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机器学习/模式识别基础 



机器学习/模式识别基础 

l 预测与识别 
l 预测算法 
l 特征提取 



1 预测与识别 

l  预测：根据当前的观测，预测未观测事件 

l  识别：根据当前的观测，判断是否是预定模式 

l  如何定义“事件”或“模式”？ 

l  机器学习⽅方法：基于数据的定义 



1 预测与识别 

color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

taste ?
price ?



1 预测与识别 

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}



机器学习/模式识别基础 

l 预测与识别 
l 预测算法 
l 特征提取 



X ! {�1,+1}

f

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

Classification

(color, weight) → sweet ?

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-) 
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ground-truth function

examples/training data:



f

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

X ! [�1,+1]

Regression

(color, weight) → sweetness

Features: color, weight
Label: sweetness [0,1] 

color

w
ei

g
h

t

ground-truth function

examples/training data:



Decision tree model

color

weight
not 

sweet

not red red

not 
sweet preservation

<100g >=100g

sweetnot 
sweet

goodbad

decision process 
with a tree structure

feature

value range

decision

color

not sweet

not red red

sweet

decision stump



Decision tree model

color

weight
not 

sweet

not red red

not 
sweet

<100g >=100g

sweet

color

w
ei
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h

t sweet

not 
sweet

not 
sweet

find a decision tree that matches the data?
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Split-criterion: classification

–+ – – –
– – –– + +++ +– –

for every possible split of every feature:

Training error:

–+ – – –
– – –– + +++ +– – –+ – – –

– – –– + +++ +– –

prediction: −
error: 1

prediction: +
error: 3

total error: 4

prediction: −
error: 3

prediction: +
error: 2

total error: 5

–
+

– –
––

–
–– + +

++
+– –

–+ – – –
– – –– + +++ +– –total error: 4



H(left) = �1

8
ln

1

8
� 7

8
ln

7

8
= 0.3768

IG = H(X)� (0.5⇥ 0.3768 + 0.5⇥ 0.6616)

= H(X)� 0.5192

IG = H(X)� 0.6132

IG = H(X)� 0.5514

Split-criterion: classification

Information gain (ID3):

–+ – – –
– – –– + +++ +– – –+ – – –

– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

H(X) = �
X

i

pi ln(pi)

I(X; split) =
#left

#all
H(left) +

#right

#all
H(right)

Entropy:

Entropy after split:

H(right) = �5

8
ln

5

8
� 3

8
ln

3

8
= 0.6616

Information gain: H(X)-I(X;split)



Gain ratio(X) =

H(X)� I(X; split)

IV (split)

IV (split) = H(split)

IG = H(X)� 0

Split-criterion: classification

Gain ratio (C4.5):

–+ – – –
– – –– + +++ +– – e.g. student ID



IG = H(X)� 0.6132

IG = H(X)� 0.5514

Gini(X) = 1�
X

i

p2i

#left

#all
Gini(left) +

#right

#all
Gini(right)

IG = H(X)� 0.5192

Gini = 0.3438 Gini = 0.4427

Gini = 0.3667

Split-criterion: classification

Gini index (CART):

–+ – – –
– – –– + +++ +– – –+ – – –

– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

Gini:

Gini after split:



Split-criterion: regression

Training error:

1 3 2

7 2
45 8

9
7

mean: 7.25 mean: 3.1667

MSE: 8.75+22.83=31.583

1 3 2

7 2
45 8

9
7

mean: 6.1667 mean: 2.75

MSE: 43.5833



Split-criterion: stop

Stop criterion:
    no feature to use

Classification: examples are pure of class

Regression: variance small enough



Make-leaf

Classification: major class

Regression: mean value

color

not red red

not 
sweet



DT boundary visualization

decision stump max depth=2 max depth=12



Neural networks



f(
X

i

wixi) =
X

i

wixi

f(
X

i

wixi) =
1

1 + e

�⌃

f(
X

i

wixi) = I(
X

i

wixi > 0)

Neuron / perceptron

output a function of sum of 
input

linear function:

sigmoid function:

threshold function:

X

i

wixi

f(⌃)

x1
x2
x3
x4
x5

w1
w2
w3
w4
w5

x0
w0



Limitation of single neuron

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky
Turing Award 1969 AI Winter



Multi-layer perceptrons

feed-forward network

x3

x2

x4

x1

...

y

input
layer

hidden
layer

hidden
layer

output
layer

sigmoid network with one hidden layer can approximate 
arbitrary function [Cybenko 1989]



ŷ = F (x)

E(w) = (F (x)� y)2

�wi,j = �⌘
@E(w)

@wi,j

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@HL2

@HL2

@HL1

@HL1

@wi,j

@E(w)

@wi,j
=

@E(w)

@F (x)

@F (x)

@wi,j

Back-propagation algorithm

[Rumelhart, Hinton, Williams, Nature 1986]

gradient descent

error:

update one weight:

w

weight of the laster layer

weight of the first layer



Back-propagation algorithm

[Rumelhart, Hinton, Williams, Nature 1986]

For each given training example (x, y), do�

1.   Input the instance x to the NN and compute the output value ou of every output 
unit u of the network�

2.   For each network output unit k, calculate its error term δk�

3.   For each hidden unit k, calculate its error term δh�

4.   Update each network weight wji which is the weight associated with the i-th 
input value to the unit j�



Advantage and disadvantages

Smooth and nonlinear 
decision boundary

Slow convergence

Many local optima

Best network structure unknown

Hard to handle nominal features



Deep network

[Hinton and Salakhutdinov, Science 2006]

autoencoder:



f(x) =

8
><

>:

+1, P (y = +1 | x) > P (y = �1 | x)
�1, P (y = +1 | x) < P (y = �1 | x)
random, otherwise

f(x) = argmax

y
P (y | x)

Bayes rule

classification using posterior probability

for binary classification

in general

= argmax

y
P (x | y)P (y)/P (x)

= argmax

y
P (x | y)P (y)

how the 
probabilities be 
estimated



f(x) = argmax

y
P (x | y)P (y)

P (x | y) = P (x1, x2, . . . , xn | y)
= P (x1 | y) · P (x2 | y) · . . . P (xn | y)

P (y) P̃ (y) =
1

m

X

i

I(yi = y)

f(x) = argmax

y

˜

P (y)

Y

i

˜

P (xi | y)

Naive Bayes

estimation the a priori by frequency:

assume features are conditional independence given 
the class (naive assumption):

decision function:



P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) = 0

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) = 0

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 0, weight = 1) !



P (color = 0 | y = yes) = (0 + 1)/(2 + 4)

P (y = yes) = (2 + 1)/(5 + 2)

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) =
2

7
⇥ 1

8
⇥ 4

7
= 0.02

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) =
1

6
⇥ 1

7
⇥ 3

7
= 0.01

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

+

color sweet?

0 yes

1 yes

2 yes

3 yes

smoothed (Laplacian correction) probabilities:

f(y | color = 0, weight = 1) !

for counting frequency, 
assume every event 
has happened once. 



Nearest neighbor classifier

1-nearest neighbor: k-nearest neighbor:

‣ asymptotically less than 2 times of the optimal Bayes 
error 
‣ naturally handle multi-class
‣ no training time
‣ nonlinear decision boundary
‣ slow testing speed for a large training data set
‣ have to store the training data
‣ sensitive to similarity function



f(x) = w

>
x+ b

Rn+1

Linear model

model space: 

we sometimes omit the bias

1. w with a constant element

2. practically as good as with bias (centered data)

f(x) = w

>
x



x

y

y 2 R

{(x1, y1), (x2, y2), (xm, ym)}

1

m

mX

i=1

(w>
xi + b� yi)

2

Least square regression

Regression:
Training data:

Least square loss:



L(w, b) =
1

m

mX

i=1

(w>
xi + b� yi)

2

@L(w, b)

@w
=

1

m

mX

i=1

2(w>
xi + b� yi)xi = 0

b =
1

m

mX

i=1

(yi �w

>
xi) = ȳ �w

>
x̄

@L(w, b)

@b
=

1

m

mX

i=1

2(w>
xi + b� yi) = 0

w =
⇣ 1

m

mX

i=1

xix
>
i � x̄x̄

>
⌘�1⇣ 1

m

mX

i=1

(yixi)� ȳx̄

⌘

= var(x)�1
cov(x, y) = (X>

X)�1
X

>
Y

Least square regression

closed 
form 
solution



I.I.D. assumption

all training examples and future (test) 
examples are drawn independently from 
an identical distribution

unknown but fixed 
distribution D



H

Hypothesis class

color

w
ei

g
h

t

–

+

–
–

–

–

–––

+

+
+

+

+

– – box hypothesis class      
contains all boxes

h(x) =

(
+1, if x is inside the box

�1, if x is outside the box

h 2 H is a hypothesis



Training and generalization errors

color

w
ei

g
h

t

–

+

–
–

–

–

–––

+

+
+

+

+

– –
✏t =

1

m

mX

i=1

I(h(xi) 6= yi)

training error

generalization error

false positive

false negative

find a hypothesis minimizes the generalization error

✏

g

= E
x

[I(h(x) 6= f(x))]

=

Z

X
p(x)I(h(x) 6= f(x))]dx



Generalization error

color

w
ei

g
h

t

–

+

–
–

–

–

–––

+

+
+

+

+

– –

assume i.i.d. examples, and the ground-truth 
hypothesis is a box 

‣more examples
‣ smaller hypothesis spacesmaller generalization error:

✏g <
1

m
· (ln |H|+ ln

1

�
)

with probability at least 1� �

the error of picking a 
consistent hypothesis:



h is consistent

✏g(h) � ✏

✏g(h) � ✏

P  1� ✏

Generalization error

What is the probability of

h is consistent with 1 example:

h is consistent with m example:

assume h is bad:

P  (1� ✏)m

for one h



∃h: h can be chosen (consistent) but is bad

P  (1� ✏)m

Generalization error

h is consistent with m example:

There are k consistent hypotheses

...

Probability of choosing a bad one:
h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m

overall:



∃h: h can be chosen (consistent) but is bad

P (9h is consistent but bad)  k · (1� ✏)m  |H| · (1� ✏)m

Generalization error

h1 is chosen and h1 is bad
h2 is chosen and h2 is bad

hk is chosen and hk is bad
...

P  (1� ✏)m

P  (1� ✏)m

P  (1� ✏)m

overall:

P (A [B)  P (A) + P (B)Union bound:



P (9h is consistent but bad)  k · (1� ✏)m  |H| · (1� ✏)m

�

P (✏g � ✏)  |H| · (1� ✏)m

✏g <
1

m
· (ln |H|+ ln

1

�
)

Generalization error

with probability at least 1� �



Inconsistent hypothesis

color

w
ei

g
h

t
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+

+

– –

What if the ground-truth hypothesis 
is NOT a box: non-zero training error

‣more examples
‣ smaller hypothesis space
‣smaller training error

smaller generalization error:

✏g < ✏t +

r
1

m
(ln |H|+ ln

1

�
)

with probability at least 1� �

–

+

training error
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l 预测与识别 
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l 特征提取 



Feature extraction

disclosure the inner structure of the data 
to support a better mining performance

feature extraction construct new features

commonly followed by a feature selection

usually used for low-level features

digits bitmap:



Linear methods

Principal components analysis (PCA)

rotate the data to align the directions of 
the variance



Linear methods

Principal components analysis (PCA)

the first dimension = the largest variance direction

6.3 Principal Components Analysis 113

6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ‖w1‖ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)
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6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ‖w1‖ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)

find a unit w to maximize the 
variance
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have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
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6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ‖w1‖ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)

w is the eigenvector with the largest eigenvalue



Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance 
direction orthogonal to the first dimension

w’s are the eigenvectors sorted by the eigenvalues
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In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ‖w1‖ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)
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Taking the derivative with respect to w2 and setting it equal to 0, we
have

2Σw2 − 2αw2 − βw1 = 0(6.8)

Premultiply by wT
1 and we get

2wT1Σw2 − 2αwT
1w2 − βwT

1w1 = 0

Note that wT1w2 = 0. wT
1Σw2 is a scalar, equal to its transpose wT

2Σw1

where, because w1 is the leading eigenvector of Σ, Σw1 = λ1w1. There-
fore

wT1Σw2 = wT2Σw1 = λ1w
T
2w1 = 0

Then β = 0 and equation 6.8 reduces to

Σw2 = αw2

which implies that w2 should be the eigenvector of Σ with the second
largest eigenvalue, λ2 = α. Similarly, we can show that the other dimen-
sions are given by the eigenvectors with decreasing eigenvalues.

Because Σ is symmetric, for two different eigenvalues, the eigenvectors
are orthogonal. If Σ is positive definite (xTΣx > 0, for all nonnull x), then
all its eigenvalues are positive. If Σ is singular, then its rank, the effective
dimensionality, is k with k < d and λi , i = k+ 1, . . . , d are 0 (λi are sorted
in descending order). The k eigenvectors with nonzero eigenvalues are
the dimensions of the reduced space. The first eigenvector (the one with
the largest eigenvalue), w1, namely, the principal component, explains
the largest part of the variance; the second explains the second largest;
and so on.

We define

z =WT (x −m)(6.9)

where the k columns of W are the k leading eigenvectors of S, the esti-
mator to Σ. We subtract the sample mean m from x before projection
to center the data on the origin. After this linear transformation, we get
to a k-dimensional space whose dimensions are the eigenvectors, and the
variances over these new dimensions are equal to the eigenvalues (see
figure 6.1). To normalize variances, we can divide by the square roots of
the eigenvalues.
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Figure 6.2 (a) Scree graph. (b) Proportion of variance explained is given for the
Optdigits dataset from the UCI Repository. This is a handwritten digit dataset
with ten classes and sixty-four dimensional inputs. The first twenty eigenvectors
explain 90 percent of the variance.

use the eigenvectors of the correlation matrix, R, instead of the covari-
ance matrix, S, for the correlations to be effective and not the individual
variances.

PCA explains variance and is sensitive to outliers: A few points distant
from the center would have a large effect on the variances and thus the
eigenvectors. Robust estimation methods allow calculating parameters in
the presence of outliers. A simple method is to calculate the Mahalanobis
distance of the data points, discarding the isolated data points that are
far away.

If the first two principal components explain a large percentage of the
variance, we can do visual analysis: We can plot the data in this two di-

from [Intro. ML]
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keep the distance into a lower dimensional space

for linear transformation, 
W is an n*k matrix
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Figure 6.6 Map of Europe drawn by MDS. Pairwise road travel distances be-
tween these cities are given as input, and MDS places them in two dimensions
such that these distances are preserved as well as possible.

two points r and s, the squared Euclidean distance between them is

d2
rs = ‖xr − xs‖2 =

d
∑

j=1

(xrj − xsj)2 =
d
∑

j=1

(xrj)
2 − 2

d
∑

j=1

xrjx
s
j +

d
∑

j=1

(xsj)
2

= brr + bss − 2brs(6.24)

where brs is defined as

brs =
d
∑

j=1

xrjx
s
j(6.25)

To constrain the solution, we center the data at the origin and assume

N
∑

t=1

xtj = 0,∀j = 1, . . . , d

from [Intro. ML]
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In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
space, with minimum loss of information. The projection of x on the
direction of w is

z = wTx(6.5)

Principal components analysis (PCA) is an unsupervised method in thatprincipal

components

analysis
it does not use the output information; the criterion to be maximized is
the variance. The principal component is w1 such that the sample, after
projection on to w1, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require ‖w1‖ = 1. We know
from equation 5.14 that if z1 = wT

1x with Cov(x) = Σ, then

Var(z1) = wT
1Σw1

We seek w1 such that Var(z1) is maximized subject to the constraint
that wT

1w1 = 1. Writing this as a Lagrange problem, we have

max
w1

wT
1Σw1 −α(wT

1w1 − 1)(6.6)

Taking the derivative with respect to w1 and setting it equal to 0, we
have

2Σw1 − 2αw1 = 0, and therefore Σw1 = αw1

which holds if w1 is an eigenvector of Σ and α the corresponding eigen-
value. Because we want to maximize

wT1Σw1 = αwT
1w1 = α

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
λ1 = α.

The second principal component, w2, should also maximize variance,
be of unit length, and be orthogonal to w1. This latter requirement is so
that after projection z2 = wT

2x is uncorrelated with z1. For the second
principal component, we have

max
w2

wT
2Σw2 −α(wT

2w2 − 1)− β(wT
2w1 − 0)(6.7)

m be the mean of a class
s2 be the variance of a class
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Figure 6.7 Two-dimensional, two-class data projected on w.

m1 and m1 are the means of samples from C1 before and after projec-
tion, respectively. Note thatm1 ∈ "d andm1 ∈ ". We are given a sample
X = {xt , r t} such that r t = 1 if xt ∈ C1 and r t = 0 if xt ∈ C2.

m1 =
∑

t w
Txtr t

∑

t r t
= wTm1

m2 =
∑

t w
Txt(1− r t )

∑

t(1− r t )
= wTm2(6.31)

The scatter of samples from C1 and C2 after projection arescatter

s2
1 =

∑

t

(wTxt −m1)
2r t

s2
2 =

∑

t

(wTxt −m2)
2(1− r t)(6.32)

After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)

maximize the criterion
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Rewriting the numerator, we get

(m1 −m2)
2 = (wTm1 −wTm2)

2

= wT (m1 −m2)(m1 −m2)
Tw

= wTSBw(6.34)

where SB = (m1−m2)(m1−m2)
T is the between-class scatter matrix. Thebetween-class

scatter matrix denominator is the sum of scatter of examples of classes around their
means after projection and can be rewritten as

s2
1 =

∑

t

(wTxt −m1)
2r t

=
∑

t

wT (xt −m1)(x
t −m1)

Twr t

= wTS1w(6.35)

where

S1 =
∑

t

r t (xt −m1)(x
t −m1)

T(6.36)

is the within-class scatter matrix for C1. S1/
∑

t r
t is the estimator of Σ1.within-class

scatter matrix Similarly, s2
2 = wTS2w with S2 =

∑

t (1 − rt )(xt −m2)(xt −m2)T , and we
get

s2
1 + s2

2 = wTSWw

where SW = S1 + S2 is the total within-class scatter. Note that s2
1 + s2

2

divided by the total number of samples is the variance of the pooled
data. Equation 6.33 can be rewritten as

J(w) = wTSBw

wTSWw
= |w

T (m1 −m2)|2
wTSWw

(6.37)

Taking the derivative of J with respect to w and setting it equal to 0, we
get

wT (m1 −m2)

wTSWw

(

2(m1 −m2)−
wT (m1 −m2)

wTSWw
SWw

)

= 0

Given that wT (m1 −m2)/w
TSWw is a constant, we have

w = cS−1
W (m1 −m2)(6.38)

where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.
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Figure 6.7 Two-dimensional, two-class data projected on w.

m1 and m1 are the means of samples from C1 before and after projec-
tion, respectively. Note thatm1 ∈ "d andm1 ∈ ". We are given a sample
X = {xt , r t} such that r t = 1 if xt ∈ C1 and r t = 0 if xt ∈ C2.

m1 =
∑

t w
Txtr t

∑

t r t
= wTm1

m2 =
∑

t w
Txt(1− r t )

∑

t(1− r t )
= wTm2(6.31)

The scatter of samples from C1 and C2 after projection arescatter
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2 =
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(wTxt −m2)
2(1− r t)(6.32)

After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)
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where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.

The objective becomes:
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After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want |m1 −m2| to be
large and s2

1 + s2
2 to be small (see figure 6.7). Fisher’s linear discriminantFisher’s linear

discriminant is w that maximizes

J(w) = (m1 −m2)2

s2
1 + s2

2

(6.33)

130 6 Dimensionality Reduction

Rewriting the numerator, we get

(m1 −m2)
2 = (wTm1 −wTm2)

2

= wT (m1 −m2)(m1 −m2)
Tw

= wTSBw(6.34)

where SB = (m1−m2)(m1−m2)
T is the between-class scatter matrix. Thebetween-class

scatter matrix denominator is the sum of scatter of examples of classes around their
means after projection and can be rewritten as

s2
1 =

∑

t

(wTxt −m1)
2r t

=
∑

t

wT (xt −m1)(x
t −m1)

Twr t

= wTS1w(6.35)

where

S1 =
∑

t

r t (xt −m1)(x
t −m1)

T(6.36)

is the within-class scatter matrix for C1. S1/
∑

t r
t is the estimator of Σ1.within-class

scatter matrix Similarly, s2
2 = wTS2w with S2 =

∑

t (1 − rt )(xt −m2)(xt −m2)T , and we
get

s2
1 + s2

2 = wTSWw

where SW = S1 + S2 is the total within-class scatter. Note that s2
1 + s2

2

divided by the total number of samples is the variance of the pooled
data. Equation 6.33 can be rewritten as

J(w) = wTSBw

wTSWw
= |w

T (m1 −m2)|2
wTSWw

(6.37)

Taking the derivative of J with respect to w and setting it equal to 0, we
get

wT (m1 −m2)

wTSWw

(

2(m1 −m2)−
wT (m1 −m2)

wTSWw
SWw

)

= 0

Given that wT (m1 −m2)/w
TSWw is a constant, we have

w = cS−1
W (m1 −m2)(6.38)

where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.
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Manifold learning

A low intrinsic dimensional data embedded in a 
high dimensional space

cause a bad distance measure



Manifold learning

ISOMAP

1. construct a neighborhood 
graph (kNN and !-NN)

2. calculate distance matrix 
as the shortest path on the 
graph

3. apply MDS on the distance 
matrix
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1. find neighbors for each instance

2. calculate a linear reconstruction for an instance

3. find low dimensional instances preserving the 
reconstruction

Manifold learning

Local Linear Embedding (LLE)�

6.8 Locally Linear Embedding 135

to the dataset and the whole algorithm needs to be run once more using
N + 1 instances.

6.8 Locally Linear Embedding

Locally linear embedding (LLE) recovers global nonlinear structure fromlocally linear

embedding locally linear fits (Roweis and Saul 2000). The idea is that each local
patch of the manifold can be approximated linearly and given enough
data, each point can be written as a linear, weighted sum of its neighbors
(again either defined using a given number of neighbors, n, or distance
threshold, ε). Given xr and its neighbors xs(r) in the original space, one
can find the reconstruction weights Wrs that minimize the error function

Ew(W|X) =
∑

r

‖xr −
∑

s

Wrsx
s
(r)‖2(6.45)

using least squares subject to Wrr = 0,∀r and
∑

s Wrs = 1.
The idea in LLE is that the reconstruction weights Wrs reflect the in-

trinsic geometric properties of the data that we expect to be also valid
for local patches of the manifold, that is, the new space we are mapping
the instances to (see figure 6.10). The second step of LLE is hence to now
keep the weights Wrs fixed and let the new coordinates zr take what-
ever values they need respecting the interpoint constraints given by the
weights:

Ez(Z|W) =
∑

r

‖zr −
∑

s

Wrsz
s‖2(6.46)

Nearby points in the original, d-dimensional space should remain nearby
and similarly colocated with respect to one another in the new, k-dimensional
space. Equation 6.46 can be rewritten as

Ez(Z|W) =
∑

r ,s

Mrs(z
r )Tzs(6.47)

where

Mrs = δrs −Wrs −Wsr +
∑

i

WirWis(6.48)

M is sparse (only a small percentage of data points are neighbors of a
data point: n $ N), symmetric, and positive semidefinite. As in other
dimensionality reduction methods, we require that the data be centered
at the origin, E[z] = 0, and that the new coordinates be uncorrelated
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Manifold learning

more manifold learning examples



Manifold learning

more manifold learning examples



机器学习/模式识别基础 
⼩小结 
l 预测与识别 

l  ⽤用数据定义“模式” 
l 预测算法 

l 特征提取 


