
AGRA: An Analysis-Generation-Ranking Framework for
Automatic Abbreviation from Paper Titles

Jianbing Zhang, Yixin Sun, Shujian Huang∗, Cam-Tu Nguyen,
Xiaoliang Wang, Xinyu Dai, Jiajun Chen, Yang Yu

National Key Laboratory for Novel Software Technology, Nanjing University, China
{zjb,huangsj,waxili,daixinyu,chenjj,yuy}@nju.edu.cn

sunyx@nlp.nju.edu.cn, ncamtu@gmail.com

Abstract
People sometimes choose word-like abbreviations
to refer to items with a long description. These ab-
breviations usually come from the descriptive text
of the item and are easy to remember and pro-
nounce, while preserving the key idea of the item.
Coming up with a nice abbreviation is not an easy
job, even for human. Previous assistant naming
systems compose names by applying hand-written
rules, which may not perform well. In this paper,
we propose to view the naming task as an artificial
intelligence problem and create a data set in the do-
main of academic naming. To generate more deli-
cate names, we propose a three-step framework, in-
cluding description analysis, candidate generation
and abbreviation ranking, each of which is param-
eterized and optimizable. We conduct experiments
to compare different settings of our framework with
several analysis approaches from different perspec-
tives. Compared to online or baseline systems, our
framework could achieve the best results.

1 Introduction
Using abbreviation to name an item with a long description
is a common language phenomenon. For example, the ab-
breviation IBM is often used for the International Business
Machines Corporation. Abbreviations also play an important
role in academic communications. The full name of an ap-
proach or a system usually consists of several words sum-
marizing its core concept, which is sometimes difficult to be
memorized or referred to. On contrast, word-like abbrevia-
tions are more convenient to remember and pronounce, and
also remind people of the original names.

Abbreviations are commonly created in different styles
(Table 1). For example, SVM in example 1 is abbreviated by
taking the first letters of all words. In example 2, AdaBoost is
combined with prefixes extracted from all words with an easy

∗This work is supported by the National Natural Science Foun-
dation of China (No. 61672277, 71503124, 61370028) and
the Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization, China. Shujian Huang is the cor-
responding author. The demonstration system is available at
http://nlp.nju.edu.cn/demo/abbreviation.html

Index Abbreviation Name of the Items

1 SVM Support Vector Machine
[Cortes and Vapnik, 1995]

2 AdaBoost Adaptive Boosting
[Breiman, 1996]

3 Bagging Boostrap Aggregating
[Breiman, 1996]

Table 1: Examples of abbreviations used in academic circles.

pronunciation. In example 3, Bagging is less straightforward,
but better for memorization and pronunciation.

We can see from the examples that giving creative nam-
ings, or abbreviations, requires the understanding of the de-
scriptive text, being familiar with the words and pronuncia-
tions, etc., which is obviously not an easy job, even for hu-
mans. Towards artificial intelligence, it is also interesting to
design systems that could perform such a challenging task.

Currently, some abbreviation generation systems have been
developed, e.g., acronymcreator.net, naming.com,
business-name-generators.com, netsubstance
.com. These systems use hand-coded rules to generate a list
of candidate for human users, which may be helpful when
the desired name can be covered by the hand-coded rules.
But when the description is long, which leads to a large
set of candidates, the hand-coded rules may not be able to
help users select better results. We believe that various text
understanding techniques, especially for sentences, could be
useful in making these suggestions, which is previously little
touched [Özbal and Strapparava, 2012].

In this paper, we propose to treat creative naming as an
artificial intelligence problem and collect a data set in the do-
main of academic naming, where abbreviations are generated
for an academic paper based on its title.

To solve the problem, we propose a three-step framework:
Description Analysis, Candidate Generation and Abbrevia-
tion Ranking. To simulate the knowledge that human uses
during the naming process, we employ detailed analyses of
the descriptive text (paper titles in this case) from differ-
ent aspects, including lexical, syntactic and semantic lev-
els. The analysis results are then used to guide the genera-
tion of candidate abbreviations. These candidates are ranked
according to their pronunciation properties. The framework
is fully parameterized which provides the ability to be op-



Index Abbreviation Title Words
1 FAWN A Fast Array of Wimpy Nodes [Andersen et al., 2008]
2 IPR An Integrated Placement and Routing Algorithm [Pan and Chu, 2007]
3 SeRQL A Second Generation RDF Query Language[Broekstra and Kampman, 2003]
4 WBCSim A Prototype Problem Solving Environment for Wood-Based Composites Simulations [Goel et al., 1998]
5 SIMPLIcity Semantics-Sensitive Integrated Matching for Picture LIbraries [Wang et al., 2000]

Table 2: Examples of paper titles in the academic naming data set, collected from CiteSeerX.

timized through state-of-the-art derivative-free optimization
methods [Martinez-Cantin, 2014; Yu et al., 2016].

Experiments show that hybrid evidences from the syntac-
tic and the semantic relevance analyses can provide the best
result, which confirms that these analyses are essential in the
name generation process. With the proposed framework, our
system generates abbreviations much more similar to those
generated by humans, compared to several online systems.

2 The Academic Naming Task
2.1 The Task and Data Set
General purpose creative naming could be used in various
ways, e.g. naming a corporation from its business [Özbal
and Strapparava, 2012]. In these cases, more sophisticated
linguistic tricks, such as analogy or metaphor may be used,
which is too wild to handle. Several research focus on the
abbreviations of daily Chinese text, which is less creative and
could be handled by character level features [Chang and Lai,
2004; Yang et al., 2009].

In this paper, we propose to study a specific domain of
creative naming, i.e. academia naming. In academic writ-
ings, authors tend to generate an abbreviation for their papers
that can represent the meaning of the original title as much
as possible and remind people of the content of the paper.
We choose to use paper titles for our study, because for most
of the papers, the abbreviations of titles are carefully hand-
picked by authors. And more importantly, in many cases, the
abbreviation comes from the words in the title only.

Thus, the aim of task is clear: to generate the abbreviation
from the title, which is simpler and more constrained than the
general purpose case.

We collect 1000 paper titles with abbreviations from
CiterSeerX1. Most of these papers are about computer and
information science. These titles are split into two parts: the
abbreviation part and the title word part (Table 2).

2.2 Manual Analysis of the Abbreviations
We manually examine how these abbreviations are built from
titles and list the analysis results in Table 3. About 25% ab-
breviations are simply the combination of the first characters
of all words in the title, without function words such as “the”,
“a”, “of”, etc. For example, the abbreviation FAWN is gen-
erated in the same order from the four words “fast”, “array”,
“wimpy” and “nodes”, but not including function words “a”
and “of” (example 1 in Table 2).

About 61% papers choose to combine prefixes of certain
words in the title (e.g. example 2-4). In example 4, WBC-

1http://citeseerx.ist.psu.edu

Abbreviation Type Num. of Items Percentage
first letters of all words 247 25%
prefixes of some words 602 61%
word rewriting 78 8%
extra information 53 6%

Table 3: Statistics of abbreviations by types.

Sim takes the first character from “wood”, “based” and “com-
posites”, the three-character prefix from the word “simula-
tions”, while taking no character from the first several words,
i.e. “prototype”, “problem”, “solving” and “environment”.
It takes the three character prefix from “simulations” maybe
because that “simulations” is the core concept in the paper.

The above two types add up to 86% of all abbreviations
in our data set, which suggests that most of the abbrevia-
tions come from prefixes of title words. The remaining 14%
abbreviations are generated in more sophisticated ways, by
changing the letters in prefixes extracted from title or using
some external words. For example, in example 5 of Table 2,
only part of the abbreviation SIMPLIcity comes from the title
(SIMPLI, shown in uppercase). The rest of the abbreviation
city does not appear in the title. It may come from the content
of the paper or from other considerations.

Figure 1 shows the distribution of collected abbreviations
according to their length in characters. We can see that most
abbreviations are of lengths between 3 to 7 characters (around
95%). Possible reasons are that abbreviations shorter than 3
characters are less informative, while too long abbreviations
might be hard to remember.

3 Framework for Automatic Abbreviation
As mentioned earlier, the generation of creative abbreviations
is not trivial for human. It requires various ability and knowl-
edge including the understanding of text, handling of word
shapes, pronunciation, etc. These challenges make it an in-

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

length of abbreviation

p
e
rc

e
n
ta

g
e

Figure 1: Distribution of abbreviation by length (in characters).



teresting question that whether the ability could be learnt by
machines. We present in this section our understanding and
solution of the problem.

3.1 Intuition
Previous examples show that characters in the abbreviation
come from words in the title, for reminding the readers of the
content of the title or paper. However, it is not necessary to
use all words in the title. Beside functional words, content
words may also not be used at all, while longer prefix may be
used from some core content words (example 4 in Table 2).
This suggests the necessity of treating each word in the title
differently, because they have different importance.

Given the preference of words, selecting characters from
these words is also a problem. These characters could be a
prefix of any length. Selection decisions should be made for
each word. And obtaining the whole abbreviation requires an
enumeration or search over possible combinations.

Finally, considerations should also be made about the
word-shape of the abbreviations, making them easy to re-
member and pronounce.

Each of the above process requires linguistic knowledge
and text understanding. Fortunately, the developing of natural
language processing research provides possibilities to carry
out the process automatically.

3.2 Architecture
Base on the above intuition, we propose a framework for
automatic abbreviation generation, which consists of three
steps: Description Analysis, Candidate Generation and Ab-
breviation Ranking.

With a given descriptive text, our framework firstly go
through the step of description analysis to obtain the impor-
tance of each word in the title. The second step then employs
some strategies to search possible combination of characters
and generate candidate abbreviations. The generation of the
candidates relies on the word importance derived in the first
step; and the patterns that human use for abbreviations should
also be concerned. Finally, these candidates will be ranked
considering the pronunciation factor, so the abbreviation re-
sults will be easy to remember and pronounce.

These steps will be introduced in Section 4- 6, respectively.

3.3 Optimization
In the proposed framework, we model the linguistic knowl-
edge in a feature-based way, where there are tens of weights
(i.e., hyper-parameters) to be determined across the three
steps. The architecture does not allow computing gradients of
these weights throughout the system, and thus they are hard to
be optimized. Fortunately, recent development of derivative-
free optimization methods, which perform optimization by
learning from samples of the weights but need no gradients,
has made significant progress both theoretically and practi-
cally. Methods with sound theoretical supports and empirical
verifications have been available, including the Bayesian op-
timization [Martinez-Cantin, 2014] and the model-based op-
timization [Yu et al., 2016; Hu et al., 2017]. In this work, we
will employ derivative-free optimization methods to optimize
the weights of the system globally.

4 Description Analysis
Analysis of the descriptive text is to determine which words in
the text are important and which should not be taken into con-
sideration. In order to distinguish the importance of words,
we propose to assign scores for each word in paper title. The
higher the score is, the more important the corresponding
word is and the more attention should be paid to when con-
structing abbreviations.

We consider different NLP approaches from lexical, syn-
tactic or semantic levels, respectively.

4.1 Lexical Analysis (Lex)
The generation of abbreviations usually does not consider
function words. For convenience, we simply remove all func-
tion words in a stop word list from the consideration. We use
a relatively small default stop word list, which includes 124
frequently used stop words2.

Besides stop word, POS tag analysis is another lexical an-
alyzing technique that reveals the function of words in the
sentence, which might be an key evidence for importance.
We notice that paper titles mainly contain words in 4 cate-
gories: verbs, nouns, adjectives and adverbs. So we define 4
indicator features for these categories, respectively.

fLex-X(wk) =

{
1 the POS tag of wk is X,
0 otherwise.

(1)

where X denotes one of the above 4 POS categories.

4.2 Syntactic Analysis (Syn)
Based on lexical analysis, the syntactic analysis examines the
grammatical structure of the sentence, which reveals how the
sentence is built from words and identifies the relationship
between different words.

We notice that the syntactic structure of a sentence also
contains evidences for word importance. As shown in Fig-
ure 2, the root of the title is the word “environment” which
is indeed the object of research in a large scope. However,
the phrase “wood-based composites simulations” serves as a
modifier to the root word, and states the specific area and aim
of the environment, which is actually more important. In fact,
the authors picked all the characters of the abbreviation from
this modifier phrase.

Environment

A Prototype Problem Solving Simulations

for Wood-Based Composites

Figure 2: The dependency structure of the title “Prototype Problem
Solving Environment for Wood-Based Composites Simulations”,
with characters for the abbreviation WBCSim shown in bold font
(Example 4 of Table 2).

2http://www.ranks.nl/stopwords/



The above example suggests that modifiers in the title,
which are in the bottom layers of the tree, may be more im-
portant for describing the content of the title. Thus, we em-
ploy a dependency parser to obtain the structural information,
and define different indicator features for words in different
layers of the tree (i.e. distance to the root node), respectively.

fSyn-i(wk) =

{
1 wk is at the ith layer of the tree,
0 otherwise.

(2)

Generally, most paper titles have a flat and simple struc-
ture, so we only use indicator features for the first 3 layers.

4.3 Semantic Analysis (Sem)
We also propose to evaluate the importance of words at the se-
mantic level. Because the meaning of the title is hard to cap-
ture, we seek evidences from the semantic relations among
title words. Our assumption is that the important word in the
title should be semantically related to the other words.

To evaluate the semantic relations between two words, we
employ the popular word embeddings [Mikolov et al., 2013].
After training, each word is associated with a vector repre-
sentation of a fixed length. Relations between words wi and
wj can be reflected by the cosine distance between vectors,
denoted as dij . We further define a numerical feature as the
average cosine distance between wk and other words in the
title:

fSem(wk) =
1

n− 1

∑
j 6=k

dkj (3)

where j enumerates indexes of other words in the title.

4.4 Importance Score for Word
After the previous analysis steps, we define the importance
score as the weighted sum of all previous defined features:

sword(wk) = ~w · [~fLex(wk), ~fSyn(wk), fSem(wk)] (4)

where ~fLex and ~fSyn are the vectors of the POS and syntactic
features, respectively; [., .] denotes the concatenation of vec-
tors, and ~w is the corresponding weight vector. Although the
features are defined intuitively, the feature weights could be
automatically learned from data.

5 Candidate Generation
5.1 Scoring the Candidates
It has been shown that 86% of abbreviations are from the pre-
fixes of title words (Table 3). In the generation steps, we fol-
low this observation and generate the abbreviations by con-
catenating prefixes of title words.

For convenience, we use w1, ..., wn to denote the title
words with stop words removed, and pk to denote the prefix
from wk. So any abbreviation a is a concatenation of prefixes
p1, ..., pn.

We define indicator features for each case where the prefix
pk uses the character at a specific position from the beginning
of the word wk:

fChar-i(pk, wk) =

{
1 pk uses the ith character of wk,
0 otherwise.

(5)

The score of the prefix is determined both by the impor-
tance of the word, and by the number and positions of char-
acters it fetches from the word:

sprefix(pk, wk) = sword(wk)× ~wChar · ~fChar(pk, wk) (6)

where ~fChar is the vector of character features, ~wChar is the
corresponding weight vector. Thus, by combining these pre-
fixes, we can get the abbreviation candidates. We define the
score for candidate a as the sum of the prefix scores averaged
by the abbreviation length l:

sABBR(a) =
1

l

n∑
k=1

sprefix(pk, wk) (7)

5.2 Searching for Candidates
With the above scoring functions as guidance, the generation
of candidates could be performed as a beam searching pro-
cess. A priority queue is used to maintain the list of candi-
dates. Each candidate will be marked with its current state,
which is a tuple consisting of the current abbreviation a, the
last visited word wk and the length t of the corresponding
prefix pk. The priority is determined by sABBR(a). The size
of the queue could be limited so the search remains efficient.

At the beginning, the queue is initialized with a single can-
didate 〈∅, w0, 0〉. At each search step, each item 〈a,wk, t〉 in
the queue is extended by the following three actions, respec-
tively.

Append Append the next character c of current word to the
current prefix, transiting the state to be 〈a+ c, wk, t+1〉
Jump Move to the next word in the title, transiting the
state to be 〈a,wk+1, 0〉.
Stop Keep the current abbreviation, with no further ex-

tension.

The searching process continues until no extension could be
made for any item in the beam.

6 Abbreviation Ranking
After the generation step, we obtain a long list of candidates
which, at least to some extent, represents the meaning of the
title. In this ranking step, we propose methods to pick out
those candidates that are easily to pronounce and remember.
Özbal and Strapparava [2012] propose to use automatic align-
ment to map newly generated “words” into their phonetic se-
quences for modeling their pronunciation properties. But the
alignment process usually brings noise.

Instead, we propose a much simple and straight-forward
method. We observe that abbreviations that are, or similar to,
existing words are usually good candidates, because they are
usually easy to pronounce and familiar to people. So instead
of modeling the phonetic sequence, we propose to directly
model the abbreviations.

To evaluate the similarity between the candidates and ex-
isting words, we propose to use the techniques in language
modeling [Chen and Goodman, 2010]. In n-gram language
models, the probability of a word sequence is modeled as the
joint probability of all its words, which is then approximated



with a nth order Markov assumption. Here we adopt n-gram
language models to model the abbreviation as a character se-
quence.

We train the language model on existing words from Word-
Net [Miller, 1995], with the SRILM toolkit [Stolcke, 2004],
and use it to score the candidates. Candidates with higher lan-
guage model scores are more similar to existing words, thus
are considered better for pronunciation.

We denote the language model score of abbreviation a as
fLM(a) and the length of a as flen(a). Then, we rank all can-
didates by an adjusted score as follows:

s(a) = sABBR(a) + wLM × fLM(a) + wlen × flen(a) (8)

where wLM and wlen are the corresponding weights. These
parameters could also be optimized given a training data set.

7 Experiments
7.1 Settings
We use 849 titles and abbreviations from the collected data
set, with those abbreviations that have the word rewriting
and extraneous information (the last two cases in Table 3) re-
moved. Among these items, we randomly select 140 of them
for test and use the rest of them as the training set for opti-
mizing the parameters.

To provide analysis for the title words, we use Stanford
Parser [Chen and Manning, 2014] to get the POS tags and de-
pendency tree for each title. We use the skip-gram model of
the word2vec tool [Mikolov et al., 2013] to train our word
embedding on a large paper title data set we collect from
arxiv.org, containing about 60,000 paper titles. The stop
words are removed before training the word embedding.

To evaluate the performance of the system, we borrow the
idea of precision@k from information retrieval [Manning et
al., 2008] and use a metric called recall@k for our evaluation.
Because there is only one single correct abbreviation for each
title, the recall@k metric simply reports whether the correct
answer is generated in the top k results. In our experiment,
we set k as 50.

To optimize the parameters for our proposed framework,
we apply the state-of-the-art derivative-free optimization
techniques, BayesOpt [Martinez-Cantin, 2014] and RACOS3

[Yu et al., 2016; Hu et al., 2017]. We directly optimize the
recall@50 metric, and run these optimization algorithms for
1000 iterations.

7.2 Comparative Experiment
We first experiment with systems that use different combina-
tions of description analysis approaches. The training accu-
racy curve of optimization with RACOS is shown in Figure
3(a).

We can see that when the three approaches Syn, Lex and
Sem are used separately, the performance of Syn is much bet-
ter than Lex and Sem. It indicates that Syn is currently the
most crucial factor for finding the keywords in the title, which
then leads to better abbreviations.

3https://github.com/eyounx/ZOOpt

0 100 200 300 400 500 600 700 800 900 1000

0.54

0.56

0.58

0.6

number of iterations

re
c
a

ll
@

5
0

 

 

Syn+Lex+Sem Syn+Lex Syn+Sem Lex+Sem Syn Lex Sem

(a) optimization by RACOS

0 100 200 300 400 500 600 700 800 900 1000
0.51

0.52

0.53

0.54

0.55

0.56

number of iterations

re
c
a

ll
@

5
0

 

 

Syn+Lex+Sem Syn+Lex Syn+Sem Lex+Sem Syn Lex Sem

(b) optimization by BayesOpt

Figure 3: Training performances of systems with different analysis
approaches using RACOS and Baysian optimization.

When combined with other approaches, the performance
of Syn+Lex is worse than Syn, which indicates that the use of
POS tags may be contradictory with syntactic analysis. The
performance of Lex+Sem is better than Lex and Sem alone,
shows that the two approaches could complement each other.
Among all systems, Syn+Sem shows the best training perfor-
mance, which we will use for further comparisons.

The training accuracy curve of optimization with Baysian
optimization is shown in Figure 3(b), which shows a similar
results for the combination of analysis approaches. However,
the performance of Baysian optimization is about 3% to 5%
worse in all settings than those of RACOS .

7.3 Comparison with Other Systems
We reimplemented the sequence tagging approaches from
Yang et al. [2009] for comparison, which uses a con-
ditional random field to model the character and posi-
tion features (denoted as CRF). We also compare our
system to several online systems and evaluate the re-
sults both quantitatively and qualitatively. After exclud-
ing some systems that can not support abbreviating pa-
per titles, we finally choose acronymcreator.net and
www.netsubstance.com and denote them as sysA and
sysN, respectively.

Quantitatively comparison (Recall@k)
We evaluate the previous mentioned systems on the test set
(Figure 4). Our system gets the highest performance on test
set. This is due to that our system employs analysis on var-
ious levels and captures information from the syntactic and
semantic perspectives, which helps to find out keywords of
the title so that more attention could be paid to those words.
The CRF system provides worse results because it considers
only the character and position information. The sysA is bet-
ter only when we consider the top-1 candidate (10% of the
cases). The recall of sysN is always 0 and gets omitted.



1 5 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

k

re
c
a

ll

 

 

AGRA

CRF

sysA

Figure 4: Recall@k of different systems.

Qualitative comparison
We use the title words of examples 2-4 of Table 2 to test the
above systems and show the outputs in Table 4 for further
analysis4. In these cases, our system finds the correct or very
similar abbreviations, while the other two systems cannot.

In all cases, the results of sysN are all the random com-
bination of letters in the title, which did not preserve the in-
formation from the title. That explains why the abbreviations
given by authors never appear in sysN’s results.

SysA produces a much better result than sysN. However,
we notice that most of results from sysA contains the charac-
ter ‘a’ or ‘f’, which is from the function word “a” and “for”.
The possible reason is that sysA does not remove stop words.
As a result, a large portion of outputs of sysA will not be
picked by human users. Also, it seems that sysA treats every
input word equally without the analysis we proposed.

It is also interesting to see that in Case 3, our system
successfully identifies that “wood-based composites simula-
tions” is more important than previous words, by using the
dependency tree (Figure 2). Although it misses the correct
answer WBCSim, the candidate EWBCSim is very close.

8 Related Work
Creativity is the most crucial and interesting point of the nam-
ing problem. Özbal and Strapparava [2012] used a computa-
tional approach for the task of business naming where neol-
ogism are generated based on a given category and several
words as descriptions. Their method mainly works at word
level, without sentence level analysis. Different from their de-
terministic approach, we propose a more flexible framework
that is parameterized and could be optimized with data.

There are research focus on the abbreviations of daily Chi-
nese text, which is less creative and could be handled by char-
acter level features [Chang and Lai, 2004; Yang et al., 2009].

There are several other online naming systems working in
different scenarios. naming.net requires user to specify
keywords and prefixes of these words, and generates names
by combining these prefixes, which does not including the
analysis part. business-name-generators.com gen-
erates purely random business names for users, which cannot
be related to a given description.

9 Conclusion
For academic papers, a good abbreviation for the title not only
is easier to be referred to and be communicated, but also re-

4For simplicity we only show the first 30 abbreviations.

Case 1 IPR: An Integrated Placement and Routing Algorithm

sysN

aagbrithui, aagoritsm, absalgvriy, alaoaithmg, aleoiithmp, ale-
orituma, alghrithm, alghrithma, algoelthm, algohitam, algo-
oithm, algoritab, algorithm, algoritmyu, algorjthm, algorttuml,
algorwthb, algorxthm, algouitha, algouithm, algoyithop, al-
gtrithva, algxritum, aliorishmi, aliorvthm, aluoritheq, aobting,
aogoiithm, aogorioam, aogorxthm

sysA

PARA, ARA, AIR, PAR, PROA, APsARA, APART, PANDA,
PARmA, PARkA, ANANDA, ARIA, PEAR, PART, PRAT,
PRAM, APoLAR, ANkARA, APLANAT, PARTIAL, AlAR,
AjAR, AgAR, AfAR, AdAR, APiA, AsIA, AuRA, AReA,
ARAn

AGRA

IPRA, PRA, IPA, IPR, InPlRoA, InPRoAl, IPlRoAl, InPlRAl,
InPRoA, IPlRoA, InPlRA, PlRoAl, InPlAl, InPlRo, IPRoAl,
InPRAl, IPlRAl, PlRoA, IPlR, IPlA, PlRA, IPlaRoA, PlaRoAl,
PlaRouA, InPRouA, InPlaRA, InPlaAl, InPlaRo, IPlRouA,
PlRouAl

Case 2 SeRQL:A Second Generation RDF Query Language

sysN

absgknerat, absqueryll, absraaseco, absrdfiueu, adfrdf,
ageryqnerd, aueryconnw, cdflangunm, coasecoid, comrdfseec,
coyrdfrdf, eaaneuaoeu, easeocnd, edfgenkrkt, edfsecona,
elanguaee, enarefgeer, entryfsecm, eqcoodseco, esejondaec,
esery, exquery, exqueyy, freshrdfge, frhshgener, fteseoefse,
furshsecon, gdnerhaion, geaeiatioi, gederation

sysA

ASGARD, SEQUEL, AGAR, AGAL, GIRL, SEQUELA,
ARyL, ARiL, AGRa, AStER, AShER, AuGER, AnGER, Al-
GER, AnGEL, mARL, jARL, eARL, cARL, mSGR, AQUiLA,
ASLANt, SErGER, SEeGER, SQUEaL, AGILE, GNARL,
tASER, mASER, lASER

AGRA

SGRQL, SRQL, GRQL, SGQL, SeRQL, SGRQ, SGQ, SGR,
SGL, GQL, GRL, GRQ, SQL, SRL, SRQ, RQL, SeGeQuL,
SeGeRQL, SGeRQuL, SeGRQuL, SeGeRQu, SeGeRDQ,
SeGeRDL, SeGeRLa, SeGeQLa, SeRQuLa, GeRQuLa,
SeGQuLa, SGeQuLa, SeRDQuL, GeRDQuL

Case 3 WBCSim: A Prototype Problem Solving Environment for
Wood-Based Composites Simulations

sysN

aewiroblem, aorpyotoiy, bsimdlaago, ckmenviron, comooirtes,
comphsiwes, composdtfs, composgtrs, composioes, compos-
ites, compositks, comppsptea, comprsxtfh, comurobyem, com-
woodbas, comyosites, comyosxtes, coupvsstes, coxkosites,
eaolving, earoblxm, eeolying, eniironmen, entirqbiem, entsolv-
ing, envioonmen, environmee, environmen, envirormen, en-
virxnmfn

sysA

APPOSE, APPRESS, APPRiSE, PREFOCuS, APPEaSE,
AEROBiCS, APPEStAT, APPRaiSE, SkEWBACk, APPO-
SItE, APPLauSE, PiPEFiSh, pAnPiPES, APPLE, APSIS, AP-
PEL, APPEND, APROPOS, APPROVE, PESEWA, APPLET,
APIECE, APICES, APPEaR, APPEAl, AsSESS, PREFaB, As-
PECT, PaRSEC, ARSENIC

AGRA

PECoS, ProPS, ProSE, PECS, SEBS, PPS, PSE, PPE,
PES, SES, PPSE, PSES, PPES, PSEW, PPEW, PPSES,
PPSEW, PSEWS, PPEWS, PPSEC, PPSEWS, PSEnvi,
PPEnvi, PPSECS, PPSEWC, PPSEnvi, PEBCSim, SEBCSim,
EWBCSim, PPSEWBC

Table 4: Example outputs of different systems (Top 30). The correct
results are marked with a underline; the results in bold are similar
with the correct ones.

minds people about the main idea or concept of the paper.
This paper proposes an AI task for automatically generating
abbreviations from the title word. We create data sets and pro-
pose a parameterized framework for solving the problem. By
employing analysis approaches at various levels, our system
obtains results that are closer to those generated by humans.

Currently, our system only deals with simple abbreviations
without character replacement. We do not consider sophisti-
cated language phenomena such as metaphor, nor do we use
the information from other parts of the paper, such as the ab-
stract or the main body. These are interesting topics to be
explored as the next step.



References
[Andersen et al., 2008] David G. Andersen, Jason Franklin,

Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A fast array of wimpy nodes. Communications of
the ACM, 54(7):101–109, 2008.

[Breiman, 1996] Leo Breiman. Bagging predictors. Mach.
Learn., 24(2):123–140, August 1996.

[Broekstra and Kampman, 2003] Jeen Broekstra and Arjohn
Kampman. Serql: a second generation rdf query language.
In Proc. SWAD-Europe Workshop on Semantic Web Stor-
age and Retrieval, pages 13–14, 2003.

[Chang and Lai, 2004] Jing Shin Chang and Yu Tso Lai. A
preliminary study on probabilistic models for chinese ab-
breviations. In Proceedings of the Third SIGHAN Work-
shop on Chinese Language Learning, pages 9–16, 2004.

[Chen and Goodman, 2010] Stanley F. Chen and Joshua
Goodman. An empirical study of smoothing techniques
for language modeling. Computer Speech & Language,
13(4):359–393, 2010.

[Chen and Manning, 2014] Danqi Chen and Christopher D
Manning. A fast and accurate dependency parser using
neural networks. In EMNLP, pages 740–750, 2014.

[Cortes and Vapnik, 1995] Corinna Cortes and Vladimir
Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[Goel et al., 1998] Amit Goel, Constantinos Phanouriou,
Frederick A. Kamke, Calvin J. Ribbens, Clifford A. Shaf-
fer, and Layne T. Watson. Wbcsim: A prototype problem
solving environment for wood-based composites simula-
tions. Technical report, Blacksburg, VA, USA, 1998.

[Hu et al., 2017] Yi-Qi Hu, Hong Qian, and Yang Yu. Se-
quential classification-based optimization for direct policy
search. In Proceedings of the 31st AAAI Conference on Ar-
tificial Intelligence, pages 2029–2035, San Francisco, CA,
2017.

[Manning et al., 2008] Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, New York,
NY, USA, 2008.

[Martinez-Cantin, 2014] Ruben Martinez-Cantin. Bayesopt:
A bayesian optimization library for nonlinear optimiza-
tion, experimental design and bandits. Journal of Machine
Learning Research, 15:3915–3919, 2014.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg Corrado, and Jeffrey Dean. Distributed repre-
sentations of words and phrases and their compositional-
ity. In Proceedings of the 26th International Conference on
Neural Information Processing Systems, NIPS’13, pages
3111–3119, USA, 2013. Curran Associates Inc.

[Miller, 1995] George Armitage Miller. Wordnet: A lexi-
cal database for english. COMMUNICATIONS OF THE
ACM, 38:39–41, 1995.

[Özbal and Strapparava, 2012] Gözde Özbal and Carlo
Strapparava. A computational approach to the automation

of creative naming. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics,
pages 703–711, Stroudsburg, PA, 2012.

[Pan and Chu, 2007] Min Pan and Chris Chu. Ipr: An inte-
grated placement and routing algorithm. In Proceedings
of the 44th Annual Design Automation Conference, DAC
’07, pages 59–62, New York, NY, USA, 2007. ACM.

[Stolcke, 2004] Andreas Stolcke. Srilm – An extensible lan-
guage modeling toolkit. In Proceedings of the 2004 In-
ternational Conference on Spoken Language Processing,
pages 901–904, 2004.

[Wang et al., 2000] James Z. Wang, Jia Li, and Gio Wieder-
holdy. SIMPLIcity: Semantics-sensitive Integrated Match-
ing for Picture LIbraries, pages 360–371. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000.

[Yang et al., 2009] Dong Yang, Yi-cheng Pan, and Sadaoki
Furui. Automatic chinese abbreviation generation us-
ing conditional random field. In Proceedings of Hu-
man Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Association for
Computational Linguistics, Companion Volume: Short Pa-
pers, NAACL-Short ’09, pages 273–276, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics.

[Yu et al., 2016] Yang Yu, Hong Qian, and Yi Qi Hu.
Derivative-free optimization via classification. In Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence,
pages 2000–2006, Phoenix, AZ, 2016.


