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The desire of prediction




The desire of prediction

Potiobo | Description

Exchange | Fomat | Peniod
Futures

Back-Adusted Austiakan Dalar-CME (Floor+Electioric Combined]. Close to Close, Confirucus Contiact 1oling on Open Interest whenrteparted forcing rollon 7 days prorto exp CME Asci
Fures  Back-Adpsted Sopbean OI-CBT (FloorsElectronic Combined). Close to Close, Continuous Contract roling on Open nter

shen-teported forcing ol on 7 days pece to expirabs CBT  Asci
Futures

Back-Adusted Bitish Pound CME (FloorElectionic Combined), Close to Close., Continuous Cortiact roling cn Open Interest when-eponted forcing tollon 7 days prior to expirat CME  Asci
Futures  Back-Adjusted Com CBT (Floor+Eleciionic Combined). Close to Close, Continuous Conltract roling on Open Interest when-ieported forcing oll on 7 days prior o expiation ~ CBT  Asci
Fuures  Back-Adusted CocoaCSCE, Close to Close, Coninuous Conltract roling on Open st when-tepotted forcing roll on 7 days prior o expiation CSCE  Asci
Back Adsted Canadian Dol CME FlocrElectronic Conbined). Close to Close, Conlinuous Contiact roling on Dpen Itevest wheneported forcing ollon 7 days pror toexp CME Asci
Back-Adusted Cruds itLight NYMEX(Floors€ectronic Combined). Close to Close. Continuous Contiact roling on Open Irvesest when-eported forcing oll on 7 days prior to &s NYMEX.  Asci
Back-Adusted Colton #2-NYCE, Close to Close. Continuous Corlract toling on Open Interest whervreparted forcing roll on 7 days pror to expiation NYCE  Asci
grollon7 days pior o expiration  CME  Asci
ontinuous Contiact oling on Open Iterest wheneported forcing oll on 7 days piio to expiration FINEX  Asci
Back Adited Eurodoliar 3 Mth CME Globex{FlckElecirri Cambined), Close to Close, Conkinuous Contat oling o Open Interest whenegoted forcing roll on 7 days pik CME Asc
Back-Adusted LIBOR(1Mt} CME (Floor+E lectronic Combined), Close to Close. Continuous Contiact roling on Open Interest when-eported forcing rollon 7 days prior toexpirat CME Asci
ack-Aduusted SSP 500 Index £ i CME Close to Close, Continuaus Coniract rcling on Open Interest wheneparted forcing ol on 7 deys pictto expiation CME  Asci
Back-Adusted Caltle-Feeder.CME Floor+Eleciroric Combined), Close to Clase, Contruous Cortract roling on Open Interest when-reported forcing roll on 7 daye priorto expiral CME  Asci
Back-Adjusted Gl COMEXFloor+Electioric Combined), Close to ortinuous Contiact oling on Open Interest wheneported forcing foll on 7 days piior to expiration  COMEX.
Back Adpusted CoppeiHGCOMEXIFloctsElectroic Combined). Close to Close, Confinucus Contract oling on Open Interest whenveposted forcing roll on 7 days pror to exgira COMEX.
BackAdusted Heating O H2-NYMEX[Floor+E lectionic Combined), Close to Close, Contruous Cortract toling on Open Interest wherrrepoted forcing toll on 7 days priot to e NYMEX
Back:Adusted Japanese Yen-CME(FloorElectionic Combined). Close to Close. Cortinuous Contiact roling on Open Interest whervreported forcing ol on 7 days price to expit (NE
Back Adpsted Coffee CSCE. Close to Close, Continuous Contract oling on Open Interest whenteparted forcing oll on 7 days pior to expiration
Adjusted Lunber-CME (FloorsElectionic Eanbn:d\ 1o Close, Continuous Conlract raling on Open Interest wherreported forcing 1ol on 7 days prict 1o expitation th
Back:Adusted Cattle-Live(FloorsElectroric Combined}CME. Close to Close, Continuous Conlract rlling on Open Interest whenrteported forcing ol on 7 days prior o expialior CME
Back-Adusted Hogs LeaniFloorsElectroric Canvhnzd CME. Close to Close. Continuous Cortract roling on Open Interest wherreponed forcing roll on 7 days prior to expraios CME
Conliruous Contiact roling on Open Interest when teparted fercing ol on 7 days pior to expite CME.
Combined)-CME. Close to Close. Continuous Coriract raling on Open Interest wherrreported forcing 1ol on 7 days prio CME
P Adpasted Neturs Gas-Herwy HubNYMEXFlocE lctoric Conbined),Close t Close, Cortinucus Contact oing on Open Intcest whervepoted orcing ol on 7 days § NYMEX
Back-Adusted Dets-CBT (Floor+Electionic Combined). Close to Close, Continuous Contact roling on Open Inferest whenreported forcing rollon 7 days priorto expiration  CBT
BackAdusted Orange JuiceNYCE, Close to Close, Continuous Contiact oling on Open Iterest when-eparted forcing foll on 7 days pickto expitation NYCE
Back Adpusted Palladium NYMEX(Floor» Electonic Combined), Close to Close, Continuous Coniract roling on Open Interest when teported forcing o on 7 d
Back-Adpusted Pork Belies-CME, Close to Close, Contrwuous Conlract roling on Open Inerest when-teported forcing oll on 7 days priorto expiation
Fulues  Back:Adpisted PlatinumNYMEXIFlocro€
Ad

vior to expiati NYMEX
M

oric Combined). Close to Close, Conlinueus Conlract roling on Open Interest whenteparted foscing roll on 7 days prr to exgiratic NYMEX
Futres  Back-Ad Close to Close, Continuous Contract rling on Open Interest when-eported forcing ol on 7 days prios t NYMEX
Fures  BackAdusted Scybeans [Floor+Elecioric Combined)-CBT., Close to Close. Cortinuous Contiact roling on Open Interest whervtepoted forcing tol on 7 days price to expitation CBT
Futues  BackiAdusted Sugar #11NYCE FloorsElectioric Combined]. Close to Close, Confinuous Contract roling on Open Interest when-tepested forcng roll on 7 days pior to expiatic NYCE
Fulres  BackAdusted Sviss Franc-CME-{FloorsElectionic Combined), Close to Cose, Continuous Conlract oling on Open Interes! when+eported forcing ol on 7 days pior o expiati CME
Fues  BackAdusted Siver-COMEX(FloorsElectionic Combined), Close to Close, Continuous Coniract rolling on Open Interest wherrieported forcing roll on 7 days prior o expialion COMEX
Fures  BackAdpsted Sopbean MealCBT (FloorsElectionic Combined), Close to Close, Continuox pict to expi. CBT
Fules  BackAdusted St 500-CME FloorsElectionic Combined), Close to Close, Continuous Contract olling on Open Interest wherreported forcing 1l on 7 days pior o expicaion  CME
Fures  BackAdpsted T-NoteU.S. 10'Yr w/PriACBT (FloorsElechionic Combined)X. Cl
Fures  BackAdusted T-8ondU S -CBT(FloorsElectioric Combined). Close oy
Fulures  Back Adpisted Wheat C3T (Floor+Electrenic Combined), Close to Close. Contiuox

. Cortiruous Contract roling on Open Iterest whenveported forcing 1o on 7 days CBT
wous Conlract roling on Open Interest when-tepoted forcing rollon 7 days pior to expitatic CBT
s Contract roling on Open Interest whenreported forcing roll on 7 days prio to expiraion €8T Ascii




Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).
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Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).
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Predictive modeling

Find a relation between a set of variables
(features) to target variables (labels).

color place of origin

weight « _

shape

/ assortment

__—» transport

—> preservation
growing period
taste? / \\
price ? weather



Supervised learning/inductive learning

Find a relation between a set of variables
(features) to target variables (labels)
from finite examples.

~ Classification: label is a nominal feature

Regression: label is a numerical feature

tasks <
Ranking: label is a ordinal feature




Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

1 (color, weight) — sweet ?
_ el X —{—-1,4+1}
'go l' ~‘\

'qg y ground-truth function f




Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)
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N+ s ; ground-truth function f
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color i = e



Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

weight

o® (color, weight) — sweet ?
JJUSTER @ ... © X — {-1,+1}
e O |
N+ s ; ground-truth function f
\~~~ a a /l
o ) N examples,/training data:
1 > {(wlayl)w")(wm)ym)}
color i = f()

learning: find an f* that is close to f



Regression

Features: color, weight
Label: price [0,1]

1 (color, weight) — price
X — |0, +1]
5
'qg ground-truth function f

color



Regression

Features: color, weight
Label: price [0,1]

1 o (color, weight) — price
@ ® @ X — |0, +1]
o @9 |
I3 ground-truth function f
2 P ® O
® ] ining data:
e ® examples/training data:

> {(wl,y1),--->($maym)}
color i = e




Regression

Features: color, weight
Label: price [0,1]

A O (color, weight) — price
® O X =0, +1]

ground-truth function f

weight
O
O

e ® examples/training data:

> {(w1,y1),---7($maym)}
color i = e

learning: find an f* that is close to f



Learning algorithms

Decision tree

Neural networks Why different classifiers?
Linear classifiers heuristics
Bayesian classifiers viewpoint

Lazy classifiers performance



Three basic algorithms

Probabilistic Model: Naive Bayes



Bayes rule

classification using posterior probability

for binary classification
_|_17 P(y = +1 | ZB)
flz) =< -1, Py =+1| z)

random, otherwise

P

y=—1]|x)
P(y

—1]z)

>
<

in general

f(z) = ATg max P(y | =)



Bayes rule

classification using posterior probability

for binary classification

+1, Ply=+1|z)>Ply=-1|=)
@) =-1,  Ply=-+1]2)<Ply=—1|a
random, otherwise
in general
f(x) = argmax P(y | @)
Y how the
— arg max P(ili y)P(y)/P(w) probabilities be
Yy estimated
— arg max P(ZE y)P(y)

Y



Naive Bayes

f(z) = ATg max Pz | y)P(y)

estimation the a priori by frequency:

P(y) & Ply) = - 3 Ty =)



Consider a very simple case

color
__id | color | taste |
1 red sweet
2 red sweet
3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet
8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

> taste ?

P(red | sweet) =1
P(half-red | sweet) = 0

T

not-red | sweet) = 0
sweet) = 4/13

red | not-sweet) = 0
P(half-red | not-sweet) = 4/9
P(not-red | not-sweet) = 5/9
P(not-sweet) = 9/13

T T

(
(
(
(
(
(
(
(



Consider a very simple case

LDOO\IO\U‘I-bUJNHH

N N ol
w N P O

red
red
half-red
not-red
not-red
half-red
red
not-red
not-red
half-red
red
half-red
not-red

sweet
sweet
not-sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet

what the /* would be?

flz) = arg;naxP(w | y)P(y)



Consider a very simple case

id color taste

1 red sweet

2 red sweet

3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet

8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

what the /* would be?

flz) = arg;naxp(az | y)P(y)

P(red | sweet)P(sweet) = 4/13
P(red | not-sweet) P(not-sweet) = 0



Consider a very simple case

id color taste

1 red sweet

2 red sweet

3 half-red not-sweet
4 not-red not-sweet
5 not-red not-sweet
6 half-red not-sweet
7 red sweet

8 not-red not-sweet
9 not-red not-sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet

what the /* would be?

f(z) = argmax P(z | y)P(y)

P(red | sweet)P(sweet) = 4/13
P(red | not-sweet) P(not-sweet) = 0

Yy

P(half-red | sweet) P(sweet) = 0

P(half-red | not-sweet ) P(not-sweet) =

O~
X
I



Consider a very simple case

id color taste

L red sweet what the /* would be?

2 red sweet

3 half-red not-sweet

4 not-red not-sweet _

5 not-red not-sweet f(CC) o arg maXP(w | y)P(y)
6 half-red not-sweet

7 red sweet

8 not-red not-sweet

9 notred  not-sweet P(red | sweet)P(sweet) = 4/13

10 Tl | mereneer P(red | not-sweet) P(not-sweet) = 0
11 red sweet

12 half-red not-sweet

13 not-red not-sweet

P(half-red | sweet) P(sweet) = 0

9 4
X ==
13 13

O W~

P(half-red | not-sweet ) P(not-sweet) =

perfect
but not realistic



Naive Bayes

flx) = ATg max Pz | y)P(y)

estimation the a priori by frequency:

P(y) & Ply) = - 3 Ty =)

assume features are conditional independence given
the class (naive assumption):

P(z|y) = P(x1,72,...,7, | Y)

decision function:

f(z) = argmax P(y) | | P(z: | y)

Y i



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

no P(color =3 |y =yes) =1/2

no

T T
: 4 P(y = yes) = 2/3
2 3 yes P(y =no) =3/5
0 3
3 2
1 4

no



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06

f(y | color = 0,weight =1) —



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

BT T T
3 4 yes P(y — yes) — 2/5
2 3 yes P(y:no) 23/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no) P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06

f(y | color =0, weight =1) —

P(color =0 |y = yes)P(weight =1 |y = yes)P(y = yes) =0
P(color =0 |y =no)P(weight =1 |y =no)P(y =no) =0



Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}
"o | wege | et .

es
v +

no

yes

yes

w N = O

no

3
2
0
3

yes
1

A N W W s

no

smoothed (Laplacian correction) probabilities:

P(color =0 |y =yes) = (0+1)/(2+4) for counting frequency,
assume every event

Py =yes) = (2+1)/(5+2) has happened once.

f(y | color =0, weight =1) —
P(color =0 | y = yes)P(weight =1 | y = yes)P(y = yes) = % X % X g = 0.01
P(color =0 | y = no)P(weight =1 | y = no)P(y = no) = % X % X % = 0.02



Naive Bayes

advantages:
very fast:

scan the data once, just count: O(mn)
store class-conditional probabilities: O(n)
test an instance: O(cn) (c the number of classes)

good accuracy in many cases
parameter free

output a probability
naturally handle multi-class

disadvantages:



Naive Bayes

advantages:
very fast:

scan the data once, just count: O(mn)
store class-conditional probabilities: O(n)
test an instance: O(cn) (c the number of classes)

good accuracy in many cases
parameter free

output a probability
naturally handle multi-class

disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally




Three basic algorithms

Nonparametric Model: Decision Tree



Consider a very simple case

color

O 00 N o Ll p W N B

e N o
w N -, O

red
red
half-red
not-red
not-red
half-red
red
not-red
not-red
half-red
red
half-red
not-red

sweet

sweet
not-sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet

> taste ?

what the f* would be?



Consider a very simple case

color

O 00 N o Ll p W N B

e N o
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red
red
half-red
not-red
not-red
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red
not-red
not-red
half-red
red
half-red
not-red

sweet

sweet
not-sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet

> taste ?

what the f* would be?

/
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sweet,

not-sweet,

color = red
color # red



Consider a very simple case

color

O 00 N o Ll p W N B

e N o
w N -, O

red
red
half-red
not-red
not-red
half-red
red
not-red
not-red
half-red
red
half-red
not-red

sweet
sweet
not-sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet
not-sweet
sweet
not-sweet
not-sweet

> taste ?

what the f* would be?

/

\

sweet, color = red
not-sweet, color # red
perfect

but not realistic



Consider a very simple case
o L et what the f* would be?

1 red sweet

2 red sweet

3 half-red sweet red

4 not-red sweet

5 not-red not-sweet a a

6 half-red sweet a

7 red not-sweet half-red S not-red
8 not-red not-sweet

9 not-red sweet a a a
10 half-red not-sweet ° a °
11 red sweet a a °
12 half-red not-sweet

not-red not-sweet

=
w



Consider a very simple case

__id | color | taste |
1 red sweet
2 red sweet
3 half-red sweet
4 not-red sweet
5 not-red not-sweet
6 half-red sweet
7 red not-sweet
8 not-red not-sweet
9 not-red sweet
10 half-red not-sweet
11 red sweet
12 half-red not-sweet
13 not-red not-sweet
sweet, color
/ -
f' = < sweet, color
not-sweet, color

what the / would be?

red

@

o ©

half-red

¢
©e

not-red

&
© ©

red

not perfect
halt-red but how good?
not-red



Consider a very simple case

red
fsweet, color = red a
"= { sweet, color = half-red @ @
| not-sweet, color = not-red (—)

half-red

not-red

&
© ©

not-sweet



Consider a very simple case

red
fsweet, color = red 9
"= { sweet, color = half-red @ @
| not-sweet, color = not-red (—)
sweet
training error: 1

(1+2+2)/13=0.3846

half-red
©o
S
©

sweet

2

not-red

&
© ©

not-sweet

2



Consider a very simple case

red half-red not-red
(sweet, color = red 9 a a
"= { sweet, color = half-red a 9 Q a 9 a
| not-sweet, color = not-red (—) e e e
sweet sweet not-sweet
& &
training error: 1 2 2

(1+2+2)/13=0.3846

information gain:
entropy before split: H(X) = — Z ratio(class;) Inratio(class;) = 0.6902

entropy after split: I(X;split) = Z ratio(split;) H (split;)

4 4 5
i e = 05623+ - 0.6931 + —=0.6730 = 0.6452
information gain: 30-0023 + 130.6931 4 50.6730 = 0.645

Gain(X; split) = H(X) — I(X;split) = 0.045



A little more complex case
_id_| color | weight _

1 _ 110 sweet
2 - 105 sweet
3 - 100 sweet
4 - 93 sweet
5 - 80 not-sweet
6 - 98 sweet
7 - 95 not-sweet
8 - 102 not-sweet
9 - 98 sweet
10 - 90 not-sweet
11 - 108 sweet
12 - 101 not-sweet
13 - 89 not-sweet

— co—go e —coo—

80 110




A little more complex case

—©

80 not-sweet ' sweel 110

for every split point

training error:
(1+2)/13=0.2307

information gain:
H(X)=-— Z ratio(class;) Inratio(class;) = 0.6902
I(X;split) = Z ratio(split;)H (split;)

D 8
= —0.5004 4+ —0.5623 = 0.5385
130 5004 + 13

Gain(X; split) = H(X) — I(X;split) = 0.1517



A little more complex case

—©

80 not-sweet ' sweel 110

for every split point

training error:
(1+2)/13=0.2307

information gain:
entropy before split: H(X) = — Z ratio(class;) Inratio(class;) = 0.6902

entropy after split: I(X;split) = Y~ ratio(split;)H (split;)
5

8
= —0.5004 + 1—30.5623 = (0.5385

information gain: 13

Gain(X; split) = H(X) — I(X;split) = 0.1517



A little more complex case

] PR T R R color v.s. best split of weight
2 red 105 sweet

3 half-red 100 sweet

4 not-red 93 sweet

5 not-red 80 not-sweet Sweet, COIOI' — red

6 half-red 98 sweet ,

7 red 95 not-sweet ' = 4 sweet, color = half-red
8 not-red 102 not-sweet

o sp— 08 cweet not-sweet, color = not-red
10 half-red 90 not-sweet / ]

11 red 108 sweet f, Sweet, Welght > 95
12 half-red 101 not-sweet — .

13 not-red 89 not-sweet \not—sweet, Welght S 95

what the f* would be?
the best split among all features



Use multiple features

color

shape \ / / assortment

fransport
/ P

place of origin

weight

—3) preservation

~ ~
taste ? / \

price ? weather

growing period

find a model by find the best feature/best split

but only one feature/split is used



Use multiple features

one feature model: decision stump

not red red
( not sweet ( sweet )




Use multiple features

one feature model: decision stump

not red red
( not sweet ( sweet )

hierarchical model uses many features: decision tree

feature -------""""""
¢’7
¢¢¢‘V >=100g
decision . J
preservation
bad good

not
sweet
sweet




Decision tree model

A

g ' sweet

= :

o0 not poTmmmmees

= sweet !
' Nnot
 sweet
: >

color




Decision tree model

weight
g0
=
=
e
S

find a decision tree that matches the data



Top-down induction

not red &ed

function construct-node(data) :

1. feature, value <split-criterion (data)

2. if feature is valid

3. subdatal] < split(data, feature, value)
4. for each branch i

5. construct-node (subdatalil)

6. else

/. make a leaf

8. return divide and conquer



Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling
missing values

Ross Quinlan

CART: gini index

Leo Breiman 1928-2005

/
7

Jerome H. Friedman



Gini index

Gini index (CART)
Gini: Gini(X) =1 — sz
Gini after split: j:zft Gini(left) + #;iﬁlt Gini(right)

1G = H( )—05192 IG=H(X —06132
Gini = 0.3438 Gint = 0. 4427

e e & Bane

IG = H(X) — 0.5514
Gini = 0.3667



Training error v.s. Information gain

805450 0000,

training error is less smooth



Training error v.s. Information gain

training error: 4

805450 0000,

training error: 4

training error is less smooth



Training error v.s. Information gain

training error: 4

information gain: 1G = H(X) — 0.5192

2 05 AS° SHRP -

training error: 4

information gain: IG = H(X) — 0.5514

training error is less smooth



Non-generalizable feature

| _id | _color | weight | taste

1 red 110 sweet

2 red 105 sweet

3 half-red 100 sweet the SYStem may IIOt kl’lOW
S Ryl N s non-generalizable features
5 not-red 80 not-sweet

6 1alf-red 98 sweet

7 red 95 not-sweet

8 not-red 102 not-sweet IG — H(X) — O

9 not-red 98 sweet

10 half-red 90 not-sweet

11 red 108 sweet

12 half-red 101 not-sweet

13 not-red 89 not-sweet



Non-generalizable feature

| id | color | weight | taste
1 red 110 sweet
2 red 105 sweet
3 half-red 100 sweet the SYStem may IIOt kl’lOW
SN S N non-generalizable features
5 not-red 80 not-sweet
6 1alf-red 98 sweet
7 red 95 not-sweet
8 not-red 102 not-sweet IG — H(X) — O
9 not-red 98 sweet
10 half-red 90 not-sweet
11 red 108 sweet
12 half-red 101 not-sweet
13 not-red 89 not-sweet

(ain ratio as a correction:
H(X) — I(X;split)
IV (split)

Gain ratio(X) =

IV (split) = H (split)



A regression case

color —

_ | > PIl ?
weight «— price
“mmm

1 red 110 what the / would be to
2 red 105 10

3 half-red 100 10 minimize:

4 not-red 93 15

5 not-red 80 5 1

6 half-red 98 8 / 2
7 red 95 8 MSE — E Z(f(xz) - f (wz))
8 not-red 102 9 1

9 not-red 98 6

10 half-red 90 7

11 red 108 11

12 half-red 101 12

13 not-red 89 6



A regression case
m-mmm for color feature:

1 red 110

2 red 105 10 red
3 half-red 100 10

4 not-red 93 15

5 not-red 80 5

6 half-red 98 8 half-red not-red
7 red 95 8

8 not-red 102 9

9 not-red 98 6

10 half-red 90 7

11 red 108 11

12 half-red 101 12

13 not-red 89 6

what is the prediction value of each color to minimize
the mean square error?

MSE = l Z(f(ﬂi‘z) — f’(fl?z'))2

n =
()



A regression case
m-mmm for color feature:

1 red 110
2 red 105 10 red
3 half-red 100 10
4 not-red 93 15
5 not-red 80 5
6 half-red 98 8 half-red not-red
7 red 95 8
8 not-red 102 9
9 not-red 98 6
10 half-red 90 7
11 red 108 11
12 half-red 101 12
13 not-red 89 6

what is the prediction value of each color to minimize
the mean square error?

MSE = 1 Z(f(x’i) — f(x;))? mean value

n =
i



A regression case
N REENEEEENIEN £or color feature:

1 red 110 12
2 red 105 10 red
3 half-red 100 10
4 not-red 93 15
5 not-red 80 5
6 half-red 98 8 half-red not-red
7 red 95 8
8 not-red 102 9 10.25
9 not-red 98 6
10 half-red 90 7
11 red 108 11
12 half-red 101 12 9.25 8.2
13 not-red 89 6 .

10.25, color = red

/ .
f'=149.25, color = half-red
8.2, color = not-red




A regression case

for weight feature:
for any split:

DR

110

mean: 8.2 mean: 9.75
o <f9.75, weight > 95
|82, weight <95

MSE: 12.56 MSE: 3.6875
overall MSE: 7.1

choose the split with minimal MSE



Split-criterion: stop

preservatiora

bad good

Stop criterion: swee

no feature to use
Classification: examples are pure of class

Regression: MSE small enough



Three basic algorithms

Linear Model: Logistic Regression



Linear model

r = (x1,To,...,Tn)



Linear model

r = (x1,To,...,Tn)
Wi, W, ..., W, b
< =

wi -1 +we -To+...+w, T, +0b



Linear model

r = (x1,To,...,Tn)
W= w,w,..., W, b
< =

wi -1 +we -To+...+w, T, +0b

flx)=w'z+1b



Linear model

r = (x1,To,...,Tn)
W= w,w,..., W, b
< =

wi -1 +we -To+...+w, T, +0b

flx)=w'z+1b

y=axr—+0b




Linear model

y=ax +b

Y =Wy T]+wg xT2+0b




Linear model

y=ax +b

Yy =wy Ty + wy T2+

is the following a linear model?

y=wy T+ wy x°+0b



Linear model

L1
Y ~
flx)=w'z+0b
Ln
output/response linear relationship _
variable independent parameters basis

model space: R**!
we sometimes omit the bias

fl)=w'z
1. zis with a constant element
2. practically as good as with bias (centered data)



[Linear classifier

model space: R"+!
fl®)=w'z+0b A
for classificationy € {—1,+1} .

we predict an instance by y
sign(w ' « + b)
(11, w'z+b>0

=< —1, w'z+b<0

| random, otherwise

for an example (x,y), a correct
prediction means

y(w ' x +b) >0



Prototype

simple, but too restricted




Perceptron

feed training examples one by one
l. w=0

2. for each example (x,y)
if sign(yw'x) <0

w=w +yx




Perceptron

feed training examples one by one
l. w=0

2. for each example (x,y)
if sign(yw'x) <0

w=w +yx

gradient ascent
Oyw ' x
ow

:yw



Logistic regression

assume logit model: for a positive example

1 1
wTz = log p(+1 | z)
1 —p(+1 | x) o8]
P 0.6
h ( ‘ ) B 1 0.4]
SO t at p y ij - 1 _|_ e_y(wTw) 0.21

0

10



Logistic regression

assume logit model: for a positive example

1 1
wTz = log p(+1 | z)
1 —p(+1 | x) 08y
p 0.61
hat ply | #,w) = s
SO t at p y waw - 1 _|_ e—y(’wTiB) 0.21

-10

minimize negative log-likelihood:

arg min — log Hp(yz' | T, w) = — Zlogp(yi | T, w)

1=1

=Y log (14 et =)

12

0

Lo N IS [e)) [o+]

10

0 5

convex

10



Optimization

objective function:
.
arg min lo (14—6_%(“’ ‘”’L’))
31 Z g

general optimization: gradient descent

0y log (1+ e vilwen)
ow

w=w—71



Optimization

objective function:
-
ar ming lo (14—6_%(“’ "’i))
gw : g

general optimization: gradient descent

0y log (1+ e vlwen)
Ow

w=w-—7m
cheaper optimization: stochastic gradient descent

0 log (1 + e_y(wT‘”))
ow

w=w-—71n
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Logistic regression AT E)IELZE R IE?
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