

Artificial Intelligence, CS, Nanjing University Spring, 2017, Yang Yu

Lecture 18: Learning 7

http://cs.nju.edu.cn/yuy/course_ai17.ashx

Historical review of deep learning

- Google and Baidu announced their deep learning based visual search engines (2013)
 - <u>Google</u>
 - "on our test set we saw double the average precision when compared to other approaches we had tried. We acquired the rights to the technology and went full speed ahead adapting it to run at large scale on Google's computers. We took cutting edge research straight out of an academic research lab and launched it, in just a little over six months."
 - <u>Baidu</u>

Historical review of DL (con't)

 Deep learning achieves 99.47% face verification accuracy on Labeled Faces in the Wild (LFW), higher than human performance

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. CVPR, 2015.

Deep Boltzmann machine:

Auto-encoder:

Major types

Recurrent neural networks:

Autoencoder

autoencoder

restricted Boltzmann machine a type of associative memory network

[image from <u>http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine</u>

Autoencoder

autoencoder

Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]

Convolutional Neural Networks (CNN/LeNet) for general image feature extraction

[image from <u>http://deeplearning.net/tutorial/lenet.html]</u>

Convolution layer

sparse connectivity

shared weights

[image from http://deeplearning.net/tutorial/lenet.html]

Subsampling layer

[image from <u>http://deeplearning.net/tutorial/lenet.html]</u>

Convolutional Neural Networks (CNN/LeNet) for general image feature extraction

[image from <u>http://deeplearning.net/tutorial/lenet.html]</u>

And many more ...

CNN

CNN Tricks

Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

Deep Neural Networks, especially *Convolutional Neural Networks* (*CNN*), allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-arts in visual object recognition, object detection, text recognition and many other domains such as drug discovery and genomics.

In addition, many solid papers have been published in this topic, and some high quality open source CNN software packages have been made available. There are also well-written CNN tutorials or CNN software manuals. However, it might lack a recent and comprehensive summary about the details of how to implement an excellent deep convolutional neural networks from scratch. Thus, we collected and concluded many implementation details for DCNNs. Here we will introduce these extensive implementation details, i.e., *tricks* or *tips*, for building and training your own deep networks.

- 🗹 Data augmentation
- Pre-processing
- Initializations
- 🗹 During training
- Activation functions

- Regularizations
 - Insights from figures
 - 🗹 Ensemble

CNN

IM GENET

4.94% (DL) vs 5.1% (human)

1

Fei-Fei Li Stanford University

Geoffrey E. Hinton University of Toronto

CNN toolbox

- MatConvNet (Oxford University)
- ☆ Caffe (UC Berkeley)
- * Torch (Facebook & NYU)

MatConvNet	Home	Getting Started
MatConvNet: CNNs for MATLAB		

Ŷ

. . .

NVIDIA-GPUs

DEEP LEARNING

NVIDIA Home > Products > NVIDIA DOX-1

THE WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER IN A BOX

DeepProposal

Semantic segmentation

Super-resolution

Object segmentation

Fine-grained classification

Caspian_Tern Fine-grained classification

Common_Tern

Fosters_Tern

Object segmentation

Fine-grained classification

Face recognition

Action recognition

Image caption

Automatic driving

Ballon_Fiesta

Australia_day

Heiva

Chinese_New_Year Keene_Pumpkin Sapporo_Snow_Festival

Multimodal Linguistic Regularities

- blue + red =

- blue + yellow =
 - yellow + red =

- white + red =

[Kiros et al., TACL 2015]

Multimodal Linguistic Regularities

- day + night =

- flying + sailing =
 - bowl + box =

-box + bowl =

Nearest images

[Kiros et al., TACL 2015]

Some Applications: NLP

How does CNN apply to NLP?

Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

Rie Johnson RJ Research Consulting Tarrytown, NY, USA riejohnson@gmail.com Tong Zhang Baidu Inc., Beijing, China Rutgers University, Piscataway, NJ, USA tzhang@stat.rutgers.edu

Transformation for text

One-hot encoding

V={"'don't", "hate", "l", "it", "love"}

Transformation for text

Seq-CNN for text

V={"don't", "hate", "l", "it", "love"}

Transformation for text

bow-CNN for text

V={"don't", "hate", "l", "it", "love"}

More for text

Figure courtesy of [Xiang Zhang et. al, NIPS' 15]

More for text

Deep-CNN

