
return removed
$O\left(n^{2} d^{3}\right)$, can be reduced to $O\left(n^{2} d^{2}\right)$ (but detecting all is NP-hard)

Problem Structure

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph
Suppose each subproblem has c variables out of n total
Worst-case solution cost is $n / c \cdot d^{c}$, linear in n
E.g., $n=80, d=2, c=20$
$2^{80}=4$ billion years at 10 million nodes $/ \mathrm{sec}$
$4 \cdot 2^{20}=0.4$ seconds at 10 million nodes $/ \mathrm{sec}$

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O\left(n d^{2}\right)$ time

Compare to general CSPs, where worst-case time is $O\left(d^{n}\right)$
This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

2. For j from n down to 2, apply RemoveInconsistent $\left(\operatorname{Parent}\left(X_{j}\right), X_{j}\right)$
3. For j from 1 to n, assign X_{j} consistently with $\operatorname{Parent}\left(X_{j}\right)$

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow$ runtime $O\left(d^{c} \cdot(n-c) d^{2}\right)$, very fast for small c

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints operators reassign variable values

Variable selection: randomly select any conflicted variable
Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with $h(n)=$ total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column
Goal test: no attacks
Evaluation: $h(n)=$ number of attacks

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

CSPs are a special kind of problem:
states defined by values of a fixed set of variables goal test defined by constraints on variable values

Backtracking $=$ depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure
Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time
Iterative min-conflicts is usually effective in practice

