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Abstract
Hyper-parameter selection is a crucial yet diffi-
cult issue in machine learning. For this prob-
lem, derivative-free optimization has being play-
ing an irreplaceable role. However, derivative-free
optimization commonly requires a lot of hyper-
parameter samples, while each sample could have
a high cost for hyper-parameter selection due to the
costly evaluation of a learning model. To tackle
this issue, in this paper, we propose an experienced
optimization approach, i.e., learning how to opti-
mize better from a set of historical optimization
processes. From the historical optimization pro-
cesses on previous datasets, a directional model is
trained to predict the direction of the next good
hyper-parameter. The directional model is then
reused to guide the optimization on learning new
datasets. We implement this mechanism within a
state-of-the-art derivative-free optimization method
SRACOS, and conduct experiments on learning the
hyper-parameters of heterogeneous ensembles and
neural network architectures. Experimental results
verify that the proposed approach can significantly
improve the learning accuracy within a limited
hyper-parameter sample budget.

1 Introduction
Machine leaning has become a main driving force for the de-
velopment of artificial intelligence. Open source packages
such as Weka [Hall et al., 2009] and Scikit-learn [Pedregosa
et al., 2011] with a variety of learning algorithms provide
users an easy way to apply machine learning. But the al-
gorithm performance highly depends on the hyper-parameter
setting. For example, the performance of neural network
model is sensitive to the architecture, learning rate, and so
on [Orr and Müller, 2012]. The hand-crafted hyper-parameter
tuning requires expert domain knowledge and tremendous
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manpower. Thus, automatic machine leaning (autoML), with
the aim of choosing the best hyper-parameter without hu-
man interference, is appealing. AutoML is usually studied as
algorithm selection problems [Adankon and Cheriet, 2009;
Biem, 2003; Brazdil et al., 2003], hyper-parameter tun-
ing problems [Bengio, 2000; Bergstra and Bengio, 2012],
and more recently, as the combined algorithm selection and
hyper-parameter optimization problem (CASH) [Thornton et
al., 2013; Feurer et al., 2015]. Despite the different formu-
lations, derivative-free optimization methods are often em-
ployed to solve them. Unlike gradient-based optimization
that relies on derivatives, these methods work through sam-
pling from the search space. Derivative-free optimization has
shown great potential in solving sophisticated problems, such
as non-differentiable and non-convex functions.

However, derivative-free optimization commonly needs to
sample a lot of hyper-parameters before finding a good one.
This is due to the sampling nature of these methods, i.e., a
sufficient exploration of the search space by many trial-and-
errors is inevitable. The low sample efficiency issue is even
severer in autoML tasks. Evaluation of a sampled hyper-
parameter in autoML is highly expensive because of, e.g., the
high time consumption of the k-fold cross validation on large
datasets. Therefore, improving the sample effectiveness of
derivative-free optimization, and thus reducing the required
sample amount, is a key issue for autoML.

In this paper, we propose an experienced optimization ap-
proach to improve the sample effectiveness, which extracts
information from previous tasks to guide the optimization on
new tasks. Although the tasks can be various, we observed
that the search direction of different optimization processes
can be aligned. Therefore, we propose to learn a directional
model from a set of experienced optimization tasks, and reuse
the directional model to guide the search in new optimization
tasks. The directional model can help reduce unnecessary ex-
plorations and thus save wasted samples. We then incorporate
the idea into the recently proposed derivative-free optimiza-
tion method SRACOS [Hu et al., 2017], and implement the
EXPSRACOS approach. Experiments on synthetic functions,
hyper-parameter search for heterogeneous ensembles, and ar-
chitecture design for deep neural networks disclose that the
directional model can effectively capture the search direction
information, and help EXPSRACOS improve the sample ef-
fectiveness significantly within limited sample budget.



2 Background
In this paper, we focus on the hyper-parameter optimiza-
tion problems. Let C denote a machine learning model and
δ ∈ ∆ denote a hyper-parameter setting, where ∆ is its
hyper-parameter space. Taking k-fold cross validation as the
evaluation criterion of Cδ , the evaluation can be formulated
as follows:

f (δ) =
1

k

k∑
i=1

L(Cδ,Ditrain,Divalid),

where L(·) is a loss function, Ditrain and Divalid are the training
and validation data in the i-th fold. The hyper-parameter op-
timization problem is to find the best hyper-parameter setting
as δ∗ = argminδ∈∆ f(δ).

Since the hyper-parameter optimization objectives are
often non-differentiable, they are commonly solved by
derivative-free optimization. Derivative-free optimization is
designed for sophisticated problems such as non-convex,
non-continuous, and the like. We consider the minimiza-
tion problems, and let X denote the compact searching space
and f : X → R denote the objective function. The mini-
mization problem can be presented as to find x∗ ∈ X s.t.
∀x ∈ X : f(x∗) ≤ f(x). The processes of derivative-free
optimization algorithms [Shahriari et al., 2015; Munos, 2011;
Yu et al., 2016] share the same idea of optimization from sam-
ples. Without any gradient information, derivative-free opti-
mization explores objective space according to the samples
and their evaluations. The most important part of derivative-
free optimization is how to generate new samples. For exam-
ple, Bayesian optimization [Shahriari et al., 2015] connects
the searching space and the function values with a surrogate
function modeled by the Gaussian process (GP), and chooses
the sample with the best acquisition function value which is
based on the GP model. However, autoML often faces inte-
ger and categorical searching spaces. SMAC [Hutter et al.,
2011] was proposed to adapt this situation by replacing GP
with the random forest model during building the surrogate
function. SRACOS [Hu et al., 2017] is a recently proposed
classification-based derivative-free optimization method. It
shows outstanding efficiency and scalability in some applica-
tions

Employing derivative-free optimization approaches, au-
toML has achieved successful outcomes. AutoWeka and Au-
toSklearn, open source autoML projects using SMAC, have
received outstanding performance in some autoML compe-
titions. More recent studies focused on searching hyper-
parameters for deep neural networks. In [Baker et al., 2017],
researchers employed deep reinforcement learning to model
architecture designing process. The architectures of layers
was considered as actions. The performance of designed ar-
chitecture was considered as the reward. An reinforcement
learning algorithm was then employed to train a policy to pre-
dict the actions.

Despite existing successes, evaluation of hyper-parameters
in autoML tasks is commonly resource consuming, due to the
large training data, repeated evaluations, large models, etc.
To reduce the total sample cost, some previous studies have
considered how to speed up the convergence by reusing the

historical optimization experience for optimizing new tasks.
Most of these studies are based on Bayesian optimization,
e.g., [Swersky et al., 2013; Lindauer and Hutter, 2018]. To
transfer the experience, the previous Bayesian process mod-
els can be directly reused into new optimization processes.
For example, in [Lindauer and Hutter, 2018], historical mod-
els are linearly combined as a warmstart for new tasks. In
our work, we don’t reuse the historical optimization mod-
els directly as they may not be well aligned across different
optimization tasks, instead, we learn and reuse a directional
model for the optimization process that can be better aligned
and transferable.

3 Proposed Method
This section describes the proposed experienced optimization
approach. We firstly present the overall framework, and then
present the implementation details of this framework based
on a state-of-the-art derivative-free optimization algorithm.

3.1 Overall Framework
This paper considers an optimization problem set F = {f},
where f ∼ F and F is an underlying problem distribution.
For example, optimizing hyper-parameters for a certain learn-
ing model on different datasets can be seen as a problem dis-
tribution. Given Fe as the experienced problem set, the ex-
perienced optimization aims at optimizing future problems
Ft = F − Fe more efficiently.

We have observed that, in different optimization processes,
search direction can be aligned and can generalize across
difference optimization processes. Therefore, our approach
learns a directional model from the historical optimization
processes, and guides new optimization processes.

The framework of the experienced optimization with direc-
tional model is presented in Algorithm 1. It mainly consists
of three steps:
• Organizing the experience dataset DFe

from the histori-
cal optimization processes (line 1 to 4). Derivative-free
optimization methods often store some historical sam-
ples during optimization. The instances in DFe can be

Algorithm 1 Framework of Experienced Optimization by Di-
rectional Model
Input:

Fe, Ft: Experienced and target problem sets;
A: The optimization approach;
Log&Assign: Log and assign experience dataset;
Train: Train directional model.

Procedure:
1: DFe = ∅
2: for f ∈ Fe do
3: DfFe

= Log&Assign(A, f)

4: DFe = DFe ∪ D
f
Fe

5: end for
6: Φ = Training(DFe

)
7: for f ∈ Ft do
8: x∗f = A(f,Φ)
9: end for



extracted from the snippet of the stored samples. For
each instance, we extract features and assign a label that
is the direction to a later found better solution. In line
3, the Log&Assign sub-process is used to collect the
labeled instances from the optimization processes.
• Learning directional model Φ on DFe (line 6). With the

labeled experience dataset, training Φ is a supervised
learning problem. Note that Φ can be trained by any
state-of-the-art learning algorithm.
• Utilizing Φ to predict the direction of the next sam-

ple during optimizing in new problems (line 7 to 9).
The directional models can be embedded in optimization
method by adding a pre-sampling step, which generates
a set of candidate samples. Among the candidate sam-
ples, the one most close to the direction predicted by Φ
is selected as the next sample.

3.2 EXPSRACOS: Experienced SRACOS
We implement the idea within SRACOS, and propose the EX-
PSRACOS method for experienced optimization.

SRACOS. To explain EXPSRACOS clearly, it is necessary
to introduce SRACOS briefly. SRACOS also follows the trial-
error process. Throughout the optimization process, SRacos
maintains two set of solutions B+ and B−. B+ contains the
best k solutions, and B− contains a collection of the rest so-
lutions. They are initialized from randomly sampled of solu-
tions. In every iteration of SRACOS, it learns a classifier from
B+ as the positive samples and B− as the negative samples.
It then samples a new solution from the positive area of the
classifier, and updates B+ or B− according to the evaluation
result of the new solution. More details of SRACOS can be
found in [Hu et al., 2017].

Collect experience dataset. We extract the experience
dataset from SRACOS optimization processes on previous
tasks. In the t-th iteration, the sampling area of SRACOS is
learned on (x+

t , B
−
t ) during optimizing, where x+

t ∈ B+
t .

B−t stores the remaining solutions. Therefore, we organize
the depending dataset (x+

t , B
−
t ) as a context matrix:

κt =


x−t,1 − x

+
t

x−t,2 − x
+
t

...
x−t,m − x+

t

 ,where x−t,i ∈ B
−
t , i = 1, 2, . . . ,m.

Note that κt is a m × n matrix, where m = |B−t | and n is
dimension size of searching space. Each row of κt is a sam-
ple of B−t which is centralized around x+

t . With the central-
ization, the search behavior at different time and in different
optimization tasks can be aligned, thus the model trained on
κ could be reused to other problems more easily.

Suppose x′t is the generated sample using the context ma-
trix κt. We combine the two to compose an experience in-
stance, [κt;x

′
t]. We assign a label to this instance according

to the quality of x′t. If it improves the objective value, the
label is positive, otherwise, the label is negative, i.e.,

`t ([κt;x
′
t]) =

{
1, f(x′t) < f(x̃t);
0, f(x′t) ≥ f(x̃t).

Algorithm 2 Experienced SRACOS (EXPSRACOS)

Input:
f : Objective function to be minimized;
P : The number of pre-sampling;
r: The number of samples in initialization;
N : The evaluation budget;
Φ: Directional model;
Initialize: Initialization steps;
Sample: Get a new sample by SRACOS.

Procedure:
1: (B+, B−, (x̃, ỹ)) = Initialize(UX)
2: for t = r + 1 to N do
3: P = ∅
4: for i = 1 to P do
5: (κ,x) = Sample(B+, B−, λ, C)
6: p = Φ(κ,x)
7: P = P ∪ ((κ,x) , p)
8: end for
9: ((κ̂, x̂) , p̂) = argmax((κ,x),p)∈P p

10: ŷ = f(x̂)
11: (B+, B−) = Update ((x̂, ŷ) , B+, B−)
12: (x̃, ỹ) = argmin(x,y)∈B+∪{(x̃,ỹ)} y
13: end for
14: return (x̃, ỹ)

where x̃t is the best-so-far solution. Putting all experience
instances into a dataset, we obtain the experience dataset as
DFe

= {([κ1;x′1] , `1) , ([κ2;x′2] , `2) , . . . }.
Training directional model. Because the DFe is a labeled

dataset, any classifier can be employed. From the previous
subsection, we notice that an instance in DFe

consists of two
parts a matrix κ and a vector x′. Thus, we should re-organize
the instance from [κ;x′] by reshaping κ as a vector and com-
bining it with x′. In our work, we just apply a simple mul-
tilayer perceptron (MLP) as the directional model Φ. By the
last layer of Φ, we map the directional model output to [0,1]
to reflect the goodness of the sample.

EXPSRACOS. EXPSRACOS follows the algorithm frame-
work of SRACOS. Before evaluating a sample, a pre-
sampling step is added. It generates a set of samples which
will be filtered by the directional model. Algorithm 2 presents
the pseudo code of EXPSRACOS. Line 1 is the initializa-
tion step. Line 4 to 8 is pre-sampling process. The direc-
tional model Φ will predict goodness of each pre-sampling
solution (line 6). Only the solution with highest prediction
will be evaluated (line 9 and 10). And then the solution and
its evaluation value will be used to update (B+, B−). An
implementation of EXPSRACOS can be found at https:
//github.com/eyounx/ExpSRacos.

Why EXPSRACOS works. We discuss why experienced
optimization works under the following two assumptions:

• We assume that optimization tasks f ∈ Fe and Ft share
the same search space X;

• For any two instances ([κa;x′a] , `a) and ([κb;x′b] , `b)
in DFe , we assume `a = `b if [κa;x′a] = [κb;x′b].

The centralization process of κmakes sure that the second as-
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(a) x∗i = 0.04, n = 10
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(b) x∗i = 0.04,aa n = 20
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(c) x∗i = 0.2,aa n = 10
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(d) x∗i = 0.2,aa n = 20

Figure 1: The convergence rate on Ackley functions with x∗
i = 0.04 and 0.2, n = 10 and 20, where i = 1, 2, . . . , n.

sumption can be met in most cases. The directional model Φ
of historical optimization processes is to predict whether new
sample x is good. Based on these two assumptions, Φ can be
reused to predict the goodness of new samples on new tasks.
In EXPSRACOS, only the sample with the highest prediction
of Φ will be evaluated. Compared with SRACOS that wastes
many samples for exploration, EXPSRACOS avoids evaluat-
ing many inferior samples.

4 Experiments
In this section, we empirically investigate the effectiveness
of the proposed experienced optimization framework (using
its implementation EXPSRACOS) on some tasks. We firstly
study EXPSRACOS on a synthetic function. Then, EXPSRA-
COS is employed to tackle two autoML tasks, tuning hyper-
parameters on ensemble classifier and optimizing architecture
of deep neural network. In these tasks, the directional models
are all structures of MLP. But the detail settings are slightly
different according to tasks.

We choose the state-of-the-art derivative-free optimization
methods to compare with EXPSRACOS including SRACOS
(code from https://github.com/eyounx/ZOOpt),
CMAES [Hansen et al., 2003] (code from https:
//pypi.python.org/pypi/cma), SMAC (code
from https://github.com/automl/SMAC3)
and TPE [Bergstra et al., 2011] (code from http:
//jaberg.github.io/hyperopt/).

4.1 On Synthetic Functions
We firstly compare EXPSRACOS with SRACOS,
CMAES, SMAC and TPE on a highly non-convex func-
tion Ackley: f(x) = −20e(−

1
5

√
1
n

∑n
i=1 (xi−x∗

i )
2) −

e
1
n

∑n
i=1 cos 2π(xi−x∗

i ) + e + 20. x∗ = (x∗1, x
∗
2, . . . , x

∗
n)

denotes the optimal solution, where n is dimension size. The
search domain is X = [−1, 1]n. Because Ackley function
has many local optima, it provides an extreme situation to
test the effectiveness of the experienced optimization.

Problem settings. The problem distribution F is con-
structed by randomly shifting x∗ of Ackley function. The
relationship among different functions depends on the size of
the spaceXshift. If it defines a tiny space, problems are more
similar with each other. We investigate how Xshift influ-
ences the performance of EXPSRACOS by setting Xshift =
[−0.1, 0.1]n and [−0.5, 0.5]n, where we set n = 10 and 20.

Settings EXPSRACOS SRACOS CMAES SMAC TPE
Xshift n

[−0.1, 0.1]n 10 1.67±0.42 2.37±0.36 2.85±0.36 3.01±0.21 2.69±0.26
[−0.1, 0.1]n 20 2.76±0.26 2.87±0.20 3.41±0.25 3.31±0.13 3.09±0.17
[−0.5, 0.5]n 10 2.26±0.41 2.42±0.36 2.93±0.39 2.95±0.25 2.71±0.29
[−0.5, 0.5]n 20 2.89±0.27’ 2.98±0.22 3.56±0.28 3.35±0.18 3.18±0.18

Table 1: Average target-problem performance for each problem set-
ting of Ackley function. Xshift is the optimal solution shifting re-
gion and n denotes the search space dimension. A number in bold
means the best function value in its setting.

Considering combination, there are 4 different problem dis-
tributions on synthetic function experiments.

Training Φ for EXPSRACOS. For each Xshift setting,
we sample a batch of problems to form Fe and Ft, where
Fe ∩ Ft = ∅. Because Xshift = [−0.5, 0.5]n is much
larger than Xshift = [−0.1, 0.1]n, we set |Fe| = 200 for
[−0.1, 0.1]n and |Fe| = 400 for [−0.5, 0.5]n. We collect
experience dataset DFe

by applying SRACOS to optimize
f ∈ Fe with 400 evaluation budget and repeat running for
5 times. We set |Ft| = 100 target problems for all 4 settings.
Because of the inferior sample effectiveness of SRACOS, the
dataset DFe

is highly imbalanced in classes. The number of
positive instances is much less than negative instances. The
upsampling strategy is used to adjust the balance, on which
the directional model is trained.

On convergence rate. We test the convergence rate of
each method on Ackley with a specific optimal solution x∗
and the budget of 100 samples. We set x∗ = (0.2, 0.2, . . . )
for Xshift = [−0.5, 0.5]n and x∗ = (0.04, 0.04, . . . ) for
Xshift = [−0.1, 0.1]n. Ackley functions with these two x∗
are not in Fe, so it can verify the transfer performance of Φ for
each problem distribution. Each method runs for five times
independently on each function. In Figure 1, two settings of
the optimal solutions are presented. It can be observed that
the reuse of the directional model is generally less affective
for the larger change of the optimal solution. Meanwhile, the
convergence speed of EXPSRACOS is the fastest on all set-
tings. Especially compared with SRACOS, in Figure 1 (a),
(b), the convergence of EXPSRACOS is significantly faster.

On average performance. We report the average perfor-
mance of the compared methods on all problems inFt with 50
evaluation budget. Each method runs five times on each prob-
lem independently. The average performance is presented in
Table 1. EXPSRACOS shows the best performance among all



Dataset Optimization performance on training samples Generalization performance on testing samples Default
CVEXPSRACOS SRACOS SMAC TPE Best C EXPSRACOS SRACOS SMAC TPE Best C

So
ur

ce
da

ta
se

ts

Annealing .0401• .0460◦ .0877• .0522• .0590• .0000• .0100◦ .0200• .0100◦ .0100◦ .0400
Arcene .1386◦ .1656• .2395• .1478• .1257• .1866◦ .2266• .2600• .3000• .1600• .3700
Balance S. .0822• .0848◦ .1142• .1042• .1063• .0834• .2354• .1666• .1904• .0968◦ .2300
Banknote .0000• .0000• .0000• .0018• .0000• .0000• .0000• .0000• .0000• .0000• .0000
Breast C. W. .0357• .0405◦ .0429• .0538• .0466• .0638◦ .0685• .0780• .0567• .0936• .0638
Car .0260◦ .0231• .0744• .0758• .1439• .3410• .3786• .3526• .3757 • .3421◦ .3872
Chess .0089• .0096◦ .0462• .0497• .0755• .0671• .1130◦ .1312• .1453• .1375• .1109
CMC .4315• .4355◦ .4451• .4462• .4520• .4155• .4346◦ .4459• .4391• .4391• .4290
CNAE9 .0439• .0444• .0477• .0441◦ .0454• .0416• .0493• .0416• .0509• .0527• .0555
Credit .0889• .0938◦ .1243• .1244• .0981• .2571• .2757• .2661• .2589◦ .3741• .2517
Cylinder .1370• .1506◦ .3827• .3189• .4100• .4036◦ .3957• .4220• .4220• .4128• .4128
Drug C. .2177◦ .2173• .2270• .2250• .2270• .2269• .2321◦ .2321◦ .2321◦ .2321◦ .2321
Ecoli .1459• .1466◦ .3029• .1887• .1691• .1301• .1000• .1714• .1142◦ .1342• .3000
Flag .3121• .3233◦ .3353• .3252• .3576• .3317• .4065• .4146• .4146• .3658◦ .3902
German C. .2312• .2320◦ .2425• .2500• .2425• .2299• .2583• .2450• .2500• .2400◦ .2700
Glass .2071• .2104◦ .2595• .2440• .2983• .4444◦ .4740 .4888• .4666• .3377• .4888
Horse C. .1168• .1220• .1299• .1198◦ .1431• .1470• .1274• .1323◦ .1470• .1558• .1617
Image S. C. .0666• .0698◦ .0904• .0857• .1000• .0564• .0634• .0610◦ .0614• .0834• .0688
Iris .0166• .0222• .0250• .0250• .0166• .0333• .0222◦ .0000• .0333• .0333• .0333
Madelon .2385• .2610• .2840• .2655• .2565◦ .2400• .2577• .2983• .2483• .2410◦ .3266
Messidor .2500• .2576• .2933• .2781• .2510◦ .2597◦ .2496• .2683• .2597◦ .2597◦ .2900
Seismic .0624◦ .0617• .0763• .0677• .0657• .0676◦ .2121• .0793• .2030• .0657• .0831
WDBC .0351• .0359◦ .0396• .0440• .0440• .0573• .0695• .0608◦ .0869• .0695• .0782
WPBC .1715• .1909• .1833◦ .1837• .1971• .1376• .2032• .1951• .1951• .1463◦ .2439

1st/2nd/3rd 20/4/0 4/13/5 1/1/6 0/2/9 3/2/4 15/6/3 5/5/5 3/4/7 2/5/7 4/9/4 -
Avg. rank 1.1667 2.2083 3.8750 3.6250 3.6667 1.5000 2.9583 3.2500 3.1667 2.7917 -

Ta
rg

et
da

ta
se

ts

Mushroom .0000• .0000• .0001• .0009• .0407• .1511◦ .1619 .1642• .1623• .1023• .1642
Occupancy .0030• .0032◦ .0147• .0085• .0391• .0399◦ .0468• .0816• .0392• .0768• .0509
Spambase .0543• .0557◦ .0750• .0782• .0801• .0588• .0684◦ .0716• .0694• .0738• .0966
Statlog S. .0205• .0216◦ .0233• .0238• .0254• .0238• .0339• .0281◦ .0432• .0311• .0389
Wilt .0165• .0172◦ .0204• .0204• .0202• .0314◦ .0146• .1120• .0420• .1060• .1000
Wine Q. R. .3241◦ .3177• .4217• .4209• .4258• .4409• .4813• .4720• .4751• .4565◦ .4472
Yeast .4025• .4103◦ .4556• .4561• .4640• .4186• .4313◦ .4417• .4481• .4320• .4983
Gisette .0190• .0203◦ .0216• .0210• .0270• .0180• .0259• .0214• .0210◦ .0214• .0270
Jsbach .2334• .2535• .2537• .2578• .2474◦ .3135• .3154◦ .3317• .3408• .3723• .4047
Nursery .0064• .0310• .0340• .0713• .0295◦ .3141• .3097◦ .3350• .3151• .3028• .3149

1st/2nd/3rd 9/1/0 2/6/2 0/0/4 0/0/3 0/2/1 6/3/1 1/4/2 0/1/3 1/1/2 2/1/3 -
Avg. rank 1.1000 2.0000 3.6000 3.9000 4.2000 1.5000 2.9000 3.9000 3.5000 3.1000 -

Table 2: Optimization and generalization performance on hyper-parameter optimization for ensemble classifier. The entries are marked • and
◦ mean the best and second error rate in each corresponding group. The datasets in bold are the target datasets. The number of 1st/2nd/3rd
ranks and average rank (avg. rank) for each method are reported on experienced and target datasets respectively.

problem settings. The conclusion of this experiment is simi-
lar with that of the convergence experiment. EXPSRACOS is
much better than the compared methods when shifting space
Xshift is small, but gets smaller advantage for larger shifts.

The results of synthetic function experiments indicate that
the experienced optimization mechanism can have signifi-
cantly improved performance when problems are similar.

4.2 On AutoML Tasks
In this section, we apply EXPSRACOS to solve autoML tasks:
the hyper-parameter optimization on heterogeneous weighted
voting ensemble classifier and the architecture optimization
on deep neural networks. These two tasks with the k-fold
cross validation error as the criterion have been formulated in
Section 2. For EXPSRACOS, the datasets are split as source
and target datasets. We organize the experience dataset on
source datasets, and test the reusing performance of Φ on
the target datasets. EXPSRACOS is compared with SRA-
COS, SMAC, TPE. In the experiment results, the optimization

and generalization performance mean the validation error on
training dataset when optimization and test error on testing
dataset. We run each method for 3 times independently and
the best solution is selected for testing generalization perfor-
mance. For each optimal solution, we test the generalization
performance for 5 times and report its average performance.

On Ensemble Classifier Hyper-Parameter Optimization
This task is optimizing hyper-parameters for heterogeneous
weighted voting ensemble classifier CV. We choose ten base
classifiers as follows: decision tree, multilayer perceptron, lo-
gistic regression, SVM, Gaussian processes, passive aggres-
sive classifier, Gaussian naive Bayes, linear classifiers with
SGD training, random forest, k-nearest neighbors classifier.
All the 24 hyper-parameters (17 continuous, 4 integer and 3
categorical) need to be optimized including voting weights
and hyper-parameters in the base classifiers. Our codes are
based on scikit-learn [Pedregosa et al., 2011]. We report
the generalization performance of CV with default hyper-
parameters (noted as Default CV) on each dataset as base-



Dataset optimization error generalization error HC-Net
ExpSRacos SRacos SMAC TPE ExpSRacos SRacos SMAC TPE

Source dataset (MNIST) .0069 .0079 .0103 .0093 .0078 .0081 .0095 .0091 .0083

Target dataset (SVHN) .0557 .0617 .0782 .0772 .0567 .0664 .0759 .0796 .0634

Table 3: The optimization and generalization performance of neural network architecture optimization. The value in bold means the best
error rate on its dataset. The dataset in bold is the target dataset.
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Figure 2: The neural network architecture for the datasets.

line. A tricky method Best C is choosing a base classifier
with best 5-fold cross validation error. Best C is employed as
the baseline on optimization performance.

We collected 34 UCI classification datasets. Among these,
24 datasets are the source datasets (top 24 data sets in
Tabel 2). The rest of them are the target datasets (dataset
name in bold in Tabel 2). We organize the experience dataset
by running SRACOS on training datasets. For organizing the
experience dataset, SRACOS has 200 evaluation budget and
repeat for 10 times. The label imbalanced problem exists on
this task too. We still use upsampling to balance positive and
negative instances. EXPSRACOS is then employed to opti-
mize the hyper-parameters. We set 50 sample budget for all
the compared methods.

The results are presented in Table 2. The generalization
performance by optimization methods is better than the base-
line (Default CV) in most cases. It indicates that hyper-
parameter optimization can improve generalization perfor-
mance effectively. EXPSRACOS receives the best optimiza-
tion and generalization error (the avg. rank is the lowest com-
pared with other methods). EXPSRACOS outperforms SRA-
COS in most cases. Especially, EXPSRACOS beats SRACOS
on 9 target datasets. It indicates the effectiveness of reusing
directional model in EXPSRACOS. On the generalization per-
formance, similar results have been obtained. EXPSRACOS
outperforms other methods on both source and target datasets,
and its performance on the target datasets is significantly bet-
ter. All these results indicate that the experienced optimiza-
tion can improve optimization efficiency significantly.

On Neural Network Architecture Optimization
We use two image datasets: MNIST [LeCun et al., 1998] as
the source dataset and SVHN [Netzer et al., 2011] as the tar-
get dataset. The neural network architecture is illustrated in
Figure 2. In each pooling layer, we set pooling type (P t, max
or average pooling), kernel size (P k) and stride size (P s)
as hyper-parameters. In dense layers, the number of each
hidden layer is set as hyper-parameters (n1, n2, n3, n4). In

CNN 1 or 2, we use two hyper-parameters to dynamically
choose the 2nd (Cs,2) and 3rd (Cs,3) layer, the other hyper-
parameters (channel size Cc, kernel size Ck) are the same
among layers. We use Adam as the optimizer, and its learn-
ing rate is also an important hyper-parameter. So, there are
19 hyper-parameters in this optimization problem. The gen-
eralization performance of a hand-crafted designing net (HC-
Net) in [Springenberg et al., 2015] is selected as the baseline
with the learning rate 0.0002. We separately set optimization
epoch size is 20 and 30 for all training in MNIST and SVHN.

We organize the experience dataset by running SRACOS
for optimizing on MNIST. The sample budget is set to 200,
and optimization process is repeated for 5 times indepen-
dently. Then, we test Φ on SVHN. The sample budget of all
methods is 50. The results of this experiments is presented
in Table 3. EXPSRACOS receives the best performance in
optimization. Comparing with SRACOS on SVHN, the opti-
mization and generalization error obtained by EXPSRACOS
are nearly 0.1% and 1% better than SRACOS. On generaliza-
tion performance, note that the baseline HC-Net is better than
all the non-experienced optimization methods, but EXPSRA-
COS achieves a significant improvement from the baseline.

5 Conclusions
AutoML tasks such as hyper-parameter optimization and neu-
ral network architecture optimization attract attentions incre-
mentally. AutoML tasks are often solved by derivative-free
optimization, which, however, commonly suffers from the
high evaluation cost. This paper proposes an experienced
optimization approach. It utilizes the experience of histori-
cal optimization processes to guide the optimization on new
tasks. Specifically, the directional model is used to predict the
direction of the next samples generated in every algorithm it-
eration. A pre-sample step is added in the optimization to
generate candidate samples and filter them with the direc-
tional model. In this way, this framework can eliminate many
unnecessary explorations and thus improve the sample effec-
tiveness. Incorporating with a state-of-the-art derivative-free
optimization method SRACOS, we implement this framework
as EXPSRACOS. We empirically compare EXPSRACOS with
other state-of-the-art methods on Ackley function and two
autoML tasks. The experiment results show that the expe-
rienced optimization with directional model can effectively
reduce the sample budget and improve the optimization. Re-
cently Zhou [Zhou, 2016] proposed the new concept of learn-
ware, with properties of reusability, evolvability and compre-
hensibility. The effort of this paper can be viewed as an effort
towards reusability from a new perspective.
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