
Data Mining for M.Sc. students, CS, Nanjing University
Fall, 2014, Yang Yu

Lecture	
 3:	
 Machine	
 Learning	
 I
Supervised	
 Learning	
 &	
 Basic	
 Algorithms

http://cs.nju.edu.cn/yuy/course_dm14ms.ashx

http://cs.nju.edu.cn/yuy/course_dm12ms.ashx
http://cs.nju.edu.cn/yuy/course_dm12ms.ashx

Position

f

f ’

< x,f(x) >
< x,f(x) >

< x,f(x) >

< x,f(x) >

< x,f(x) >
algorithm

we are here

The desire of prediction

The desire of prediction

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color

shape

weight

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

taste ?

Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

taste ?
price ?

Supervised learning/inductive learning

Find a relation between a set of variables
(features) to target variables (labels)
from finite examples.

tasks

Classification: label is a nominal feature

Regression: label is a numerical feature

Ranking: label is a ordinal feature

...

X ! {�1,+1}

f

Classification

(color, weight) → sweet ?

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

color

w
ei

g
h

t

ground-truth function

X ! {�1,+1}

f

Classification

(color, weight) → sweet ?

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

color

w
ei

g
h

t

–

+

–
–

–

–

–––

+

+
+

+

+

– –

ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

X ! {�1,+1}

f

Classification

(color, weight) → sweet ?

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

color

w
ei

g
h

t

–

+

–
–

–

–

–––

+

+
+

+

+

– –

ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

learning: find an fˊ that is close to f

f

X ! [0,+1]

Regression

(color, weight) → price

Features: color, weight
Label: price [0,1]

color

w
ei

g
h

t

ground-truth function

f

X ! [0,+1]

Regression

(color, weight) → price

Features: color, weight
Label: price [0,1]

color

w
ei

g
h

t

ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

f

X ! [0,+1]

Regression

(color, weight) → price

Features: color, weight
Label: price [0,1]

color

w
ei

g
h

t

ground-truth function

{(x1, y1), . . . , (xm, ym)}
yi = f(xi)

examples/training data:

learning: find an fˊ that is close to f

Learning algorithms

Decision tree

Neural networks

Linear classifiers

Bayesian classifiers

Lazy classifiers

...

Why different classifiers?

 heuristics

 viewpoint

 performance

Three basic algorithms

Probabilistic Model: Naive Bayes

f(x) =

8
><

>:

+1, P (y = +1 | x) > P (y = �1 | x)
�1, P (y = +1 | x) < P (y = �1 | x)
random, otherwise

f(x) = argmax

y
P (y | x)

Bayes rule

classification using posterior probability

for binary classification

in general

f(x) =

8
><

>:

+1, P (y = +1 | x) > P (y = �1 | x)
�1, P (y = +1 | x) < P (y = �1 | x)
random, otherwise

f(x) = argmax

y
P (y | x)

Bayes rule

classification using posterior probability

for binary classification

in general

= argmax

y
P (x | y)P (y)/P (x)

= argmax

y
P (x | y)P (y)

how the
probabilities be
estimated

f(x) = argmax

y
P (x | y)P (y)

P (y) P̃ (y) =
1

m

X

i

I(yi = y)

Naive Bayes

estimation the a priori by frequency:

P (red | sweet) = 1

P (half-red | sweet) = 0

P (not-red | sweet) = 0

P (sweet) = 4/13

P (red | not-sweet) = 0

P (half-red | not-sweet) = 4/9

P (not-red | not-sweet) = 5/9

P (not-sweet) = 9/13

Consider a very simple case

color taste ?

id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

Consider a very simple case

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

f(x) = argmax

y
P (x | y)P (y)

Consider a very simple case

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

f(x) = argmax

y
P (x | y)P (y)

P (red | sweet)P (sweet) = 4/13

P (red | not-sweet)P (not-sweet) = 0

Consider a very simple case

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

f(x) = argmax

y
P (x | y)P (y)

P (red | sweet)P (sweet) = 4/13

P (red | not-sweet)P (not-sweet) = 0

P (half-red | sweet)P (sweet) = 0

P (half-red | not-sweet)P (not-sweet) =

4

9

⇥ 9

13

=

4

13

Consider a very simple case

what the fˊ would be?

perfect
but not realistic

id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

f(x) = argmax

y
P (x | y)P (y)

P (red | sweet)P (sweet) = 4/13

P (red | not-sweet)P (not-sweet) = 0

P (half-red | sweet)P (sweet) = 0

P (half-red | not-sweet)P (not-sweet) =

4

9

⇥ 9

13

=

4

13

f(x) = argmax

y
P (x | y)P (y)

P (x | y) = P (x1, x2, . . . , xn | y)
= P (x1 | y) · P (x2 | y) · . . . P (xn | y)

P (y) P̃ (y) =
1

m

X

i

I(yi = y)

f(x) = argmax

y

˜

P (y)

Y

i

˜

P (xi | y)

Naive Bayes

estimation the a priori by frequency:

assume features are conditional independence given
the class (naive assumption):

decision function:

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 0, weight = 1) !

P (color = 3 | y = no)P (weight = 3 | y = no)P (y = no) = 0.33⇥ 0.33⇥ 0.6 = 0.06

P (color = 3 | y = yes)P (weight = 3 | y = yes)P (y = yes) = 0.5⇥ 0.5⇥ 0.4 = 0.1

f(y | color = 3, weight = 3) !

P (y = yes) = 2/5

P (y = no) = 3/5

P (color = 3 | y = yes) = 1/2

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) = 0

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) = 0

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

...

f(y | color = 0, weight = 1) !

P (color = 0 | y = yes) = (0 + 1)/(2 + 4)

P (y = yes) = (2 + 1)/(5 + 2)

P (color = 0 | y = no)P (weight = 1 | y = no)P (y = no) =
2

7
⇥ 1

8
⇥ 4

7
= 0.02

P (color = 0 | y = yes)P (weight = 1 | y = yes)P (y = yes) =
1

6
⇥ 1

7
⇥ 3

7
= 0.01

Naive Bayes

color weight sweet?

3 4 yes

2 3 yes

0 3 no

3 2 no

1 4 no

color={0,1,2,3} weight={0,1,2,3,4}

+

color sweet?

0 yes

1 yes

2 yes

3 yes

smoothed (Laplacian correction) probabilities:

f(y | color = 0, weight = 1) !

for counting frequency,
assume every event
has happened once.

O(mn)

O(n)

Naive Bayes

advantages:

disadvantages:

very fast:
 scan the data once, just count:
 store class-conditional probabilities:
 test an instance: (c the number of classes)

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)

O(mn)

O(n)

Naive Bayes

advantages:

disadvantages:

very fast:
 scan the data once, just count:
 store class-conditional probabilities:
 test an instance: (c the number of classes)

good accuracy in many cases
parameter free
output a probability
naturally handle multi-class

O(cn)

the strong assumption may harm the accuracy
does not handle numerical features naturally

Three basic algorithms

Nonparametric Model: Decision Tree

Consider a very simple case

color taste ?

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

f 0
=

(
sweet, color = red

not-sweet, color 6= red

Consider a very simple case

color taste ?

what the fˊ would be?
id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

f 0
=

(
sweet, color = red

not-sweet, color 6= red

Consider a very simple case

color taste ?

what the fˊ would be?

perfect
but not realistic

id color taste
1 red sweet
2 red sweet
3 half-­‐red not-­‐sweet
4 not-­‐red not-­‐sweet
5 not-­‐red not-­‐sweet
6 half-­‐red not-­‐sweet
7 red sweet
8 not-­‐red not-­‐sweet
9 not-­‐red not-­‐sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

Consider a very simple case

what the fˊ would be?id color taste
1 red sweet
2 red sweet
3 half-­‐red sweet
4 not-­‐red sweet
5 not-­‐red not-­‐sweet
6 half-­‐red sweet
7 red not-­‐sweet
8 not-­‐red not-­‐sweet
9 not-­‐red sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

+
–

+ +
+

+ +
–

–
+

red

half-red not-red

– –
–

Consider a very simple case

what the fˊ would be?id color taste
1 red sweet
2 red sweet
3 half-­‐red sweet
4 not-­‐red sweet
5 not-­‐red not-­‐sweet
6 half-­‐red sweet
7 red not-­‐sweet
8 not-­‐red not-­‐sweet
9 not-­‐red sweet
10 half-­‐red not-­‐sweet
11 red sweet
12 half-­‐red not-­‐sweet
13 not-­‐red not-­‐sweet

+
–

+ +
+

+ +
–

–
+

red

half-red not-red

– –
–

f 0
=

8
><

>:

sweet, color = red

sweet, color = half-red

not-sweet, color = not-red

not perfect
but how good?

f 0
=

8
><

>:

sweet, color = red

sweet, color = half-red

not-sweet, color = not-red

Consider a very simple case

+

–
+ +
+ + +

–
–

+

red half-red not-red

– –
–

sweet sweet not-sweet
+ + –

f 0
=

8
><

>:

sweet, color = red

sweet, color = half-red

not-sweet, color = not-red

Consider a very simple case

+

–
+ +
+ + +

–
–

+

red half-red not-red

– –
–

sweet sweet not-sweet
+ + –

training error: 1 2 2
(1+2+2)/13=0.3846

f 0
=

8
><

>:

sweet, color = red

sweet, color = half-red

not-sweet, color = not-red

Consider a very simple case

+

–
+ +
+ + +

–
–

+

red half-red not-red

– –
–

sweet sweet not-sweet
+ + –

training error: 1 2 2
(1+2+2)/13=0.3846

H(X) = �
X

i

ratio(classi) ln ratio(classi) = 0.6902

I(X; split) =
X

i
ratio(spliti)H(spliti)

=
4

13
0.5623 +

4

13
0.6931 +

5

13
0.6730 = 0.6452

Gain(X; split) = H(X)� I(X; split) = 0.045

information gain:
entropy before split:

entropy after split:

information gain:

A little more complex case
id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

– + ––– + ++++– – +
80 110

I(X; split) =
X

i
ratio(spliti)H(spliti)

=
5

13
0.5004 +

8

13
0.5623 = 0.5385

Gain(X; split) = H(X)� I(X; split) = 0.1517

A little more complex case

– + ––– + ++++– – +
80 110

H(X) = �
X

i

ratio(classi) ln ratio(classi) = 0.6902

training error:
(1+2)/13=0.2307

information gain:

for every split point

not-sweet sweet

I(X; split) =
X

i
ratio(spliti)H(spliti)

=
5

13
0.5004 +

8

13
0.5623 = 0.5385

Gain(X; split) = H(X)� I(X; split) = 0.1517

A little more complex case

– + ––– + ++++– – +
80 110

H(X) = �
X

i

ratio(classi) ln ratio(classi) = 0.6902

training error:
(1+2)/13=0.2307

information gain:
entropy before split:

entropy after split:

information gain:

for every split point

not-sweet sweet

f 0
=

(
sweet, weight > 95

not-sweet, weight  95

A little more complex case

what the fˊ would be?

the best split among all features

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

color v.s. best split of weight

f 0
=

8
><

>:

sweet, color = red

sweet, color = half-red

not-sweet, color = not-red

Use multiple features
color

shape

weight

place of origin

assortment

transport

preservation

growing period

weather

taste ?

price ?

find a model by find the best feature/best split

but only one feature/split is used

Use multiple features

color

not sweet

not red red

sweet

one feature model: decision stump

Use multiple features

color

not sweet

not red red

sweet

one feature model: decision stump

color

weight
not

sweet

not
sweet preservation

sweetnot
sweet

not red red

<100g >=100g

goodbad

hierarchical model uses many features: decision tree

feature

value range

decision

Decision tree model

color

weight
not

sweet

not red red

not
sweet

<100g >=100g

sweet

color

w
ei

g
h

t sweet

not
sweet

not
sweet

Decision tree model

color

weight
not

sweet

not red red

not
sweet

<100g >=100g

sweet

color

w
ei

g
h

t sweet

not
sweet

not
sweet

find a decision tree that matches the data

–

+

–
–

–

–

–––

+

+
+

+

+

– –

Top-down induction

color

not red red

function construct-node(data) :

1. feature, value ←split-criterion (data)

2. if feature is valid

3. subdata[] ← split(data, feature, value)

4. for each branch i

5. construct-node (subdata[i])

6. else

7. make a leaf

8. return
divide and conquer

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling
missing values

CART: gini index

Leo Breiman 1928-2005 Jerome H. Friedman

Ross Quinlan

IG = H(X)� 0.6132

IG = H(X)� 0.5514

Gini(X) = 1�
X

i

p2i

#left

#all
Gini(left) +

#right

#all
Gini(right)

IG = H(X)� 0.5192

Gini = 0.3438 Gini = 0.4427

Gini = 0.3667

Gini index

Gini index (CART):

–+ – – –
– – –– + +++ +– – –+ – – –

– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

Gini:

Gini after split:

Training error v.s. Information gain

–+ – – –
– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

training error is less smooth

Training error v.s. Information gain

–+ – – –
– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

training error: 4

training error: 4

training error is less smooth

Training error v.s. Information gain

–+ – – –
– – –– + +++ +– –

–+ – – –
– – –– + +++ +– –

training error: 4

training error: 4

IG = H(X)� 0.5192

IG = H(X)� 0.5514information gain:

information gain:

training error is less smooth

Non-generalizable feature

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

the system may not know
non-generalizable features

IG = H(X)� 0

Non-generalizable feature

id color weight taste
1 red 110 sweet
2 red 105 sweet
3 half-­‐red 100 sweet
4 not-­‐red 93 sweet
5 not-­‐red 80 not-­‐sweet
6 half-­‐red 98 sweet
7 red 95 not-­‐sweet
8 not-­‐red 102 not-­‐sweet
9 not-­‐red 98 sweet
10 half-­‐red 90 not-­‐sweet
11 red 108 sweet
12 half-­‐red 101 not-­‐sweet
13 not-­‐red 89 not-­‐sweet

the system may not know
non-generalizable features

IG = H(X)� 0

Gain ratio(X) =

H(X)� I(X; split)

IV (split)

IV (split) = H(split)

Gain ratio as a correction:

A regression case

color

price ?

what the fˊ would be to

minimize:

weight

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6

MSE =
1

n

X

i

(f(xi)� f

0(xi))
2

MSE =
1

n

X

i

(f(xi)� f

0(xi))
2

A regression case

for color feature:
red

half-red not-red

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6

12

10
8

11

10
8 7

12

5

6

15
9 6

what is the prediction value of each color to minimize
the mean square error?

MSE =
1

n

X

i

(f(xi)� f

0(xi))
2

A regression case

for color feature:
red

half-red not-red

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6

12

10
8

11

10
8 7

12

5

6

15
9 6

what is the prediction value of each color to minimize
the mean square error?

mean value

f 0
=

8
><

>:

10.25, color = red

9.25, color = half-red

8.2, color = not-red

A regression case

for color feature:
red

half-red not-red

id color weight price
1 red 110 12
2 red 105 10
3 half-­‐red 100 10
4 not-­‐red 93 15
5 not-­‐red 80 5
6 half-­‐red 98 8
7 red 95 8
8 not-­‐red 102 9
9 not-­‐red 98 6
10 half-­‐red 90 7
11 red 108 11
12 half-­‐red 101 12
13 not-­‐red 89 6

12

10
8

11

10
8 7

12

5

6

15
9 6

10.25

9.25 8.2

f 0 =

(
9.75, weight > 95

8.2, weight  95

A regression case

for weight feature:

9
80 110

10
12

107
6

8
11

8
5 156 12

mean: 8.2 mean: 9.75

MSE: 12.56 MSE: 3.6875

overall MSE: 7.1

for any split:

choose the split with minimal MSE

Split-criterion: stop

Stop criterion:
 no feature to use

Classification: examples are pure of class

Regression: MSE small enough

color

weight
not

sweet

not red red

not
sweet preservation

<100g >=100g

sweetnot
sweet

goodbad

Three basic algorithms

Linear Model: Logistic Regression

x = (x1, x2, . . . , xn)

Linear model

x = (x1, x2, . . . , xn)

Linear model

w1, w2, . . . , wn b

w1 · x1 + w2 · x2 + . . .+ wn · xn + b

x = (x1, x2, . . . , xn)

w =

f(x) = w

>
x+ b

Linear model

w1, w2, . . . , wn b

w1 · x1 + w2 · x2 + . . .+ wn · xn + b

x = (x1, x2, . . . , xn)

w =

f(x) = w

>
x+ b

Linear model

y

y = ax+ b

w1, w2, . . . , wn b

w1 · x1 + w2 · x2 + . . .+ wn · xn + b

y = ax+ b

y

y
y = w1 · x1 + w2 · x2 + b

Linear model

y = ax+ b

y

y
y = w1 · x1 + w2 · x2 + b

Linear model

y = w1 · x+ w2 · x2 + b

is the following a linear model?

Linear model

Rn+1model space:
we sometimes omit the bias

1. x is with a constant element

2. practically as good as with bias (centered data)

f(x) = w

>
x

f(x) = w

>
x+ b

y

x1

x2

· · ·
xn

output/response
variable basis

linear relationship
independent parameters

w

y 2 {�1,+1}

=

8
><

>:

+1, w

>
x+ b > 0

�1, w

>
x+ b < 0

random, otherwise

y(w>
x+ b) > 0

Linear classifier

f(x) = w

>
x+ b

sign(w>
x+ b) b

model space:

for classification

Rn+1

for an example , a correct
prediction means

we predict an instance by

(x, y)

w

b

x̄

+ =
1P

i:yi=+1 1

X

i:yi=+1

xi

x̄

� =
1P

i:yi=�1 1

X

i:yi=�1

xi

w = x̄

+ � x̄

�

b = �w

> · x̄
+ + x̄

�

2

Prototype

simple, but too restricted

w = 0

(x, y)

w = w + yx

Perceptron

X

i

wixi

f(⌃)

x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

x0
w0

f(x) = w

>
x+ b

feed training examples one by one

1.

2. for each example
 if sign(yw>

x) < 0

w = 0

(x, y)

w = w + yx

Perceptron

X

i

wixi

f(⌃)

x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

x0
w0

f(x) = w

>
x+ b

feed training examples one by one

1.

2. for each example
 if sign(yw>

x) < 0

@yw>
x

@w
= yx

gradient ascent

p(y | x,w) =
1

1 + e�y(w>
x)

w

>
x = log

p(+1 | x)
1� p(+1 | x)

Logistic regression

assume logit model: for a positive example

so that

p

y(w>
x+ b)

p(y | x,w) =
1

1 + e�y(w>
x)

w

>
x = log

p(+1 | x)
1� p(+1 | x)

Logistic regression

assume logit model: for a positive example

so that

p

y(w>
x+ b)

argmin

w

� log

mY

i=1

p(yi | xi,w) = �
X

i

log p(yi | xi,w)

=

X

i

log

⇣
1 + e�yi(w

>
xi)

⌘

minimize negative log-likelihood:

convex

argmin

w

X

i

log

⇣
1 + e�yi(w

>
xi)

⌘

w = w � ⌘
@
P

i log

⇣
1 + e�yi(w

>
xi)

⌘

@w

Optimization

objective function:

general optimization: gradient descent

argmin

w

X

i

log

⇣
1 + e�yi(w

>
xi)

⌘

w = w � ⌘
@
P

i log

⇣
1 + e�yi(w

>
xi)

⌘

@w

w = w � ⌘
@ log

⇣
1 + e�y(w>

x)
⌘

@w

Optimization

objective function:

general optimization: gradient descent

cheaper optimization: stochastic gradient descent

习题

监督学习的目标是否是最小化训练误差？

朴素贝叶斯假设是指数据的属性之间相互独立？

对于分类问题，当训练数据没有冲突时，决策树学习算法
是否一定能取得0训练错误率？（冲突样本：两个完全相同
的样本却被标记为不同类别）

决策树学习算法是否需要训练样本规范化
(normalization)？

Logistic regression是用于回归还是分类？

视频

Chapter 5

