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Abstract—As a kind of model-based optimization framework,
the sampling-and-classification (SAC) algorithms, where the
model is specified to be a classifier, has been recently studied
in both theoretical foundation and algorithm implementation.
However, the previous work only studied SAC algorithms in real
domains. While significant progresses of theoretical evolutionary
algorithm have been developed major in discrete domains, it
is interesting to understand the SAC algorithms also in finite
discrete domains.

This paper studies the (ε, δ)-query complexity of SAC algo-
rithms, which measures how soon can an algorithm obtain a so-
lution with the desired approximation quality with a probability.
Some classical pseudo-Boolean problems are employed to probe
the SAC algorithms, including OneMax problem, linear pseudo-
Boolean functions, LeadingOnes problem, and Trap problem. The
theoretical results disclose that SAC algorithms can achieve a
small complexity for approximating these problems. Moreover,
an implementation of the SAC framework, the RACOS algorithm,
is compared with the well-analyzed (1+1)-EA on these problems.

I. INTRODUCTION

Difficult optimization tasks are often encountered in nu-
merous real-world applications and are at the core place in
many fields. Evolutionary algorithms (EAs) are perhaps the
largest family of heuristic optimization algorithms, covering
genetic algorithms, evolutionary programming, evolutionary
strategies, particle swarm optimization, ant colony optimiza-
tion, estimation of distribution algorithms, etc. Evolutionary
algorithms, which belong to black-box search algorithms,
are direct search algorithms and can be applied to tackle
the optimization tasks. They have been reported to achieve
many successful applications. Besides the showcases, it is
equally important to theoretically understand this kind of
algorithms, in order to further improve their performance. In
recent decades, theoretical studies of evolutionary algorithms
have made a significant leap, including the development of
analyzing techniques (e.g., [1], [2], [3], [4]), the analyzed
problems (e.g., [5], [6]), the algorithm components (e.g., [7],
[8], [9], [10], [11], [12]), the performance evaluations (e.g.,
[13], [6], [14], [15], [16], [17]). In addition, some progresses
have been aggregated in recent books [18], [19], [20].
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Some model-based optimization methods, such as estima-
tion of distribution algorithms [21] and the cross-entropy
method [22], can be abstracted as a sampling-and-learning
framework [23], [24], which mainly consists of the cycle of
a sampling step and a learning step. In the sampling step, it
generates solutions from a model (or a distribution), which is
initially an uniform distribution over the solution space. In the
learning step, it learns a model from the solutions together
with their fitness values. For the ease of analysis, the case
where the learning model is a binary classification model has
been studied [24], which forms the sampling-and-classification
(SAC) algorithms. In machine learning, classification is a
subtype of learning that classifies a sample into one of the
candidate classes. In SAC algorithms, the binary classification
is used to classify the solutions into two classes, i.e., the
good (or positive) and the bad (or negative). The resulting
classification model splits the whole solution space completely
into two disjoint regions, one for the good solutions and the
other for the bad solutions. Then in the sampling step, a SAC
algorithm samples from the region of the good solutions.

The (ε, δ)-query complexity discloses the number of fitness
evaluations, which is considered as the core complexity of
evolutionary algorithms, for achieving solutions with ε additive
approximation quality with probability 1− δ. The (ε, δ)-query
complexity can reflect closely what evolutionary algorithms
are expected in practice: obtaining a satisfactory solution, but
may not be an optimal one, after multiple trials. In [24], the
performance of SAC algorithms on Sphere function and the
Spike function was derived. In [25], two critical factors related
to the performance of SAC algorithms were identified, and
following that, a SAC algorithm named RACOS was designed.
However, previous studies mainly focused on studying SAC
algorithms in real domains, it is also interesting to understand
their performance in finite discrete domains.

In this paper, we conduct theoretical analysis of the
classification-based optimization method, a kind of simpli-
fied SAC algorithms, on some classical discrete problems,
including OneMax problem, linear pseudo-Boolean functions,
LeadingOnes problem, and Trap problem. The theoretical
results show that the classification-based optimization method
can be efficient approximation optimizers, as their (ε, δ)-query
complexities are all in the order of O(n log n) ignoring the ε
and δ. We also empirically studied the RACOS algorithm by



comparing with (1+1)-EA on OneMax and LeadingOnes prob-
lems, which shows that the implementation of such method
can also be efficient.

The rest of this paper is organized in 4 sections, sequen-
tially presenting the preliminaries, theoretical analysis results,
experimental results, and conclusion.

II. PRELIMINARIES

A. Problems and Performance Evaluation
In this paper, we always consider general minimization

problems in finite discrete domains. Let X denote the fi-
nite discrete solution space which is a subset of Rn, and
f : X → R denote a minimization problem. It will not affect
the generality that the investigated problems are restricted to
minimization problems throughout the paper, since all maxi-
mization problems can be mapped to minimization problems
by multiplying the objective (fitness) function by −1. Since
X ⊆ Rn is finite, there always exist x∗, x′ ∈ X such that
f(x∗) = minx∈X f(x), f(x′) = maxx∈X f(x). In a nutshell,
the investigated problems in this paper can be summarized as
Definition 1.

Definition 1 (Minimization Problem) A minimization problem
consists of a finite discrete solution space X ⊆ Rn and a
function f : X → R. The goal is to find a solution x∗ ∈ X
such that f(x∗) ≤ f(x) for all x ∈ X .

For evaluating the optimization performance, we will apply
the (ε, δ)-query complexity (Definition 2) [24], [25]. The (ε, δ)-
query complexity counts the total number of calls to the ob-
jective function by an algorithm before it finds a solution that
reaches the additive approximation level ε, with probability
at least 1 − δ. However, for discrete domains, there may not
exist a corresponding solution at arbitrary approximation level.
Therefore, we assume that ε can only be chosen from the finite
set E = {f(x)− f(x∗) | ∀x ∈ X}, where 0 ∈ E.

Definition 2 ((ε, δ)-Query Complexity) Given a minimization
problem f , an algorithm A, 0 < δ < 1 and ε > 0, the (ε, δ)-
query complexity is the number of calls to f such that, with
probability at least 1−δ,A finds at least one solution x̃ ∈ X ⊆
Rn satisfying

f(x̃)− f(x∗) ≤ ε,
where f(x∗) = minx∈X f(x).

The (ε, δ)-query complexity closely reflects our intuitive
evaluation of EAs in real-world practice, where we expect
EAs to achieve some good enough solutions with a suffi-
cient large probability. Definition 2 indicates that the (ε, δ)-
query complexity characterizes the optimization performance
of an algorithm via the approximation level parameter ε, the
confidence parameter δ, and the solution space dimension
parameter n. Let poly(·) denote the set of all polynomials
w.r.t. the related variables, and superpoly(·) denote the set
of all functions that grow faster than any function in poly(·)
w.r.t. the related variables. Given a minimization problem f ,
if the (ε, δ)-query complexity of an algorithm A belongs to
poly( 1

ε ,
1
δ , n), we say that f can be efficiently approximated

by A.

B. Classification-Based Optimization Method

Among a diverse range of methods that can handle
the minimization problems formalized in Definition 1, a
classification-based optimization method [25], which is in-
spired from the statistical view of EAs, is recently proposed.
The classification-based optimization method is theoretically
grounded and has a desirable performance for a large range of
problems. This method is a simplified version of the sampling-
and-classification (SAC) framework proposed in [24].

As most of EAs, the classification-based optimization
method assumes that only an oracle of the objective function
is accessible, i.e., given any solution x ∈ X , an algorithm can
query the oracle to obtain f(x). In the paper, we assume that,
given f , lower and upper bounds of f are known. Let Mf and
Mf be its lower and upper bounds, respectively. For a subset
D ⊆ X , let #D =

∑
x∈X I[x ∈ D], where I[·] is the indicator

function. Define |D| = #D/#X and thus |D| ∈ [0, 1].
Let Dα = {x ∈ X | f(x) ≤ α} for α ∈ [Mf ,Mf ], and
Dε = {x ∈ X | f(x)− f(x∗) ≤ ε} for ε > 0.

A hypothesis (or a classifier) h is a function mapping the
solution space X to {−1,+1}. Let H ⊆ {h : X → {−1,+1}}
be a hypothesis space consisting of candidate hypotheses h.
Let Dh = {x ∈ X |h(x) = +1} for any hypothesis h ∈ H,
i.e., the positive class region represented by h. Denote UX and
UDh

the uniform distribution over X and Dh, respectively, and
denote Th the distribution defined on Dh induced by h. Let
sign[v] be the sign function that returns 1 if v ≥ 0 and −1
otherwise.

Algorithm 1 Classification-Based Optimization
Input:

f : Objective function to be minimized;
C: A binary classification algorithm;
H: Hypothesis space;
λ ∈ (0, 1): Balancing parameter;
α1 > . . . > αT : Threshold for labeling;
T ∈ N+: Number of iterations;
m ∈ N+: Sample size in each iteration.

Procedure:
1: Collect S0 = {x1, . . . , xm} by i.i.d. sampling from UX
2: Let x̃ = argminx∈S0

f(x)
3: for t = 1 to T do
4: Construct Bt = {(x1, y1), . . . , (xm, ym)},

where xi ∈ St−1 and yi = sign[αt − f(xi)]
5: Classification phase: ht = C(Bt), where ht ∈ H
6: Let St = ∅
7: for i = 1 to m do

8: Sample xi from

{
UDht

, with probability λ
UX , with probability 1− λ

9: Let St = St ∪ {xi}
10: end for
11: x̃ = argminx∈St∪{x̃} f(x)
12: end for
13: return x̃ and f(x̃)



The classification-based optimization [25] is presented in
Algorithm 1. It starts from a set of uniformly generated
solutions (line 1), and then a cycle (lines 3 to 12) is followed.
In each iteration, the algorithm queries the objective function
to assess the generated solutions, and forms a binary classi-
fication data set Bt (line 4), where a threshold αt is used
to label the solutions as positive and negative according to
sign[αt − f(x)]. In the classification phase (line 5), a binary
classifier is trained on Bt, in order to approximate the region
Dαt

= {x ∈ X | f(x) ≤ αt}. During the sampling phase
(lines 7 to 10), solutions are generated via sampling with
probability λ from UDh

(the uniform distribution over the pos-
itive region classified by h), i.e., setting Th = UDh

, and with
the remaining probability from UX (the uniform distribution
over X). It is worthwhile to point out that sampling from the
distribution UDh

may imply sampling from the potential good
region learned by h. The parameter λ is applied to balance the
local and global search. Note that an efficient sampling from
an arbitrary region is nontrivial, in our specific implementation
of the classification-based optimization method that will be
mentioned later, uniform sampling within the positive region
Dh is straightforward and efficient. Throughout the procedure,
the best-so-far solutions are recorded (line 2 and line 11), and
the best one will be returned as the output solution (line 13).

C. Previous Theoretical Results

For the minimization problems, previous work [25] has
derived a general (ε, δ)-query complexity bound of the
classification-based optimization method. The bound reveals
that the performance of the classification-based optimization
method directly depends on two critical factors of the classi-
fication models: the error-target dependence and the shrinking
rate. Since the theoretical results of this paper are based on the
aforementioned general performance bound, in this section, we
will introduce these two critical factors and present the general
bound.

Definition 3 (Error-Target θ-Dependence) The error-target
dependence θ ≥ 0 of a classification-based optimization algo-
rithm is its infimum such that, for any ε > 0 and any t,

|Dε| · |Dαt∆Dht | − θ|Dε|
≤ |Dε ∩ (Dαt∆Dht)|

≤ |Dε| · |Dαt∆Dht |+ θ|Dε|,

where the operator ∆ is the symmetric difference of two sets
defined as A1∆A2 = (A1 ∪A2)− (A1 ∩A2). It characterizes,
when sampling a solution x from UX , the dependence between
the random variable that whether x ∈ Dαt

∆Dht
and the

random variable that whether x ∈ Dε.
Definition 3 characterizes the dependence between the clas-

sification error and the target region. The smaller θ indicates
that they are more independent, and when θ = 0, they are
totally independent. It would be desirable that the classification
error and the target region is independent, such that sampling
from the positive region induced by the classifier may obtain
solutions in the target region.

Definition 4 (γ-Shrinking Rate) The shrinking rate γ >0 of a
classification-based optimization algorithm is its infimum such
that |Dht

|≤γ|Dαt
| for all t.

Definition 4 characterizes how large the positive region
induced by the classifier. The smaller γ indicates the smaller
the positive region. When the dependence between the classifi-
cation error and the target region is low, it would be desirable
that the positive region is small, so that the probability of
sampling within the target region could be high.

Let Dt = λUDht
+ (1 − λ)UX denote the sampling

distribution at iteration t, RDt
denote the generalization error

(the expected misclassification rate) of ht ∈ H w.r.t. the target
function under the distribution Dt. Under the aforementioned
two definitions, a general upper bound of the (ε, δ)-query
complexity of the classification-based optimization method is
presented below. Its proof can be found in [25].

Theorem 1 Given a minimization problem f , 0 < δ < 1
and ε > 0, if the classification-based optimization method has
error-target θ-dependence and γ-shrinking rate, its (ε, δ)-query
complexity is upper bounded by

O

 1

|Dε|

(
(1− λ) +

λ

γT

T∑
t=1

1−Q ·RDt
− θ

|Dαt
|

)−1
ln

1

δ

 ,

where Q = 1/(1− λ).

III. ANALYSIS ON DISCRETE PROBLEMS

In this section, we will derive the specific (ε, δ)-query
complexity bounds of it on some classical discrete problems.
The classical problems we investigate here are the OneMax
problem, the linear pseudo-Boolean functions (which contain
the OneMax problem), the LeadingOnes problem, and the Trap
problems.

Before presenting the theoretical analysis of this paper,
we first introduce a theoretical result [26] from computa-
tional learning theory for binary classification as described
in Lemma 1. Let RD denote the generalization error (the
expected misclassification rate) of h ∈ H w.r.t. the target
function under distribution D, R̂D denote the empirical error
(the misclassification rate in the seen data), V C(H) denote
the Vapnik-Chervonenkis dimension (VC-dimension) of H.
Denote the base two logarithm as log(·) and the natural
logarithm as ln(·).

Lemma 1 Given a fixed but unknown target function c and
distribution D, a binary labeled data set B whose m members
are i.i.d. according to D, a hypothesis space H with V C(H) =
d, and any 0 < η < 1, then, ∀ h ∈ H, the following upper
bound holds with probability at least 1− η:

RD ≤ R̂D +

√
8

m

(
d log

2em

d
+ log

4

η

)
.



Furthermore, if R̂D = 0, i.e., the hypothesis h is consistent
with B, then, the following upper bound holds with probability
at least 1− η:

RD ≤
2

m

(
d log

2em

d
+ log

2

η

)
.

Note that we can have classification algorithms with the
convergence rate of the generalization error Õ( 1

m ) ignoring
other variables and logarithmic terms [26], [27], where m is
the sample size for the binary classification. Thus, we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate Θ̃( 1

m ). For the
rest of the paper, let X = {0, 1}n with #X = 2n, and let
xi ∈ {0, 1} denote the i-th bit of a solution x ∈ X .

A. On OneMax Problem

We first investigate the classical OneMax problem, which is
perhaps one of the deepest theoretically studied problems for
EAs. In order to make the problem satisfy Definition 1, we
consider the minimization version of OneMax that is described
in Definition 5.

Definition 5 (OneMax Problem) The minimization version of
the OneMax problem is to find out a solution x∗ ∈ X such that
x∗ = argminx∈X

∑n
i=1−xi.

For the classification-based optimization method with error-
target θ-dependence, γ-shrinking rate, and Θ̃( 1

m ) convergence
rate, we configure it to minimize the OneMax problem as
follows. First, let the sampling distribution Dt = λUDht

+(1−
λ)UX . Besides, we apply the linear hypothesis function class,
i.e., h(x) = sign[w>x+ b], where w ∈ Rn×1, b ∈ R, and w>

is the transpose of w. Note that even though x ∈ {0, 1}n is a
binary vector, we still can apply the linear hypothesis function.
Since there exists a weight vector w = (1, 1, . . . , 1) such that
w>x is a counter of the number of 1 bits in a solution x, the
linear classification algorithm can learn the linear hypothesis
function whose empirical error is zero for any fitness threshold
α. It is known that, for linear hypothesis function space H,
the VC-dimension of H is n+ 1, i.e., V C(H) = n+ 1 [26].

Theorem 2 Given any ε > 0 and any 0 < δ < 1, for the
classification-based optimization method under the conditions
that error-target dependence θ < 1 and shrinking rate γ > 0,
the (ε, δ)-query complexity of it for minimizing the OneMax
problem belongs to

O
((

1− ε

n

)
n log n ln

1

δ

)
.

Proof. According to Theorem 1, letting Q = 2 (i.e., λ = 1/2),
it is sufficient to bound

1

T

T∑
t=1

(Kt · |Dε|)/(γ · |Dαt |),

where Kt = 1−2RDt
− θ. Since Kt = 1−2RDt

− θ for all t
and the classification-based optimization method is under the
condition that error-target dependence θ < 1, there must exist a
constant K > 0 such that Kt ≥ K as long as RDt < (1−θ)/2

for all t. According to Lemma 1, since the empirical error
R̂Dt

= 0 for all t, to ensure RDt
< (1 − θ)/2 for all t, it

suffices that

RDt
≤ 2m−1

(
d log (2emd−1) + log (2η−1)

)
<

1− θ
2

.

Since V C(H) = n+1 and lnu ≤ uv+ln 1
v−1 for all u, v > 0,

with η being a constant, we have that the required solution size
in each iteration belongs to O (n), which will make sure that
there exist a constant K > 0 such that Kt ≥ K for all t.
Letting K ′ = K/γ, now we only need to bound

K ′

T

T∑
t=1

|Dε|/|Dαt
|.

For the classification-based optimization method, we set
αt = −nt/ log n for all t, and let the number of iterations
T to approach −nT/ log n = ε−n, where ε > 0. Solving this
equation results in that T = (1 − ε/n) log n. For simplicity,
we assume that (1−ε/n) log n is a positive integer and let the
classification-based method run T = (1 − ε/n) log n number
of iterations. Now, we have that

K ′

T

T∑
t=1

|Dε|/|Dαt
| ≥ K ′

(1− ε/n) log n
,

where K ′ is a positive constant.
Finally, combining the inequality above with the fact

that RDt
< (1 − θ)/2 for all t can be guaranteed

with O(n) sampled solutions in each iteration and T =
(1 − ε/n) log n, by Theorem 1, the (ε, δ)-query complexity
of the classification-based optimization method belongs to
O
(
(1− ε/n)n log n ln 1

δ

)
. �

B. On Linear Pseudo-Boolean Functions

Actually, using the similar analysis, we can prove that
Theorem 2 holds for not only the OneMax problem, but also
the linear pseudo-Boolean functions.

We consider the problems that minimize general linear
pseudo-Boolean functions

∑n
i=1 w̃ixi, where xi ∈ {0, 1} and

w̃i ∈ R for all i = 1, . . . , n. We assume that

‖w̃‖1 =

n∑
i=1

|w̃i| ≤ ρ and min
i∈{1,...,n}

|w̃i| > 0.

Therefore, ρ > 0 and −ρ ≤ −‖w̃‖1 ≤
∑n
i=1 w̃ixi ≤

‖w̃‖1 ≤ ρ. Let Fρ =
{
f(x) | f(x) =

∑n
i=1 w̃ixi, ‖w̃‖1 ≤ ρ

}
.

We define the problem of minimizing linear pseudo-Boolean
functions as Definition 6.

Definition 6 (Linear Pseudo-Boolean Problem) Given any
f ∈ Fρ, the minimization version of the linear pseudo-
Boolean problem is to find out a solution x∗ ∈ X such that
x∗ = argminx∈X f(x).

For the classification-based optimization method with error-
target θ-dependence, γ-shrinking rate, and Θ̃( 1

m ) convergence
rate, we configure it to minimize any f ∈ Fρ as follows.
First, let the sampling distribution Dt = λUDht

+ (1− λ)UX .
Besides, we apply the linear hypothesis function class, i.e.,



h(x) = sign[w>x + b]. Note that even though x ∈ {0, 1}n
is a binary vector, we still can apply the linear hypothesis
function. For any f ∈ Fρ, since there exists a weight vector
w = (w1, w2, . . . , wn) which is consistent with w̃ in f , the
linear classification algorithm can learn the linear hypothesis
function whose empirical error is zero for any fitness threshold
α. It is known that V C(H) = n + 1 for linear hypothesis
function space H. In each iteration of the classification-based
method, we set αt = ρ − 2ρt/log n, and let the number of
iterations T to approach ρ − 2ρt/log n = ε − ρ. Therefore,
T = (1 − ε/2ρ) log n, where ε, ρ > 0. Similar to the
proof procedure of Theorem 2, we can derive the (ε, δ)-query
complexity of the classification-based optimization method
for minimizing the linear pseudo-Boolean functions, which is
presented in Theorem 3.

Theorem 3 Given any f ∈ Fρ, any ε > 0 and any 0 < δ < 1,
for the classification-based optimization method under the con-
ditions that error-target dependence θ < 1 and shrinking rate
γ > 0, the (ε, δ)-query complexity of it for minimizing f
belongs to

O
((

1− ε

2ρ

)
n log n ln

1

δ

)
.

Theorem 3 indicates that the linear pseudo-Boolean func-
tions Fρ become harder for the classification-based opti-
mization method as ε → 0+ or ρ → +∞. And for any
linear pseudo-Boolean functions, the (ε, δ)-query complexity
is upper bounded by O

(
n log n ln 1

δ

)
. Besides, it is worth-

while to point out that, applying Theorem 3, we can directly
obtain that the (ε, δ)-query complexity of the classification-
based optimization method for minimizing OneMax belongs
to O((1− ε

2n )n log n ln 1
δ ). This bound is looser than that in

Theorem 2, which indicates that for the specific problem we
can obtain better theoretical bound.

C. On LeadingOnes Problem

In addition to the linear pseudo-Boolean functions, we
also investigate the LeadingOnes problem, which is perhaps
another deepest theoretically studied problem for EAs. In
order to make the problem satisfy Definition 1, we consider
the minimization version of LeadingOnes that is described in
Definition 7.

Definition 7 (LeadingOnes Problem) The minimization ver-
sion of the LeadingOnes problem is to find out a solution
x∗ ∈ X such that x∗ = argminx∈X

∑n−1
i=0 (−

∏n−i
j=1 xj).

For the classification-based optimization method with error-
target θ-dependence, γ-shrinking rate, and Θ̃( 1

m ) convergence
rate, we configure it to minimize the LeadingOnes problem as
follows. First, let the sampling distribution Dt = λUDht

+(1−
λ)UX . Besides, we apply the linear hypothesis function class,
i.e., h(x) = sign[w>x+b]. Note that even though x ∈ {0, 1}n
is a binary vector, we still can apply the linear hypothesis
function. Since there exists a weight vector

w = (1, 1, . . . , 1︸ ︷︷ ︸
`

, 0, 0, . . . , 0)

such that w>x can distinguish whether the leading ` bits in
a solution x are all 1 bits or not, the linear classification
algorithm can learn the linear hypothesis function whose
empirical error is zero for any fitness threshold α. For linear
hypothesis function space H, V C(H) = n+ 1. Similar to the
proof procedure of Theorem 2, we can derive the (ε, δ)-query
complexity of the classification-based optimization method for
minimizing the LeadingOnes problem, which is presented in
Theorem 4

Theorem 4 Given any ε > 0 and any 0 < δ < 1, for the
classification-based optimization method under the conditions
that error-target dependence θ < 1 and shrinking rate γ > 0, the
(ε,δ)-query complexity of it for minimizing the LeadingOnes
problem belongs to

O
((

1− ε

n

)
n log n ln

1

δ

)
.

From Theorem 4, we observe that, the (ε,δ)-query com-
plexity of the classification-based optimization method of the
LeadingOnes problem is as same as that of the OneMax
problem. We suppose the reason for it may be that, as same as
OneMax, the high-quality region of LeadingOnes can also be
learned by the linear classifier, and sampling from the learned
high-quality region can lead fast convergence rate.

D. On Trap Problem
At last, we investigate the Trap problem. Actually, excluding

the optimal solution from the Trap problem will make it be
the OneMax problem. Thus, the (ε, δ)-query complexity of the
classification-based optimization method can be polynomial
if its configuration matches the Trap problem well. In order
to make the problem satisfy Definition 1, we consider the
minimization version of the Trap problem that is described
in Definition 8.

Definition 8 (Trap Problem) The minimization version of the
Trap problem is to find out a solution x∗ ∈ X such that x∗ =
argminx∈X −(n+ 1)

∏n
i=1 (1− xi)−

∑n
i=1 xi.

For the classification-based optimization method with error-
target θ-dependence, γ-shrinking rate, and Θ̃( 1

m ) convergence
rate, we configure it to minimize the Trap problem as follows.
First, let the sampling distribution Dt = λUDht

+ (1− λ)UX .
Besides, we apply the linear hypothesis function class, i.e.,
h(x) = sign[w>x + b]. For linear hypothesis function space
H, V C(H) = n + 1. Recall that ε can only be chosen from
the finite set E = {f(x)− f(x∗) | ∀x ∈ X}.

Theorem 5 Given any ε > 0 and any 0 < δ < 1, for the
classification-based optimization method under the conditions
that error-target dependence θ < 1 and shrinking rate γ > 0, the
(ε, δ)-query complexity of it for minimizing the Trap problem
belongs to

O
((

1− ε

n

)
n log n ln

1

δ

)
.

Proof. Since the linear hypothesis function h(x) =
sign[w>x+ b] is applied in the classification-based optimiza-
tion method, the classification step can not guarantee that the



empirical error of h is zero. However, there exists a weight
vector w = (1, 1, . . . , 1) such that w>x is a counter of the
number of 1 bits in a solution x, and thus h(x) =

∑n
i=1 xi+b

only makes a mistake on the optimal solution {0, 0, . . . , 0} if
{0, 0, . . . , 0} appears in the seen data set. To sum up, for the
linear hypothesis function h(x) =

∑n
i=1 xi+b, if its empirical

error is not zero, then the optimal solution {0, 0, . . . , 0} must
appear in the whole sampled solutions, which is an optimistic
scenario and can satisfy any approximation level ε > 0.
Otherwise, the empirical error of h is zero. We do not consider
this optimistic scenario, and thus the empirical error of h is
zero for any fitness threshold α.

Because the optimal solution will never appear in the whole
seen data set, and the empirical error of h is zero for any
fitness threshold α. The (ε, δ)-query complexity analysis of
the Trap problem is the same as that of the OneMax problem.
Therefore, by Theorem 2, we can conclude the similar result
that for the Trap problem, given any ε > 0 and 0 < δ < 1,
the classification-based optimization method can achieve the
(ε, δ)-query complexity O

((
1− ε/n

)
n log n ln 1

δ

)
. �

Theorem 5 indicates that, for the Trap problem, the (ε, δ)-
query complexity of the classification-based optimization
method is consistent with the expected approximation runtime
of the (1+1)-EA in terms of n. The (ε, δ)-query complexity
shows that the Trap problem is as easy as the OneMax
problem, which is true if we consider only the approximation
quality excluding the optimal solution.

IV. EMPIRICAL STUDY

We first introduce RACOS, the specific implementation of
the classification-based optimization method, and we empir-
ically study RACOS by comparing with the well-analyzed
(1+1)-EA. The (1+1)-EA has been proven [28], [2] Θ(n lnn)
running time on the OneMax problem and the linear pseudo-
Boolean functions, Θ(n2) running time on the LeadingOnes
problem, and exponential running time on the Trap problem.
However, it should be noted that the running time would not
be compared with the (ε, δ)-query complexity, since the latter
measures the probabilistic approximation quality. The (1+1)-
EA is only employed here as a reference for the empirical
study.

A. Implementation of the Classification-Based Method

By equipping the randomized coordinate shrinking clas-
sification algorithm, which is depicted in Algorithm 2, into
Algorithm 1 (implementing C in line 5), we obtain the RACOS
optimization algorithm. RACOS is the specific implementation
of the classification-based optimization method, and has been
proposed in [25].

Algorithm 2 takes two steps: learning with randomness
until all negative solutions have been excluded (lines 5-8)
and shrinking (lines 9-12). Theorem 1 has revealed that the
smaller error-target dependence and shrinking rate, the better
the performance, which are two critical factors. Given a set of
positive and negative solutions, Algorithm 2 randomly selects
a dimension and collapses the dimension to the value of the

Algorithm 2 The Randomized Coordinate Shrinking Classifi-
cation Algorithm for X = {0, 1}n

Input:
t: Current iteration number;
Bt: Solution set in iteration t;
I: Index set of coordinates;
M ∈ N+: Maximum number of uncertain coordinates.

Procedure:
1: B+

t = the positive solutions in Bt
2: B−t = Bt −B+

t

3: Randomly select x+ = (x+1 , . . . , x
+
n ) from B+

t

4: Let Dht = X , I = {1, . . . , n}
5: while ∃x ∈ B−t s.t. ht(x) = +1 do
6: k = randomly selected index from the index set I
7: Dht

= Dht
− {x ∈ X |xk 6= x+k }, I = I − {k}

8: end while
9: while #I > M do

10: k = randomly selected index from the index set I
11: Dht = Dht − {x ∈ X |xk 6= x+k }, I = I − {k}
12: end while
13: return ht

positive solution until the region Dht
only covers the positive

solution but no negative solutions (lines 5-8). Then, lines
9-12 further shrink the positive region Dht to leave only M
dimensions uncollapsed. This learning algorithm with high-
level randomness achieves a positive region with a small error-
target dependence and largely reduces the positive region for
a small shrinking rate, which could meet two critical factors.
Besides, the sampling procedure of Algorithm 1 is efficient
if Algorithm 1 is equipped with Algorithm 2, since it simply
draws solutions from the positive region Dht uniformly.

B. Convergence Rate and Scalability

We empirically compare RACOS with the classical (1+1)-
EA w.r.t. convergence rate and scalability on OneMax and
LeadingOnes, respectively. For RACOS, we use the same fixed
parameters in all the following experiments: in Algorithm 1,
λ = 0.95, m = 10, and αt is set so that only the best solution
in each iteration is positive, and in Algorithm 2, M = 2.
For (1+1)-EA, we apply the bit-wise mutation operator, i.e.,
flipping each bit of a solution x independently with probability
1/n, where n is the dimension of solution space. To measure
the performance of each algorithm, we apply the optimality
gap, i.e., the difference of the best objective function value
each algorithm finds and the optimal objective function value.
The lower the optimality gap, the better the algorithm.

To study the convergence rate of the optimality gap w.r.t.
the number of function evaluations, we choose n = 100, and
set the total number of function evaluations from 2 × 102

to 1.6 × 103 for the OneMax problem and 103 to 104 for
the LeadingOnes problem. Each algorithm is repeated 30
times independently, and the corresponding mean and standard
deviation of the achieved optimality gap is shown in Figure 1.
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Figure 1. Comparing the convergence rate with n = 100 in (a) and (b).
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Figure 2. Comparing the scalability with n = 10, 50, 100, 500 in (a) and (b).

The analyzed complexity is in the order of (1−ε/n)n log n
indicating that the query complexity increases linearly with
respect to the approximation level. In Figure 1 (a), the curve
of RACOS is more convex than linear, in Figure 1 (b), its
curve is close to linear. This implies that the performance of
RACOS may not be as good as that in the theorems, since the
theoretical study assumes a problem specific classifier rather
than the general classifier in RACOS. While in both problems,
(1+1)-EA converges slower than RACOS.

To study the scalability w.r.t. the solution space dimensions
n, we choose n be to 10, 50, 100, 500, and set the total number
of function evaluations to be only linear to the dimensionality,
i.e., 8n on the OneMax problem and 30n on the LeadingOnes
problem. Each algorithm is repeated 30 times independently,
and the corresponding mean and standard deviation of the
achieved optimality gap is shown in Figure 2.

The analyzed complexity in the order of (1 − ε/n)n log n
also indicates that when the number of evaluations increases
only linearly, the approximation level increases sub-linearly.
However, Figure 2 (a) and (b) show that the curves of
RACOS increases closely linearly. While, the curves of RACOS
increases slower than those of (1+1)-EA.

To sum up, RACOS performs worse than the theoretical re-
sults, where the latter are from problem specific configurations.
Meanwhile, it shows better approximation performance than
the well-analyzed (1+1)-EA.

V. CONCLUSIONS

This paper theoretically investigates the performance of
the classification-based optimization method, a simplified ver-
sion of sampling-and-classification (SAC) algorithms, in finite
discrete domains, as the previous study only analyzed SAC
algorithms in continuous domains.

We studied the performance of the classification-based
optimization method on concrete optimization problems. Clas-
sical problems including OneMax problem, linear pseudo-
Boolean functions, LeadingOnes problem, and Trap problem
are employed, which have been well studied for the evolu-
tionary algorithms. Our theoretical results disclose that the
classification-based optimization method can be efficient ap-
proximation optimizer for these problems. We also empirically
studied RACOS, an implementation of the classification-based
method. Experimental results show that RACOS is not as good
as the theoretical results, since the theoretical results are from
problem specific configurations rather than the general con-
figuration in RACOS, while it is better than the well-analyzed
(1+1)-EA. In the future, we will study more conditions to
disclose the power of sampling-and-learning framework, and
design more efficient algorithms accordingly.
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