数字图像处理

第A章
机器学习模式识别基础

机器学习／模式识别基础

- 预测与识别
- 预测算法
- 特征提取
- 预测：根据当前的观测，预测未观测事件
- 识别：根据当前的观测，判断是否是预定模式
- 如何定义＂事件＂或＂模式＂？
- 机器学习方法：基于数据的定义

1 预测与识别

1 预测与识别

color＝\｛0，1，2，3\} weight=\{0,1,2,3,4\}

color	weight	sweet？
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

机器学习／模式识别基础

- 预测与识别
- 预测算法
- 特征提取

Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f
examples/training data:

$$
\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}
$$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

Regression

Features: color, weight Label: sweetness [0,1]

(color, weight) \rightarrow sweetness

$$
\mathcal{X} \quad \rightarrow[-1,+1]
$$

ground-truth function f
examples/training data: $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

Decision tree model

decision process with a tree structure

Decision tree model

find a decision tree that matches the data?

Split-criterion: classification

for every possible split of every feature:

Training error:

prediction: - " prediction: + error: 1 error: 3
 total error: 4
 prediction: - prediction: + error: 3 error: 2
 total error: 5

Split-criterion: classification

Information gain (ID3):

Entropy: $H(X)=-\sum p_{i} \ln \left(p_{i}\right)$
Entropy after split: $I(X ;$ split $)=\frac{\text { \#left }}{\# \text { all }} H($ left $)+\frac{\text { \#right }}{\# \text { all }} H$ (right)
Information gain: $H(X)-I(X$;split $)$

$$
\begin{aligned}
& H(\text { left })=-\frac{1}{8} \ln \frac{1}{8}-\frac{7}{8} \ln \frac{7}{8}=0.3768 \\
& H(\text { right })=-\frac{5}{8} \ln \frac{5}{8}-\frac{3}{8} \ln \frac{3}{8}=0.6616 \\
& \mathrm{IG}=H(X)-(0.5 \times 0.3768+0.5 \times 0.6616) \\
& \quad=H(X)-0.5192
\end{aligned}
$$

Split-criterion: classification

Gain ratio (C4.5):

$$
\begin{aligned}
& \text { Gain } \operatorname{ratio}(X)=\frac{H(X)-I(X ; \text { split })}{I V(\mathrm{split})} \\
& I V(\text { split })=H(\mathrm{split})
\end{aligned}
$$

e.g. student ID

$$
\mathrm{IG}=H(X)-0
$$

Split-criterion: classification

Gini index (CART):
Gini: $\operatorname{Gini}(X)=1-\sum_{i} p_{i}^{2}$
Gini after split: $\frac{\text { \#left }}{\text { \#all }} \operatorname{Gini}($ left $)+\frac{\text { \#right }}{\text { \#all }}$ Gini(right)

Split-criterion: regression

Training error:

MSE: $8.75+22.83=31.583$
MSE: 43.5833

Split-criterion: stop

Stop criterion: no feature to use

Classification: examples are pure of class
Regression: variance small enough

Make-leaf

Classification: major class
Regression: mean value

DT boundary visualization

decision stump

max depth=2

max depth=12

Neural networks

NEURON
NEURON
(receivers

Node of

Node of

Ranvier

Myelin Sheath
(insulating fatty layer that speeds transmission)

Neuron / perceptron

output a function of sum of input
linear function:

$$
f\left(\sum_{i} w_{i} x_{i}\right)=\sum_{i} w_{i} x_{i}
$$

threshold function:

$$
f\left(\sum_{i} w_{i} x_{i}\right)=I\left(\sum_{i} w_{i} x_{i}>0\right)
$$

sigmoid function:

$$
f\left(\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\Sigma}}
$$

Limitation of single neuron

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky Turing Award 1969

AI Winter

Multi-layer perceptrons

feed-forward network

sigmoid network with one hidden layer can approximate arbitrary function [Cybenko 1989]

Back-propagation algorithm

$$
\hat{y}=F(\boldsymbol{x})
$$

gradient descent

$$
\text { error: } E(\boldsymbol{w})=(F(\boldsymbol{x})-y)^{2}
$$

update one weight: $\Delta w_{i, j}=-\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}$ weight of the laster layer

$$
\frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}=\frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i, j}}
$$

weight of the first layer

$$
\frac{\partial E(\boldsymbol{w})}{\partial w_{i, j}}=\frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial \mathrm{HL} 2} \frac{\partial \mathrm{HL} 2}{\partial \mathrm{HL} 1} \frac{\partial \mathrm{HL} 1}{\partial w_{i, j}}
$$

[Rumelhart, Hinton, Williams, Nature 1986]

Back-propagation algorithm

For each given training example (\mathbf{x}, \mathbf{y}), do

1. Input the instance \mathbf{x} to the NN and compute the output value o_{u} of every output unit u of the network
2. For each network output unit k, calculate its error term δ_{k}

$$
\delta_{k} \leftarrow o_{k}\left(1-o_{k}\right)\left(y_{k}-o_{k}\right)
$$

3. For each hidden unit k, calculate its error term δ_{h}

$$
\delta_{h} \leftarrow o_{k}\left(1-o_{k}\right) \sum_{k \in \text { outputs }} w_{k h} \delta_{k}
$$

4. Update each network weight $w_{j i}$ which is the weight associated with the i-th input value to the unit j

$$
w_{j i} \leftarrow w_{j i}+\eta \delta_{j} x_{j i}
$$

[Rumelhart, Hinton, Williams, Nature 1986]

Advantage and disadvantages

Smooth and nonlinear decision boundary

Slow convergence
Many local optima
Best network structure unknown

Hard to handle nominal features

Deep network

autoencoder:

[Hinton and Salakhutdinov, Science 2006]

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
\begin{aligned}
f(x) & =\underset{y}{\arg \max } P(y \mid \boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y) / P(\boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
\end{aligned}
$$

how the probabilities be estimated

Naive Bayes

$$
f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
$$

estimation the a priori by frequency:
$P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)$
assume features are conditional independence given the class (naive assumption):

$$
\begin{aligned}
P(\boldsymbol{x} \mid y) & =P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y\right) \\
& =P\left(x_{1} \mid y\right) \cdot P\left(x_{2} \mid y\right) \cdot \ldots P\left(x_{n} \mid y\right)
\end{aligned}
$$

decision function:

$$
f(x)=\underset{y}{\arg \max } \tilde{P}(y) \prod_{i} \tilde{P}\left(x_{i} \mid y\right)
$$

Naive Bayes

color=\{0,1,2,3\} weight=\{0,1,2,3,4\}

color	weight	sweet?	$P(y=y e s)=2 / 5$
3	4	yes	$P(y=n o)=3 / 5$
2	3	yes	$P($ color $=3$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$
$P($ color $=3 \mid y=$ yes $) P($ weight $=3 \mid y=$ yes $) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1$
$P($ color $=3 \mid y=n o) P(w e i g h t=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06$
$f(y \mid$ color $=0$, weight $=1) \rightarrow$

$$
\begin{aligned}
& P(\text { color }=0 \mid y=y e s) P(\text { weight }=1 \mid y=y e s) P(y=y e s)=0 \\
& P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=0
\end{aligned}
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?			
3	4		color	sweet?	
2	3	yes		0	yes
0	3	yes			
3	2	no		1	yes
1	4	no		2	yes
		no		3	yes

smoothed (Laplacian correction) probabilities:
$P($ color $=0 \mid y=y e s)=(0+1) /(2+4)$
$P(y=y e s)=(2+1) /(5+2)$
for counting frequency, assume every event has happened once.
$f(y \mid$ color $=0$, weight $=1) \rightarrow$

$$
\begin{aligned}
& P(\text { color }=0 \mid y=\text { yes }) P(\text { weight }=1 \mid y=\text { yes }) P(y=y e s)=\frac{1}{6} \times \frac{1}{7} \times \frac{3}{7}=0.01 \\
& P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=\frac{2}{7} \times \frac{1}{8} \times \frac{4}{7}=0.02
\end{aligned}
$$

Nearest neighbor classifier

1-nearest neighbor:

k-nearest neighbor:

- asymptotically less than 2 times of the optimal Bayes error
- naturally handle multi-class
- no training time
- nonlinear decision boundary
- slow testing speed for a large training data set
- have to store the training data
- sensitive to similarity function

Linear model

model space: \mathbb{R}^{n+1}

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+b
$$

we sometimes omit the bias

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

1. w with a constant element
2. practically as good as with bias (centered data)

Least square regression

Regression: $y \in \mathbb{R}$
Training data:

$$
\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right),\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}
$$

Least square loss:

$$
\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b-y_{i}\right)^{2}
$$

Least square regression

$$
L(\boldsymbol{w}, b)=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b-y_{i}\right)^{2}
$$

$$
\frac{\partial L(\boldsymbol{w}, b)}{\partial b}=\frac{1}{m} \sum_{i=1}^{m} 2\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b-y_{i}\right)=0
$$

$$
\frac{\partial L(\boldsymbol{w}, b)}{\partial \boldsymbol{w}}=\frac{1}{m} \sum_{i=1}^{m} 2\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b-y_{i}\right) \boldsymbol{x}_{i}=0
$$

$$
b=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)=\bar{y}-\boldsymbol{w}^{\top} \overline{\boldsymbol{x}}
$$

$$
\boldsymbol{w}=\left(\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}-\overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{\top}\right)^{-1}\left(\frac{1}{m} \sum_{i=1}^{m}\left(y_{i} \boldsymbol{x}_{i}\right)-\bar{y} \overline{\boldsymbol{x}}\right)
$$

$$
=\operatorname{var}(\boldsymbol{x})^{-1} \operatorname{cov}(\boldsymbol{x}, y)=\left(X^{\top} X\right)^{-1} X^{\top} Y
$$

I.I.D. assumption

all training examples and future (test) examples are drawn independently from an identical distribution

Hypothesis class

box hypothesis class \mathcal{H} contains all boxes

$h \in \mathcal{H}$ is a hypothesis
$h(\boldsymbol{x})=\left\{\begin{array}{l}+1, \text { if } x \text { is inside the box } \\ -1, \text { if } x \text { is outside the box }\end{array}\right.$

Training and generalization errors

find a hypothesis minimizes the generalization error

Generalization error

assume i.i.d. examples, and the ground-truth hypothesis is a box

the error of picking a consistent hypothesis:
with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

\author{

- more examples
 - smaller hypothesis space
}

Generalization error

for one h
What is the probability of h is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$
h is consistent with 1 example:

$$
P \leq 1-\epsilon
$$

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

Generalization error

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

There are \boldsymbol{k} consistent hypotheses

Probability of choosing a bad one: h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$
 h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$
overall:
$\exists h$: h can be chosen (consistent) but is bad

Generalization error

h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$ h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$
overall:
$\exists h: h$ can be chosen (consistent) but is bad
Union bound: $P(A \cup B) \leq P(A)+P(B)$
$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

Generalization error

$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

$$
P\left(\epsilon_{g} \geq \epsilon\right) \leq \frac{|\mathcal{H}| \cdot(1-\epsilon)^{m}}{\delta}
$$

with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

with probability at least $1-\delta$
$\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}$
training error

- more examples
smaller generalization error: • smaller hypothesis space
- smaller training error

机器学习／模式识别基础

- 预测与识别
- 预测算法
- 特征提取

Feature extraction

disclosure the inner structure of the data to support a better mining performance
feature extraction construct new features
commonly followed by a feature selection
usually used for low-level features

Linear methods

Principal components analysis (PCA)
rotate the data to align the directions of the variance

Linear methods

Principal components analysis (PCA)
the first dimension $=$ the largest variance direction

$$
\begin{aligned}
& z=\boldsymbol{w}^{T} \boldsymbol{x} \\
& \operatorname{Var}\left(z_{1}\right)=\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}
\end{aligned}
$$

find a unit \boldsymbol{w} to maximize the variance

$$
\max _{\boldsymbol{w}_{1}} \boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}-\alpha\left(\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}-1\right)
$$

$2 \boldsymbol{\Sigma} \boldsymbol{w}_{1}-2 \alpha \boldsymbol{w}_{1}=0$, and therefore $\boldsymbol{\Sigma} \boldsymbol{w}_{1}=\alpha \boldsymbol{w}_{1}$
$\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}=\alpha \boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}=\alpha$
w is the eigenvector with the largest eigenvalue

Linear methods

Principal components analysis (PCA)
the second dimension = the largest variance direction orthogonal to the first dimension

$$
\begin{aligned}
& \max _{\boldsymbol{w}_{2}} \boldsymbol{w}_{2}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{2}-\alpha\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{2}-1\right)-\beta\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{1}-0\right) \\
& 2 \boldsymbol{\Sigma} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{2}-\beta \boldsymbol{w}_{1}=0 \\
& \beta=0 \quad \boldsymbol{\Sigma} \boldsymbol{w}_{2}=\alpha \boldsymbol{w}_{2}
\end{aligned}
$$

Linear methods

Optdigits after PCA

First Eigenvector
from [Intro. ML]

Linear methods

(a) Scree graph for Optdigits

(b) Proportion of variance explained

from [Intro. ML]

Linear methods

Multidimensional Scaling (MDS)
keep the distance into a lower dimensional space
for linear transformation, W is an n *k matrix
$\arg \min _{W} \sum_{i, j}\left(\left\|\boldsymbol{x}_{i}^{\top} W-\boldsymbol{x}_{j}^{\top} W\right\|-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|\right)^{2}$

Linear methods

from [Intro. ML]

Linear methods

Linear Discriminant Analysis (LDA)
find a direction such that the two classes are well separated

$$
z=\boldsymbol{w}^{T} \boldsymbol{x}
$$

m be the mean of a class s^{2} be the variance of a class

maximize the criterion

$$
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

Linear methods

Linear Discriminant Analysis (LDA)

$$
\begin{aligned}
&\left(m_{1}-m_{2}\right)^{2}=\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2} \\
&=\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \\
&=\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w} \\
& s_{1}^{2}=\sum_{t}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{t}-m_{1}\right)^{2} \boldsymbol{r}^{t} \\
&= \sum_{t} \boldsymbol{w}^{T}\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w} \boldsymbol{r}^{t} \\
&= \boldsymbol{w}^{T} \mathbf{S}_{1} \boldsymbol{w}
\end{aligned}
$$

$$
s_{1}^{2}+s_{2}^{2}=\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w} \quad \mathbf{S}_{W}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

The objective becomes:

$$
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}=\frac{\left|\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\right|^{2}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}
$$

Linear methods

Linear Discriminant Analysis (LDA)
The objective becomes:

$$
\begin{array}{r}
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}=\frac{\left|\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\right|^{2}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}} \\
\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}\left(2\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)-\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}} \mathbf{S}_{W} \boldsymbol{w}\right)=0
\end{array}
$$

Given that $\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) / \boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}$ is a constant, we have

$$
\boldsymbol{w}=c \mathbf{S}_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)
$$

$$
\text { just take } c=1 \text { and find } w
$$

Linear methods

Optdigits after LDA

from [Intro. ML]

Manifold learning

Manifold learning

A low intrinsic dimensional data embedded in a high dimensional space

cause a bad distance measure

Manifold learning

ISOMAP

1. construct a neighborhood graph (kNN and ε-NN)
2. calculate distance matrix as the shortest path on the graph
3. apply MDS on the distance matrix

Manifold learning

Optdigits after Isomap (with neighborhood graph).

Manifold learning

Local Linear Embedding (LLE):

1. find neighbors for each instance
2. calculate a linear reconstruction for an instance

$$
\sum_{r}\left\|\boldsymbol{X}^{r}-\sum_{s} \mathbf{W}_{r s} \boldsymbol{X}_{(r)}^{s}\right\|^{2}
$$

3. find low dimensional instances preserving the reconstruction

$$
\sum_{r}\left\|\boldsymbol{z}^{r}-\sum_{s} \mathbf{W}_{r s} \boldsymbol{z}^{s}\right\|^{2}
$$

Manifold learning

Manifold learning

more manifold learning examples

Manifold learning

more manifold learning examples

机器学习／模式识别基础
小结

- 预测与识别
- 用数据定义＂模式＂
- 预测算法
- 特征提取

