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Historical review of deep learning

Neural network
Back propagation

Deep belief net
Science Speechp

1986 2006 2011 2012

• Google and Baidu announced their deep• Google and Baidu announced their deep 
learning based visual search engines (2013)

l– Google 
• “on our test set we saw double the average precision when 
compared to other approaches we had tried We acquiredcompared to other approaches we had tried. We acquired 
the rights to the technology and went full speed ahead 
adapting it to run at large scale on Google’s computers. We 
took cutting edge research straight out of an academictook cutting edge research straight out of an academic 
research lab and launched it, in just a little over six months.”

– BaiduBaidu



Historical review of DL (con’t)

Neural network
Back propagation

Deep belief net
Science Speech Face recognitionp

1986 2006 2011 2012 2014

• Deep learning achieves 99 47% face verification• Deep learning achieves 99.47% face verification 
accuracy on Labeled Faces in the Wild (LFW), 
hi h h h fhigher than human performance
Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint 
Identification‐Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are 
sparse selective and robust CVPR 2015sparse, selective, and robust. CVPR, 2015.
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Major types

Deep Boltzmann machine:

Auto-encoder:
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Major types

Convolutional neural networks:

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Recurrent neural networks:



Autoencoder

autoencoder

[image from http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine

restricted Boltzmann machine 
a type of associative memory network

http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine


Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]



Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]

PCA autoencoder



CNN

Convolutional Neural Networks (CNN/LeNet)

[image from http://deeplearning.net/tutorial/lenet.html]

for general image feature extraction

http://deeplearning.net/tutorial/lenet.html


CNN

Convolution layer

[image from http://deeplearning.net/tutorial/lenet.html]

sparse connectivity shared weights

http://deeplearning.net/tutorial/lenet.html


CNN

Subsampling layer

[image from http://deeplearning.net/tutorial/lenet.html]

http://deeplearning.net/tutorial/lenet.html


CNN

Convolutional Neural Networks (CNN/LeNet)

[image from http://deeplearning.net/tutorial/lenet.html]

for general image feature extraction

http://deeplearning.net/tutorial/lenet.html


Activation functions (con’t)

And many more …



CNN
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CNN Tricks

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html


CNN

Geoffrey E. Hinton
University of Toronto

Fei-Fei Li
Stanford University

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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4.94% (DL) vs 5.1% (human)



CNN toolbox

MatConvNet (Oxford University)
Caffe (UC Berkeley)
Torch (Facebook & NYU)
…

deeplearning.net

http://deeplearning.net


NVIDIA-GPUs



Some Applications

Pre-trained model as feature extractor
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by λ = {ωk,µk,σk; k = 1, . . . ,K}, where ωk, µk

and σk are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and σ2

k are the variance
vectors. Let γt(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and σk are presented as follows [11]:

fµk
(X) =

1
√
ωk

T∑

t=1

γt(k)

(
xt − µk

σk

)
, (2)

fσk
(X) =

1√
2ωk

T∑

t=1

γt(k)

[
(xt − µk)

2

σ2
k

− 1

]
. (3)

Note that, fµk
(X) and fσk

(X) are both d-dimensional
vectors. The final Fisher Vector fλ(X) is the concatena-
tion of the gradients fµk

(X) and fσk
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector fλ(X) is improved by the power-
normalization with the factor of 0.5, followed by the ℓ2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.

Level 1 Level 0

Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid
The key part of DSP is adding spatial pyramid informa-

tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 × 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The

282

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#545

ECCV
#545

2 ECCV-16 submission ID 545

(a) Input image

(d) Descriptor
   aggregation(c) Descriptor

     selection
(b) Convolutional 
   activation tensor

A
n

 S
C

D
A

 f
ea

tu
re

Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

annotations are expensive and unrealistic in many real applications. In answer
to this di�culty, there are attempts to categorize fine-grained images with only
image-level labels, e.g., [6–9].

In this paper, we handle a more challenging but more realistic task, i.e., Fine-
Grained Image Retrieval (FGIR). In FGIR, given database images of the same
species (e.g., birds, flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any other supervision
signal. FGIR is useful in applications such as biological research and bio-diversity
protection. FGIR is also di↵erent from and di�cult than general-purpose image
retrieval. Objects in fine-grained images have only subtle di↵erences, and vary
in poses, scales and rotations.

To meet these challenges, we propose the Selective Convolutional Descrip-
tor Aggregation (SCDA) method, which automatically localizes the main object
in fine-grained images and extracts discriminative representations for them. In
SCDA, only a pre-trained CNN model (from ImageNet which is not fine-grained)
is used and we use absolutely no supervision. As shown in Fig. 1, the pre-trained
CNN model first extracts convolution activations for an input image. We pro-
pose a novel approach to determine which part of the activations are useful (i.e.,
to localize the object). These useful descriptors are then aggregated and dimen-
sionality reduced to form a vector representation using practices we propose in
SCDA. Finally, a nearest neighbor search ends the FGIR process.

We conducted extensive experiments on four popular fine-grained datasets,
i.e., CUB200-2011 [10], Stanford Dogs [11], Oxford Flowers 102 [12] and Oxford-
IIIT Pets [13] for image retrieval. In addition, we also report the classification
accuracy of the SCDA method, which only uses the image labels. Both retrieval
and classification experiments verify the e↵ectiveness of SCDA. The key advan-
tages and major contributions of our method are:
1. We propose a simple yet e↵ective approach to localize the main object. This

localization is unsupervised, without utilizing bounding boxes, image labels,
object proposals, or additional learning. SCDA selects only useful deep de-
scriptors and removes background or noise, which benefits the retrieval task.
For example, SCDA’s retrieval mAP on Oxford Flowers is 77.56%, signifi-
cantly higher than the baseline without descriptor selection (70.73%). With
the ensemble of multiple CNN layers and the proposed dimensionality re-

Fine-grained image retrieval



Some Applications
DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

Amir Ghodrati1∗, Ali Diba1∗, Marco Pedersoli2†‡, Tinne Tuytelaars1, Luc Van Gool1,3
1KU Leuven, ESAT-PSI, iMinds 2Inria 3CVL, ETH Zurich

1
firstname.lastname@esat.kuleuven.be

2
marco.pedersoli@inria.fr

Abstract

In this paper we evaluate the quality of the activation

layers of a convolutional neural network (CNN) for the gen-

eration of object proposals. We generate hypotheses in a

sliding-window fashion over different activation layers and

show that the final convolutional layers can find the object

of interest with high recall but poor localization due to the

coarseness of the feature maps. Instead, the first layers of

the network can better localize the object of interest but with

a reduced recall. Based on this observation we design a

method for proposing object locations that is based on CNN

features and that combines the best of both worlds. We build

an inverse cascade that, going from the final to the initial

convolutional layers of the CNN, selects the most promising

object locations and refines their boxes in a coarse-to-fine

manner. The method is efficient, because i) it uses the same

features extracted for detection, ii) it aggregates features

using integral images, and iii) it avoids a dense evaluation

of the proposals due to the inverse coarse-to-fine cascade.

The method is also accurate; it outperforms most of the

previously proposed object proposals approaches and when

plugged into a CNN-based detector produces state-of-the-

art detection performance.

1. Introduction

In recent years, the paradigm of generating a reduced
set of object location hypotheses (or window candidates)
to be evaluated with a powerful classifier has become very
popular in object detection. Most of the recent state-of-
the-art detection methods [6, 12, 14, 25] are based on such
proposals. Using limited number of these proposals also
helps with weakly supervised learning, in particular learn-
ing to localize objects without any bounding box annota-
tions [7, 22]. This approach can be seen as a two-stage
cascade: First, selection of a reduced set of promising and

∗A. Ghodrati and A.Diba contributed equally to this work
†This work was carried out while he was in KU Leuven ESAT-PSI.
‡LEAR project, Inria Grenoble Rhone-Alpes, LJK, CNRS, Univ.

Grenoble Alpes, France.

Figure 1: DeepProposal object proposal framework. Our
method uses deep convolutional layers features in a
coarse-to-fine inverse cascading to obtain possible object
proposals in an image. Starting from dense proposal sam-
pling from the last convolutional layer (layer 5) we grad-
ually filter irrelevant boxes until the initial layers of the
net (layer 2). In the last stage we use contours extracted
from layer 2, to refine the proposals. Finally the generated
boxes can be used within an object detection pipeline.

class-independent hypotheses and second, a class-specific
classification of each hypothesis. This pipeline has the ad-
vantage that, similarly to sliding window, it casts the detec-
tion problem to a classification problem. However, in con-
trast to sliding window, more powerful and time consuming
detectors can be employed as the number of candidate win-
dows is reduced.

Methods for the generation of the window candidates are
based on two very different approaches. The first approach
uses bottom-up cues like image segmentation [3, 23], object
edges and contours [28] for window generation. The second
approach is based on top-down cues which learn to separate
correct object hypotheses from other possible window loca-
tions [1, 5]. So far, the latter strategy seems to have inferior
performance. In this paper we show that, with the proper
features, accurate and fast top-down window proposals can
be generated.

We consider for this task the convolutional neural net-
work (CNN) “feature maps” extracted from the intermedi-
ate convolutional layers of the Alexnet [18] trained on 1000
classes of ImageNet. In the first part of this work we present
a performance analysis of different CNN layers for gener-

2578

DeepProposal

Object detection

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction
Features matter. The last decade of progress on various

visual recognition tasks has been based considerably on the
use of SIFT [27] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [13], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-
archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [17], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training al-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [34] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

gorithm. Building on Rumelhart et al. [30], LeCun et al.
[24] showed that stochastic gradient descent via backprop-
agation was effective for training convolutional neural net-
works (CNNs), a class of models that extend the neocogni-
tron.

CNNs saw heavy use in the 1990s (e.g., [25]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [23] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do
the CNN classification results on ImageNet generalize to
object detection results on the PASCAL VOC Challenge?

We answer this question by bridging the gap between
image classification and object detection. This paper is the
first to show that a CNN can lead to dramatically higher ob-
ject detection performance on PASCAL VOC as compared
to systems based on simpler HOG-like features. To achieve
this result, we focused on two problems: localizing objects

1



Some Applications

Semantic segmentation

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long⇤ Evan Shelhamer⇤ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30, 3, 9, 31, 17, 15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

⇤Authors contributed equally
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 17], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear

1
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Fig. 3. An illustration of sparse-coding-based methods in the view of a convolutional neural network.

solver behaves as a special case of a non-linear mapping
operator, whose spatial support is 1⇥ 1. See the middle
part of Figure 3. However, the sparse coding solver is
not feed-forward, i.e.,it is an iterative algorithm. On the
contrary, our non-linear operator is fully feed-forward
and can be computed efficiently. If we set f2 = 1, then
our non-linear operator can be considered as a pixel-wise
fully-connected layer. It is worth noting that “the sparse
coding solver” in SRCNN refers to the first two layers,
but not just the second layer or the activation function
(ReLU). Thus the nonlinear operation in SRCNN is also
well optimized through the learning process.

The above n2 coefficients (after sparse coding) are
then projected onto another (high-resolution) dictionary
to produce a high-resolution patch. The overlapping
high-resolution patches are then averaged. As discussed
above, this is equivalent to linear convolutions on the
n2 feature maps. If the high-resolution patches used for
reconstruction are of size f3 ⇥ f3, then the linear filters
have an equivalent spatial support of size f3 ⇥ f3. See
the right part of Figure 3.

The above discussion shows that the sparse-coding-
based SR method can be viewed as a kind of con-
volutional neural network (with a different non-linear
mapping). But not all operations have been considered in
the optimization in the sparse-coding-based SR methods.
On the contrary, in our convolutional neural network,
the low-resolution dictionary, high-resolution dictionary,
non-linear mapping, together with mean subtraction and
averaging, are all involved in the filters to be optimized.
So our method optimizes an end-to-end mapping that
consists of all operations.

The above analogy can also help us to design hyper-
parameters. For example, we can set the filter size of
the last layer to be smaller than that of the first layer,
and thus we rely more on the central part of the high-
resolution patch (to the extreme, if f3 = 1, we are
using the center pixel with no averaging). We can also
set n2 < n1 because it is expected to be sparser. A
typical and basic setting is f1 = 9, f2 = 1, f3 = 5,
n1 = 64, and n2 = 32 (we evaluate more settings in
the experiment section). On the whole, the estimation
of a high resolution pixel utilizes the information of

(9 + 5 � 1)

2
= 169 pixels. Clearly, the information

exploited for reconstruction is comparatively larger than
that used in existing external example-based approaches,
e.g., using (5+5�1)

2
= 81 pixels5 [15], [50]. This is one of

the reasons why the SRCNN gives superior performance.

3.3 Training
Learning the end-to-end mapping function F re-
quires the estimation of network parameters ⇥ =

{W1,W2,W3, B1, B2, B3}. This is achieved through min-
imizing the loss between the reconstructed images
F (Y;⇥) and the corresponding ground truth high-
resolution images X. Given a set of high-resolution
images {Xi} and their corresponding low-resolution
images {Yi}, we use Mean Squared Error (MSE) as the
loss function:

L(⇥) =

1

n

nX

i=1

||F (Yi;⇥)�Xi||2, (4)

where n is the number of training samples. Using MSE
as the loss function favors a high PSNR. The PSNR
is a widely-used metric for quantitatively evaluating
image restoration quality, and is at least partially related
to the perceptual quality. It is worth noticing that the
convolutional neural networks do not preclude the usage
of other kinds of loss functions, if only the loss functions
are derivable. If a better perceptually motivated metric
is given during training, it is flexible for the network to
adapt to that metric. On the contrary, such a flexibility
is in general difficult to achieve for traditional “hand-
crafted” methods. Despite that the proposed model is
trained favoring a high PSNR, we still observe satisfac-
tory performance when the model is evaluated using
alternative evaluation metrics, e.g., SSIM, MSSIM (see
Section 4.4.1).

The loss is minimized using stochastic gradient de-
scent with the standard backpropagation [28]. In partic-
ular, the weight matrices are updated as

�i+1 = 0.9 ·�i � ⌘ · @L

@W

`
i

, W

`
i+1 = W

`
i +�i+1, (5)

5. The patches are overlapped with 4 pixels at each direction.
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segmentation results sequentially. Note that for instance-level segmentation results, different colors only indicate
different object instances and do not represent the semantic categories. In terms of category-level segmentation,
different colors are used to denote different semantic labels. Best viewed in color.
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Table 2. Performance comparison on the Oxford Flower 102 dataset 

Methods Performance 
Nilsback and Zisserman [1] 72.8 

KMTJSRC-CG [21] 74.1 
Ours 76.3 

 
We compare the proposed color exemplar classifier based image classification 

method with [1, 21]. Table 2 gives the quantitative comparison results. We can have 
similar conclusions as on the Oxford Flower 17 dataset. The proposed color exemplar 
classifier based method outperforms the baseline methods [1, 21]. This again shows 
the effectiveness of the proposed method. As the Flower 102 dataset has more flower 
classes and large inter-class variation, a well chosen image representation is vital for 
the final image classification. This problem can be solved by using the proposed color 
exemplar classifier based representation hence helps to improve the classification 
performance. 

3.3 Scene-15 Dataset  

The last dataset we consider is the Scene-15 dataset [18]. This dataset consists of 15 
classes of images (bedroom, suburb, industrial, kitchen, livingroom, coast, forest, 
highway, insidecity, mountain, opencountry, street, tallbuilding, office and store). Figure 
6 shows some example images of this dataset. Each class has different sizes ranging 
from 200 to 400 images with an average of 300×250 pixel size. For fair comparison, 
we follow the same experimental procedure as [18] and randomly choose 100 images 
per class for classifier training and use the rest of images for performance evaluation.  

We give the performance comparison of the proposed method with [17, 18, 22, 23, 24] 
in Table 3. We can see from Table 3 that the proposed method outperforms the baseline 
methods.  Compared with exemplar based method [24], the use of color information 
can further improve the semantic representativeness of the exemplar based methods. 
These results demonstrate the proposed method’s effectiveness.  

Fine-grained classification
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Abstract

Fine-grained classification is challenging because cate-
gories can only be discriminated by subtle and local dif-
ferences. Variances in the pose, scale or rotation usually
make the problem more difficult. Most fine-grained clas-
sification systems follow the pipeline of finding foreground
object or object parts (where) to extract discriminative fea-
tures (what).

In this paper, we propose to apply visual attention to fine-
grained classification task using deep neural network. Our
pipeline integrates three types of attention: the bottom-up
attention that propose candidate patches, the object-level
top-down attention that selects relevant patches to a certain
object, and the part-level top-down attention that localizes
discriminative parts. We combine these attentions to train
domain-specific deep nets, then use it to improve both the
what and where aspects. Importantly, we avoid using ex-
pensive annotations like bounding box or part information
from end-to-end. The weak supervision constraint makes
our work easier to generalize.

We have verified the effectiveness of the method on
the subsets of ILSVRC2012 dataset and CUB200 2011
dataset. Our pipeline delivered significant improvements
and achieved the best accuracy under the weakest super-
vision condition. The performance is competitive against
other methods that rely on additional annotations.

1. Introduction

Fine-grained classification is to recognize subordinate-
level categories under some basic-level category, e.g., clas-
sifying different bird types [22], dog breeds [11], flower
species [15], aircraft models [14] etc. This is an impor-

⇤Corresponding author.
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Figure 1. Illustration of the difficulty of fine-grained classification
: large intra-class variance and small inter-class variance.

tant problem with wide applications. Even in the ILSVR-
C2012 1K categories, there are 118 and 59 categories un-
der the dog and bird class, respectively. Counter intuitively,
intra-class variance can be larger than inter-class, as shown
in Figure 1. Consequently, fine-grained classification are
technically challenging.

Specifically, the difficulty of fine-grained classification
comes from the fact that discriminative features are local-
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different object instances and do not represent the semantic categories. In terms of category-level segmentation,
different colors are used to denote different semantic labels. Best viewed in color.
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Abstract

Event recognition from still images is one of the most im-
portant problems for image understanding. However, com-
pared with object recognition and scene recognition, event
recognition has received much less research attention in
computer vision community. This paper addresses the prob-
lem of cultural event recognition in still images and focuses
on applying deep learning methods on this problem. In
particular, we utilize the successful architecture of Object-
Scene Convolutional Neural Networks (OS-CNNs) to per-
form event recognition. OS-CNNs are composed of object
nets and scene nets, which transfer the learned representa-
tions from the pre-trained models on large-scale object and
scene recognition datasets, respectively. We propose four
types of scenarios to explore OS-CNNs for event recogni-
tion by treating them as either “end-to-end event predic-
tors” or “generic feature extractors”. Our experimental
results demonstrate that the global and local representa-
tions of OS-CNNs are complementary to each other. Finally,
based on our investigation of OS-CNNs, we come up with a
solution for the cultural event recognition track at the ICCV
ChaLearn Looking at People (LAP) challenge 2015. Our
team secures the third place at this challenge and our result
is very close to the best performance.

1. Introduction
Image understanding [12, 18, 20, 27] is becoming one of

the most important problems in computer vision and many
research efforts have been devoted to this topic. While ob-
ject recognition [4] and scene recognition [28] have been
extensively studied in the task of image classification, event
recognition [14, 23, 26] in still images received much less
research attention, which also plays an important role in
semantic image interpretation. As shown in Figure 1, the
characterization of event is extremely complicated as the
event concept is highly related to many other high-level
visual cues, such as objects, scene categories, human gar-
ments, human poses, and other context. Therefore, event
recognition in still images poses more challenges for the

Figure 1. Examples of cultural event images from the ICCV
ChaLearn Looking at People (LAP) dataset. From these examples,
we can see that the characterization of event is complicated and it
is related to many visual cues, such as objects, secne category, and
human garments.

current state-of-the-art image classification methods, and
needs to be further investigated in the computer vision re-
search.

Convolutional neural networks (CNNs) [13] have re-
cently enjoyed great successes in large-scale image classifi-
cation, in particular for object recognition [9, 18, 20] and
scene recognition [21, 28]. For event recognition, much
fewer deep learning methods have been designed for this
problem. Our previous work [23] proposed a new deep ar-
chitecture, called Object-Scene Convolutional Neural Net-
work (OS-CNN), for cultural event recognition. OS-CNNs
are designed to extract useful information for event under-
standing from the perspectives of containing objects and
scene categories, respectively. OS-CNNs are composed of
two-stream CNNs, namely object nets and scene nets. Ob-
ject nets are pre-trained on the large-scale object recogni-
tion datasets (e.g. ImageNet [4]), and scene nets are based
on models learned from the large-scale scene recognition
datasets (e.g. Places205 [28]). Decomposing into object
nets and scene nets enables us to use the external large-scale
annotated images to initialize OS-CNNs, which may be fur-
ther fine tuned elaborately on the event recognition dataset.
Finally, event recognition is performed based on the late fu-
sion of softmax outputs of object nets and scene nets.

Following the research line of OS-CNNs, in this pa-
per, we try to further explore different aspects of OS-CNNs

1

Cultural event recognition

  

Caption generation is like MT

A cat is sitting behind some books

- MT: translate from one language to another

- Caption generation: translate from an image to a description

- Similar notion of “words”, “phrases” and “alignments”

- translation feature functions:

Image caption
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colours

- blue + red = 

- blue + yellow = 

- yellow + red =

- white + red = 

Nearest images

Multimodal Linguistic Regularities

[Kiros et al., TACL 2015]
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Some interesting examples

- day + night  =

- flying + sailing = 

- bowl + box =

- box + bowl = 

Nearest images
Multimodal Linguistic Regularities

[Kiros et al., TACL 2015]
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How does CNN apply to NLP?
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Figure 5: Process of CNN for text classification. A convolutional layer converts small text regions to |V |
vectors and pass to a pooling layer, which shrinks the text by merging neighboring regions. The output of a
pooling layer is fed into another convolutional layer.

3.2 CNN in the AutoLink Model
In this section, we introduce CNN in theAutoLinkmodel.

The process of CNN for text is shown in Figure 5, which is
similar as the one in image classification tasks.

Suppose we are given a text D = (w1, w2, ..., wn) with vo-
cabulary V . Each word is represented as a |V |-dimensional
one-hot vector. For example, suppose D =“This file has

bugs.” and the vocabulary V = {“bugs”,“file”,“has”,“report”,
“this”}. Then, the text vector is:

x = [00001|01000|00100|10000]T

Suppose d is the region size fixed in advance, the region
vector is a concatenation of words in a small region. So each
region is represented by a d|V |-dimensional vector. In the
example text above, we set d = 3 and stride= 1. The text
region has four words so we have two regions “this file has”
and “file has bugs”. The representation vectors are shown as
follows:

v0(x) =

0
0
0
0
1

0
1

0
0
0

0
0
1

0
0

bugs
file
has

report
this

bugs
file
has

report
this

bugs
file
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v1(x) =

0
1

0
0
0

0
0
1

0
0

1

0
0
0
0

bugs
file

has
report
this

bugs
file
has

report
this

bugs

file
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In this way, the regions of text are converted to feature
vectors, which is shown in Figure 6. Then the feature vectors
are fed into the first convolutional layer.

One convolutional layer consists of several computation
units, each of which takes a region vector as input and com-
putes a non-linear function to decrease dimension. For ex-
ample, given an input x, a unit associated with the k

th

region computes �(Wvk(x) + b), where vk(x) is a region
vector representing the region of x at the location k. � is
a predefined non-linear activation function. In AutoLink,
we use �(x) = max(x, 0) to each vector component. The

This  file  has  several  bugs .

.

Figure 6: An example of feature conversions in Con-
volutional Neural Networks.

matrix of weights W and the vector of biases b are learned
using the text corpus and the computation units in the same
layer share the same parameters. We regard the output of
a convolution layer as a “text” so that the output of each
computation units is considered to be a “word”. The con-
volutional layer not only learns to embed text regions into
the low-dimensional vector space, but also preserves internal
local features such as word order.
A pooling layer consists of pooling units, each of which

is associated with a larger region of the text. The output
of the convolutional layer is fed into a pooling layer, which
merges neighboring regions into new vectors. Hence, higher
convolutional layers can deal with information from larger
text regions. There is a problem that the size of texts are
usually variable and the size of the output of a convolu-
tional layer is also variable with a fixed stride. To produce
fixed-sized outputs, we fix the number of pooling units and
dynamically determine the pooling region size on each text
item. More details about CNN for text classification can be
found in [11].

4. EMPIRICAL STUDIES
In this section, we introduce some details in our empirical

studies. We firstly describe the datasets and then present
our research questions.

4.1 Datasets
To evaluate the e↵ectiveness ofAutoLink, we create three

datasets from open-source projects:

• Eclipse Java Development Tools (JDT )3: The JDT
project provides tool plug-ins that implements a Java

3http://http://www.eclipse.org/jdt/
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Abstract

Convolutional neural network (CNN) is a neu-
ral network that can make use of the inter-
nal structure of data such as the 2D structure
of image data. This paper studies CNN on
text categorization to exploit the 1D structure
(namely, word order) of text data for accurate
prediction. Instead of using low-dimensional
word vectors as input as is often done, we
directly apply CNN to high-dimensional text
data, which leads to directly learning embed-
ding of small text regions for use in classifi-
cation. In addition to a straightforward adap-
tation of CNN from image to text, a sim-
ple but new variation which employs bag-of-
word conversion in the convolution layer is
proposed. An extension to combine multiple
convolution layers is also explored for higher
accuracy. The experiments demonstrate the
effectiveness of our approach in comparison
with state-of-the-art methods.

1 Introduction

Text categorization is the task of automatically as-
signing pre-defined categories to documents writ-
ten in natural languages. Several types of text cat-
egorization have been studied, each of which deals
with different types of documents and categories,
such as topic categorization to detect discussed top-
ics (e.g., sports, politics), spam detection (Sahami et
al., 1998), and sentiment classification (Pang et al.,
2002; Pang and Lee, 2008; Maas et al., 2011) to de-
termine the sentiment typically in product or movie
reviews. A standard approach to text categorization
is to represent documents by bag-of-word vectors,

To appear in NAACL HLT 2015.

namely, vectors that indicate which words appear in
the documents but do not preserve word order, and
use classification models such as SVM.

It has been noted that loss of word order caused
by bag-of-word vectors (bow vectors) is particularly
problematic on sentiment classification. A simple
remedy is to use word bi-grams in addition to uni-
grams (Blitzer et al., 2007; Glorot et al., 2011; Wang
and Manning, 2012). However, use of word n-grams
with n > 1 on text categorization in general is not
always effective; e.g., on topic categorization, sim-
ply adding phrases or n-grams is not effective (see,
e.g., references in (Tan et al., 2002)).

To benefit from word order on text categoriza-
tion, we take a different approach, which employs
convolutional neural networks (CNN) (LeCun et al.,
1986). CNN is a neural network that can make use
of the internal structure of data such as the 2D struc-

ture of image data through convolution layers, where
each computation unit responds to a small region of
input data (e.g., a small square of a large image).
We apply CNN to text categorization to make use of
the 1D structure (word order) of document data so
that each unit in the convolution layer responds to a
small region of a document (a sequence of words).

CNN has been very successful on image clas-
sification; see e.g., the winning solutions of Im-
ageNet Large Scale Visual Recognition Challenge
(Krizhevsky et al., 2012; Szegedy et al., 2014; Rus-
sakovsky et al., 2014).

On text, since the work on token-level applica-
tions (e.g., POS tagging) by Collobert et al. (2011),
CNN has been used in systems for entity search, sen-
tence modeling, word embedding learning, product
feature mining, and so on (Xu and Sarikaya, 2013;
Gao et al., 2014; Shen et al., 2014; Kalchbrenner et
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Character-level Convolutional Networks for Text
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Xiang Zhang Junbo Zhao Yann LeCun
Courant Institute of Mathematical Sciences, New York University

719 Broadway, 12th Floor, New York, NY 10003
{xiang, junbo.zhao, yann}@cs.nyu.edu

Abstract

This article offers an empirical exploration on the use of character-level convolu-
tional networks (ConvNets) for text classification. We constructed several large-
scale datasets to show that character-level convolutional networks could achieve
state-of-the-art or competitive results. Comparisons are offered against traditional
models such as bag of words, n-grams and their TFIDF variants, and deep learning
models such as word-based ConvNets and recurrent neural networks.

1 Introduction

Text classification is a classic topic for natural language processing, in which one needs to assign
predefined categories to free-text documents. The range of text classification research goes from
designing the best features to choosing the best possible machine learning classifiers. To date,
almost all techniques of text classification are based on words, in which simple statistics of some
ordered word combinations (such as n-grams) usually perform the best [12].

On the other hand, many researchers have found convolutional networks (ConvNets) [17] [18] are
useful in extracting information from raw signals, ranging from computer vision applications to
speech recognition and others. In particular, time-delay networks used in the early days of deep
learning research are essentially convolutional networks that model sequential data [1] [31].

In this article we explore treating text as a kind of raw signal at character level, and applying tem-
poral (one-dimensional) ConvNets to it. For this article we only used a classification task as a way
to exemplify ConvNets’ ability to understand texts. Historically we know that ConvNets usually
require large-scale datasets to work, therefore we also build several of them. An extensive set of
comparisons is offered with traditional models and other deep learning models.

Applying convolutional networks to text classification or natural language processing at large was
explored in literature. It has been shown that ConvNets can be directly applied to distributed [6] [16]
or discrete [13] embedding of words, without any knowledge on the syntactic or semantic structures
of a language. These approaches have been proven to be competitive to traditional models.

There are also related works that use character-level features for language processing. These in-
clude using character-level n-grams with linear classifiers [15], and incorporating character-level
features to ConvNets [28] [29]. In particular, these ConvNet approaches use words as a basis, in
which character-level features extracted at word [28] or word n-gram [29] level form a distributed
representation. Improvements for part-of-speech tagging and information retrieval were observed.

This article is the first to apply ConvNets only on characters. We show that when trained on large-
scale datasets, deep ConvNets do not require the knowledge of words, in addition to the conclusion

⇤An early version of this work entitled “Text Understanding from Scratch” was posted in Feb 2015 as
arXiv:1502.01710. The present paper has considerably more experimental results and a rewritten introduction.
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Transformation for text

One-hot encoding

“I love it.”

pixels in the region, which would be, for example,
75-dimensional if the region is 5⇥5 and the number
of channels is three (red, green, and blue). Concep-
tually, computation units are placed over the input
image so that the entire image is collectively cov-
ered, as illustrated in Figure 2. The region stride
(distance between the region centers) is often set to
a small value such as 1 so that regions overlap with
each other, though the stride in Figure 2 is set larger
than the region size for illustration.

A distinguishing feature of convolution layers
is weight sharing. Given input x, a unit associ-
ated with the `-th region computes �(W · r`(x) +
b), where r`(x) is a region vector representing
the region of x at location `, and � is a pre-
defined component-wise non-linear activation func-
tion, (e.g., applying �(x) = max(x, 0) to each vec-
tor component). The matrix of weights W and the
vector of biases b are learned through training, and
they are shared by the computation units in the same
layer. This weight sharing enables learning useful
features irrespective of their location, while preserv-
ing the location where the useful features appeared.

We regard the output of a convolution layer as an
‘image’ so that the output of each computation unit
is considered to be a ‘pixel’ of m channels where
m is the number of weight vectors (i.e., the number
of rows of W) or the number of neurons. In other
words, a convolution layer converts image regions

to m-dim vectors, and the locations of the regions
are inherited through this conversion.

The output image of the convolution layer is
passed to a pooling layer, which essentially shrinks
the image by merging neighboring pixels, so that
higher layers can deal with more abstract/global in-
formation. A pooling layer consists of pooling units,
each of which is associated with a small region
of the image. Commonly-used merging methods
are average-pooling and max-pooling, which respec-
tively compute the channel-wise average/maximum
of each region.

2.2 CNN for text
Now we consider application of CNN to text data.
Suppose that we are given a document D =

(w1, w2, . . .) with vocabulary V . CNN requires vec-
tor representation of data that preserves internal lo-
cations (word order in this case) as input. A straight-

forward representation would be to treat each word
as a pixel, treat D as if it were an image of |D| ⇥ 1

pixels with |V | channels, and to represent each pixel
(i.e., each word) as a |V |-dimensional one-hot vec-
tor4. As a running toy example, suppose that vocab-
ulary V = { “don’t”, “hate”, “I”, “it”, “love” } and
we associate the words with dimensions of vector
in alphabetical order (as shown), and that document
D=“I love it”. Then, we have a document vector:

x = [ 0 0 1 0 0 | 0 0 0 0 1 | 0 0 0 1 0 ]

>
.

2.2.1 seq-CNN for text
As in the convolution layer for image, we repre-

sent each region (which each computation unit re-
sponds to) by a concatenation of the pixels, which
makes p|V |-dimensional region vectors where p is
the region size fixed in advance. For example, on
the example document vector x above, with p = 2

and stride 1, we would have two regions “I love” and
“love it” represented by the following vectors:

r0(x) =

2
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The rest is the same as image; the text region vec-

tors are converted to feature vectors, i.e., the con-
volution layer learns to embed text regions into low-
dimensional vector space. We call a neural net with
a convolution layer with this region representation
seq-CNN (‘seq’ for keeping sequences of words) to
distinguish it from bow-CNN, described next.

2.2.2 bow-CNN for text
A potential problem of seq-CNN however, is that

unlike image data with 3 RGB channels, the number
of ‘channels’ |V | (size of vocabulary) may be very
large (e.g., 100K), which could make each region
vector r`(x) very high-dimensional if the region size

4Alternatively, one could use bag-of-letter-n-gram vectors

as in (Shen et al., 2014; Gao et al., 2014) to cope with out-of-
vocabulary words and typos.

V={“don’t”, “hate”, “I”, “it”, “love”}



Transformation for text

Seq-CNN for text

“I love it.”

V={“don’t”, “hate”, “I”, “it”, “love”}

pixels in the region, which would be, for example,
75-dimensional if the region is 5⇥5 and the number
of channels is three (red, green, and blue). Concep-
tually, computation units are placed over the input
image so that the entire image is collectively cov-
ered, as illustrated in Figure 2. The region stride
(distance between the region centers) is often set to
a small value such as 1 so that regions overlap with
each other, though the stride in Figure 2 is set larger
than the region size for illustration.

A distinguishing feature of convolution layers
is weight sharing. Given input x, a unit associ-
ated with the `-th region computes �(W · r`(x) +
b), where r`(x) is a region vector representing
the region of x at location `, and � is a pre-
defined component-wise non-linear activation func-
tion, (e.g., applying �(x) = max(x, 0) to each vec-
tor component). The matrix of weights W and the
vector of biases b are learned through training, and
they are shared by the computation units in the same
layer. This weight sharing enables learning useful
features irrespective of their location, while preserv-
ing the location where the useful features appeared.

We regard the output of a convolution layer as an
‘image’ so that the output of each computation unit
is considered to be a ‘pixel’ of m channels where
m is the number of weight vectors (i.e., the number
of rows of W) or the number of neurons. In other
words, a convolution layer converts image regions

to m-dim vectors, and the locations of the regions
are inherited through this conversion.

The output image of the convolution layer is
passed to a pooling layer, which essentially shrinks
the image by merging neighboring pixels, so that
higher layers can deal with more abstract/global in-
formation. A pooling layer consists of pooling units,
each of which is associated with a small region
of the image. Commonly-used merging methods
are average-pooling and max-pooling, which respec-
tively compute the channel-wise average/maximum
of each region.

2.2 CNN for text
Now we consider application of CNN to text data.
Suppose that we are given a document D =

(w1, w2, . . .) with vocabulary V . CNN requires vec-
tor representation of data that preserves internal lo-
cations (word order in this case) as input. A straight-

forward representation would be to treat each word
as a pixel, treat D as if it were an image of |D| ⇥ 1

pixels with |V | channels, and to represent each pixel
(i.e., each word) as a |V |-dimensional one-hot vec-
tor4. As a running toy example, suppose that vocab-
ulary V = { “don’t”, “hate”, “I”, “it”, “love” } and
we associate the words with dimensions of vector
in alphabetical order (as shown), and that document
D=“I love it”. Then, we have a document vector:

x = [ 0 0 1 0 0 | 0 0 0 0 1 | 0 0 0 1 0 ]

>
.

2.2.1 seq-CNN for text
As in the convolution layer for image, we repre-

sent each region (which each computation unit re-
sponds to) by a concatenation of the pixels, which
makes p|V |-dimensional region vectors where p is
the region size fixed in advance. For example, on
the example document vector x above, with p = 2

and stride 1, we would have two regions “I love” and
“love it” represented by the following vectors:

r0(x) =

2
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The rest is the same as image; the text region vec-

tors are converted to feature vectors, i.e., the con-
volution layer learns to embed text regions into low-
dimensional vector space. We call a neural net with
a convolution layer with this region representation
seq-CNN (‘seq’ for keeping sequences of words) to
distinguish it from bow-CNN, described next.

2.2.2 bow-CNN for text
A potential problem of seq-CNN however, is that

unlike image data with 3 RGB channels, the number
of ‘channels’ |V | (size of vocabulary) may be very
large (e.g., 100K), which could make each region
vector r`(x) very high-dimensional if the region size

4Alternatively, one could use bag-of-letter-n-gram vectors

as in (Shen et al., 2014; Gao et al., 2014) to cope with out-of-
vocabulary words and typos.
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bow-CNN for text

p is large. Since the dimensionality of region vec-
tors determines the dimensionality of weight vec-
tors, having high-dimensional region vectors means
more parameters to learn. If p|V | is too large, the
model becomes too complex (w.r.t. the amount of
training data available) and/or training becomes un-
affordably expensive even with efficient handling of
sparse data; therefore, one has to lower the dimen-
sionality by lowering the vocabulary size |V | and/or
the region size p, which may or may not be desir-
able, depending on the nature of the task.

An alternative we provide is to perform bag-
of-word conversion to make region vectors |V |-
dimensional instead of p|V |-dimensional; e.g., the
example region vectors above would be converted
to:

r0(x) =

2
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With this representation, we have fewer param-
eters to learn. Essentially, the expressiveness
of bow-convolution (which loses word order only
within small regions) is somewhere between seq-
convolution and bow vectors.

2.2.3 Pooling for text
Whereas the size of images is fixed in image ap-

plications, documents are naturally variable-sized,
and therefore, with a fixed stride, the output of a con-
volution layer is also variable-sized as shown in Fig-
ure 3. Given the variable-sized output of the convo-
lution layer, standard pooling for image (which uses
a fixed pooling region size and a fixed stride) would
produce variable-sized output, which can be passed
to another convolution layer. To produce fixed-sized
output, which is required by the fully-connected top
layer5, we fix the number of pooling units and dy-
namically determine the pooling region size on each
data point so that the entire data is covered without
overlapping.

In the previous CNN work on text, pooling is
typically max-pooling over the entire data (i.e., one

5In this work, the top layer is fully-connected (i.e., each neu-
ron responds to the entire data) as in CNN for image. Alterna-
tively, the top layer could be convolutional so that it can receive
variable-sized input, but such CNN would be more complex.

I  love  it This  isn’t   what   I  expected  ! 
(a)                                                       (b)

This  isn’t   what   I  expected  ! 
(a)                                                       (b)

Figure 3: Convolution layer for variable-sized text.

pooling unit associated with the whole text). The dy-

namic k-max pooling of (Kalchbrenner et al., 2014)
for sentence modeling extends it to take the k largest
values where k is a function of the sentence length,
but it is again over the entire data, and the operation
is limited to max-pooling. Our pooling differs in that
it is a natural extension of standard pooling for im-
age, in which not only max-pooling but other types
can be applied. With multiple pooling units associ-
ated with different regions, the top layer can receive
locational information (e.g., if there are two pooling
units, the features from the first half and last half of
a document are distinguished). This turned out to be
useful (along with average-pooling) on topic classi-
fication, as shown later.

2.3 CNN vs. bag-of-n-grams
Traditional methods represent each document en-

tirely with one bag-of-n-gram vector and then ap-
ply a classifier model such as SVM. However, since
high-order n-grams are susceptible to data sparsity,
use of a large n such as 20 is not only infeasible
but also ineffective. Also note that a bag-of-n-gram
represents each n-gram by a one-hot vector and ig-
nores the fact that some n-grams share constituent
words. By contrast, CNN internally learns embed-

ding of text regions (given the consituent words as
input) useful for the intended task. Consequently,
a large n such as 20 can be used especially with the
bow-convolution layer, which turned out to be useful
on topic classification. A neuron trained to assign a
large value to, e.g., “I love” (and a small value to “I
hate”) is likely to assign a large value to “we love”
(and a small value to “we hate”) as well, even though

“we love” was never seen during training. We will
confirm these points empirically later.

2.4 Extension: parallel CNN
We have described CNN with the simplest network
architecture that has one pair of convolution and
pooling layers. While this can be extended in sev-
eral ways (e.g., with deeper layers), in our experi-
ments, we explored parallel CNN, which has two or

“I love it.”

V={“don’t”, “hate”, “I”, “it”, “love”}
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Figure courtesy of [Xiang Zhang et. al, NIPS’ 15]

2.3 Model Design

We designed 2 ConvNets – one large and one small. They are both 9 layers deep with 6 convolutional
layers and 3 fully-connected layers. Figure 1 gives an illustration.

Some Text
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Conv. and Pool. layers Fully-connected

Figure 1: Illustration of our model

The input have number of features equal to 70 due to our character quantization method, and the
input feature length is 1014. It seems that 1014 characters could already capture most of the texts of
interest. We also insert 2 dropout [10] modules in between the 3 fully-connected layers to regularize.
They have dropout probability of 0.5. Table 1 lists the configurations for convolutional layers, and
table 2 lists the configurations for fully-connected (linear) layers.

Table 1: Convolutional layers used in our experiments. The convolutional layers have stride 1 and
pooling layers are all non-overlapping ones, so we omit the description of their strides.

Layer Large Feature Small Feature Kernel Pool
1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 N/A
4 1024 256 3 N/A
5 1024 256 3 N/A
6 1024 256 3 3

We initialize the weights using a Gaussian distribution. The mean and standard deviation used for
initializing the large model is (0, 0.02) and small model (0, 0.05).

Table 2: Fully-connected layers used in our experiments. The number of output units for the last
layer is determined by the problem. For example, for a 10-class classification problem it will be 10.

Layer Output Units Large Output Units Small
7 2048 1024
8 2048 1024
9 Depends on the problem

For different problems the input lengths may be different (for example in our case l0 = 1014), and
so are the frame lengths. From our model design, it is easy to know that given input length l0, the
output frame length after the last convolutional layer (but before any of the fully-connected layers)
is l6 = (l0 � 96)/27. This number multiplied with the frame size at layer 6 will give the input
dimension the first fully-connected layer accepts.

2.4 Data Augmentation using Thesaurus

Many researchers have found that appropriate data augmentation techniques are useful for control-
ling generalization error for deep learning models. These techniques usually work well when we
could find appropriate invariance properties that the model should possess. In terms of texts, it is not
reasonable to augment the data using signal transformations as done in image or speech recognition,
because the exact order of characters may form rigorous syntactic and semantic meaning. Therefore,

3

Deep-CNN


