
Environment Reconstruction with Hidden Confounders for
Reinforcement Learning based Recommendation∗

Wenjie Shang
National Key Laboratory for Novel

Software Technology
Nanjing University

shangwj@lamda.nju.edu.cn

Yang Yu
National Key Laboratory for Novel

Software Technology
Nanjing University
yuy@nju.edu.cn

Qingyang Li
AI Labs, Didi Chuxing

qingyangli@didiglobal.com

Zhiwei Qin
AI Labs, Didi Chuxing

qinzhiwei@didiglobal.com

Yiping Meng
AI Labs, Didi Chuxing

mengyipingkitty@didiglobal.com

Jieping Ye
AI Labs, Didi Chuxing

yejieping@didiglobal.com

ABSTRACT
Reinforcement learning aims at searching the best policy model
for decision making, and has been shown powerful for sequen-
tial recommendations. The training of the policy by reinforcement
learning, however, is placed in an environment. In many real-world
applications, however, the policy training in the real environment
can cause an unbearable cost, due to the exploration in the envi-
ronment. Environment reconstruction from the past data is thus
an appealing way to release the power of reinforcement learning
in these applications. The reconstruction of the environment is,
basically, to extract the casual effect model from the data. However,
real-world applications are often too complex to offer fully ob-
servable environment information. Therefore, quite possibly there
are unobserved confounding variables lying behind the data. The
hidden confounder can obstruct an effective reconstruction of the
environment. In this paper, by treating the hidden confounder as a
hidden policy, we propose a deconfounded multi-agent environment
reconstruction (DEMER) approach in order to learn the environment
together with the hidden confounder. DEMER adopts a multi-agent
generative adversarial imitation learning framework. It proposes to
introduce the confounder embedded policy, and use the compatible
discriminator for training the policies. We then apply DEMER in an
application of driver program recommendation. We firstly use an
artificial driver program recommendation environment, abstracted
from the real application, to verify and analyze the effectiveness
of DEMER. We then test DEMER in the real application of Didi
Chuxing. Experiment results show that DEMER can effectively
reconstruct the hidden confounder, and thus can build the environ-
ment better. DEMER also derives a recommendation policy with

∗This work is supported by the National Key R&D Program of China (2017YFB1002201),
NSFC (61876077), Jiangsu SF (BK20170013), and Collaborative Innovation Center of
Novel Software Technology and Industrialization. This work is done during the first
author’s internship in Didi Chuxing. Yang Yu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330933

a significantly improved performance in the test phase of the real
application.

CCS CONCEPTS
•Applied computing→Transportation; •Computingmethod-
ologies→Reinforcement learning; Simulation environments.

KEYWORDS
reinforcement learning, environment reconstruction, hidden con-
founder, imitation learning, recommendation

ACM Reference Format:
Wenjie Shang, Yang Yu, Qingyang Li, Zhiwei Qin, Yiping Meng, and Jieping
Ye. 2019. Environment Reconstruction with Hidden Confounders for Re-
inforcement Learning based Recommendation. In The 25th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’19), August
4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3292500.3330933

1 INTRODUCTION
In sequential recommendation problems [20, 21], where the system
needs to recommend multiple items to the user while responding
to the user’s feedback, there are multiple decisions to be made in
sequence. For example, in our application of program recommenda-
tion to taxi drivers, the system recommends a personalized driving
program to each driver, and a program consists of multiple steps,
where each step is recommended according to how the previous
steps was followed. Therefore, recommending the program steps
is a sequential decision problem, and it can be naturally solved by
reinforcement learning [19].

As a powerful tool for learning decision-making policies, rein-
forcement learning learns from interactions with the environment
via trial-and-errors [19]. In digital worlds where interactions with
the environment are feasible and cheap, it has made remarkable
achievements, e.g., [10, 18]. When it comes to real-world applica-
tions, the convenience of available digital environments does not
exist. It is not practical to interact with the real-world environment
directly for training the policy, because of the high interaction cost
and the huge amount of interactions required by the current re-
inforcement learning techniques. A recent study [17] disclosed a
viable option to conduct the reinforcement learning on real-world
tasks, which is by reconstructing a virtual environment from the

https://doi.org/10.1145/3292500.3330933
https://doi.org/10.1145/3292500.3330933
https://doi.org/10.1145/3292500.3330933

Figure 1: Illustration of the
graph structure and the col-
lected data (a) in the classical
environment that assumes
fully observable, and (b) in
the more realistic environ-
ment with an unobserved
confounder.

state st state si+1

action at

en
vi

ro
nm

en
t

po
lic

y

action at

en
vi

ro
nm

en
t

po
lic

y

confounding
variable h

state st state st+1

observation ot ot+1

da
ta st at st+1 da
ta ot at ot+1

(a) classical environment (a) environment with a confounder

past data. As a result, the reinforcement learning process could be
more efficient by interacting with the virtual environment, and the
interaction cost could be avoided as well.

The environment reconstruction can be done by treating the en-
vironment as a policy that makes responses to the interactions, and
employing the imitation learning [1, 15] to learn the environment
policy from the past data, which has drawn a lot attentions recently.
Comparing with using supervised learning, i.e., behavior clone, to
learn the environment policy, a more promising solution in [17]
is to formulate the environment policy learning as an interactive
process between the environment and the system in it. Take the
example of the commodity recommendation system, the user and
the platform could be viewed as two agents interacting with each
other, where user agent views the platform as the environment
and the platform agent views the user as the environment. By this
multi-agent view, [17] proposed a multi-agent imitation method
MAIL, extending the GAIL framework [6], which learns the two
policies simultaneously by beating the discriminator that finds the
difference between the generated and the real interaction data.

However, theMAILmethod [17] is under the assumption that the
whole world consists of the two agents only. From the perspective
of the real users, they can receive much more information from
the real-world that is not recorded in the data. Therefore, it is still
quite challenging to reconstruct the environment in real-world
applications, since the real-world scenario is too complex to offer a
fully observable environment, which means that it might exist the
hidden confounders. As shown in Figure 1, in the classical setting,
the next state depends on the previous state and the executed
action. While in most of real-world scenarios, the next state could
be extra influenced by some hidden confounders. If we follow the
assumption of a fully observable world, the reconstruction may be
misled by the appeared fake associations in the data, due to the
unawareness of the possible hidden causes. Thus, it is essential to
take hidden confounders into consideration.

Originally, confounder is a casual concept [11]. It can affect both
the treatment and the outcome in an experiment and cause a spuri-
ous association in observational data [7]. Similarly, in reinforcement
learning, hidden confounders can affect both actions and rewards
as an agent interacts with the environment. When it comes to such
real-world applications, it is necessary to involve the confounder
into the learning task because of the confounding effect. Yet, little
work has been done in this promising area [2, 4]. To the best of
our knowledge, this is the first study in reinforcement learning to
reconstruct an environment together with hidden confounders.

To involve hidden confounders into the environment reconstruc-
tion, we propose a deconfounded multi-agent environment recon-
struction method, named DEMER. Firstly, we formulate two repre-
sentative agents, πa and πb , interacting with each other. Then, in
order to simulate the confounding effect of hidden confounders, we
add a confounding agent πh into the formulation. According to the
casual relationship, the confounding agent πh interacts with the
other two agents. Based on the formulation, we learn each policy
of three agents from the historical data by imitation learning. Since
the hidden confounder is unobservable, to learn the policy of it, we
propose two techniques: the confounder embedded policy and the
compatible discriminator under the framework of GAIL [6]. The
confounder embedded policy involves the confounding policy into
the observable policy. The compatible discriminator is designed to
discriminate the state-action pairs of the two observable policies
so as to provide the respective imitation reward. As the training
converges, the deconfounded environment is reconstructed.

To verify the effectiveness of DEMER, we firstly use an artificial
environment abstracted from the real application. Then, we apply
DEMER to a large-scale recommender system for ride-hailing dri-
ver programs in Didi Chuxing. Through comparative evaluations,
DEMER shows significant improvements in this real application.

The contribution of this work is summarized as follows:

• We propose a novel environment reconstruction method to
tackle the practical situation where hidden confounders exist
in the environment. To the best of our knowledge, this is the
first study to reconstruct environment with taking hidden
confounders into consideration.

• By treating the hidden confounder as a hidden policy, we for-
mulate the confounding effect into a multi-agent interactive
environment. We propose an imitation learning framework
by considering the interaction among two agents and the
confounder. We define the confounder embedded policy and
the compatible discriminator to learn policies effectively.

• We deploy the proposed framework to the driver program
recommendation system on a large-scale riding-hailing plat-
form of Didi Chuxing, and achieve significant improvements
in the test phase.

The rest of this paper is organized as follows: we introduce
the background in Section 2 and the proposed method DEMER
in Section 3. We describe the application for the scenario of dri-
ver program recommendation in Section 4. Experiment results are
reported in Section 5. Finally, we conclude the paper in Section 6.

2 REINFORCEMENT LEARNING AND
ENVIRONMENT RECONSTRUCTION

2.1 Reinforcement Learning
The problem to be solved by Reinforcement Learning (RL) can
usually be represented by a Markov Decision Processes (MDP)
quintuple (S,A,T ,R,γ), where S is the state space and A is the ac-
tion space and T : S × A 7→ S is the state transition model and
R : S ×A 7→ R is the reward function and γ is the discount factor of
cumulative reward. Reinforcement learning aims to optimize pol-
icy π : S 7→ A to maximize the expected γ -discounted cumulative
reward Eπ [ΣTt=0γ

t rt] by enabling agents to learn from interactions
with the environment. The agent observes state s from the envi-
ronment, selects action a given by π to execute in the environment
and then observes the next state, obtains the reward r at the same
time until the terminal state is reached. Consequently, the goal of
RL is to find the optimal policy

π⋆ = argmax
π

Eπ [Σ
T
t=0γ

t rt] , (1)

of which the expected cumulative reward is the largest.
Imitation Learning. Learning a policy directly from expert

demonstrations has been proven very useful in practice, and has
made a significant improvement of performance in a wide range
of applications [13]. There are two traditional imitation learning
approaches: behavioral cloning, which trains a policy by super-
vised learning over state-action pairs of expert trajectories [12],
and inverse reinforcement learning [14], which learns a cost func-
tion that prioritizes the expert trajectories over others. Generally,
common imitation learning approaches can be unified as the fol-
low formulation: training a policy π to minimize the loss function
l(s,π (s)), under the discounted state distribution of the expert pol-
icy: Pπe (s) = (1 − γ)ΣTt=0γ

tp(st). The object of imitation learning
is represented as

π = argmin
π
Es∼Pπe [l(s,π (s))] , (2)

ConfoundingReinforcement Learning. Originally, confound-
ing is a concept in casual inference [11]. Confounder is a variable
that influences both the treatment and the outcome, naturally cor-
responding to the action and the reward in reinforcement learning.
From the perspective of traditional reinforcement learning, the state
is a confounder between the action and the reward. Although there
are inherent similarities between causal inference and reinforce-
ment learning, little work has been done in reinforcement learning
that confounders exist in the environment [2, 4]. Only recently, Lu
et al. [8] proposed the deconfounding reinforcement learning to
adapt to the confounding setting, while the model of confounder is
stationary at each time step which actually can be dynamic.

2.2 Environment Reconstruction
Reinforcement learning relies on an environment. However, when it
comes to real-world applications, it is not practical to interact with
the real-world environment directly to optimize the policy because
of the low sampling efficiency and the high-risk uncertainty, such
as online recommendation in E-commerce and medical diagnosis.
A viable option is to reconstruct a virtual environment [17]. As a
result, the learning process could be more efficient by interacting

with the virtual environment and the interaction cost could be
avoided as well.

GenerativeAdversarialNets. Generative adversarial networks
(GANs) [5] and its variants are rapidly emerging unsupervised ma-
chine learning techniques. GANs involve training a generator G
and discriminator D in a two-player zero-sum game:

argmin
G

argmax
D∈(0,1)

Ex∼pE [logD(x)] + Ez∼pz [log(1 − D(G(z)))] , (3)

where pz is some noise distribution. In this game, the generator
learns to produce samples (denoted as x) from a desired data dis-
tribution (denoted as pE). The discriminator is trained to classify
the real samples and the generated samples by supervised learning,
while the generatorG aims to minimize the classification accuracy
of D by generating samples like real ones. In practice, the discrimi-
nator and the generator are both implemented by neural networks,
and updated alternately in a competitive way. The training pro-
cess of GANs can be seen as searching for a Nash equilibrium in
a high-dimensional parameter space. Recent studies have shown
that GANs are capable of generating faithful real-world images
[9], demonstrating their applicability in modeling complex distri-
butions.

Generative Adversarial Imitation Learning. GAIL [6] has
become a popular imitation learning method recently. It was pro-
posed to avoid the shortcoming of traditional imitation learning,
such as the instability of behavioral cloning and the complexity of
inverse reinforcement learning. It adopts the GAN framework to
learn a policy (i.e., the generator G) with the guidance of a reward
function (i.e., the discriminator D) given expert demonstrations
as real samples. GAIL formulates a similar objective function like
GANs, except that here pE stands for the expert’s joint distribution
over state-action pairs:

argmin
π

argmax
D∈(0,1)

Eπ [logD(s, a)] + EπE [log(1 −D(s, a))] − λH (π) ,

(4)
where H (π) ≜ Eπ [− logπ (a |s)] is the entropy of π .

GAIL allows the agent to execute the policy in the environment
and update it with policy gradient methods [16]. The policy is
optimized to maximize the similarity between the policy-generated
trajectories and the expert ones measured by D. Similar to the
equation (2), the policy π is updated to minimize the loss function

l(s,π (s)) = Eπ [logD(s,a)]−λH (π) � Eτi [logπ (a |s)Q(s,a)]−λH (π) .
(5)

where Q(s,a) = Eτi [log(D(s,a))|s0 = s,a0 = a] is the state-action
value function. The discriminator is trained to predict the condi-
tional distribution: D(s,a) = p(y |s,a) where y ∈ {πE ,π }. In other
words, D(s,a) is the likelihood ratio that the pair (s,a) comes from
π rather than from πE . GAIL is proven to achieve similar theoretical
and empirical results as IRL [3] while it is more efficient. Recently,
the multi-agent extension of GAIL [17] has been proven effective
to reconstruct an environment.

Shi et al. [17] proposed to virtualize an online retail environment
by extending the GAIL framework to a multi-agent approach, MAIL,
that learns the interacting factors simultaneously. They showed that
the multi-agent method leads to a better generalizable environment.

3 DECONFOUNDED MULTI-AGENT
ENVIRONMENT RECONSTRUCTION

To reconstruct environments where hidden confounders exist, we
propose a novel deconfounded multi-agent environment reconstruc-
tion (DEMER) method.

In this study, by treating the hidden confounder as a hidden pol-
icy, we formulate the deconfounding environment reconstruction
as follows: there are two agentsA (known as the policy agent) and B
(known as the environment), interacting with each other and both
of them are confounded by a hidden confounder H . Specifically,
the dynamic effect of the hidden confounder H is modeled as a
hidden policy πh . The observation and action of each agent are
defined as follows: Given oA as the observation of agent A, it takes
an action aA = πa (oA). The observation oH of the hidden policy
is formatted as the concatenation oH =< oA,aA >, and action
aH = πh (oH) has the same format as aA. The observation oB of
agent B is formatted as the concatenation oB =< oA,aA,aH >, and
its action is aB = πb (oB) which can be used to move forward to
the next state. The objective is to use only observed interactions,
that is, trajectories {(oA,aA,aB)}, to imitate the policies ofA,B and
recover the potential effect of H by inferring the hidden policy πh .
The objective function of multi-agent imitation learning is then
defined analogy to equation (2):

(πa ,πb ,πh) = argmin
(πa,πb ,πh)

Es∼Pτr eal
[L(s,aA,aB)] , (6)

where aA, aB depend on three policies. By adopting the GAIL
framework, according to equation (5), we can get

L(s,aA,aB) = Eπa,πh,πb [logD(s,aA,aB)] − λΣπ ∈{πa,πh,πb }H (π)
(7)

and observe that πa is independent with πh and πb given s and aA,
then

D(s,aA,aB) = p(πa ,πh ,πb |s,aA,aB)

= p(πa |s,aA,aB) p(πh ,πb |s,aA,aB)

= p(πa |s,aA) p(πh ,πb |s,aA,aB)

= Da (s,aA) Dhb (s,aA,aB) .

(8)

Combining equations (7) and (8), we can get the formulation as

L(s,aA,aB) = Eπa,πh,πb [logDa (s,aA)Dhb (s,aA,aB)]−

λΣπ ∈{πa,πh,πb }H (π)

= Eπa [logDa (s,aA)] − λH (πa)+

Eπh,πb [logDhb (s,aA,aB)] − λΣπ ∈{πh,πb }H (π)

= l(s,πa (s)) + l((s,aA),πb ◦ πh ((s,aA)))
(9)

which indicates that the optimization can be decomposed as opti-
mizing policy πa and joint policy πhb = πb ◦ πh individually by
minimizing

l(s,πa (s)) = Eπa [logDa (s,aA)] − λH (πa)

� Eτi [logπa (aA |s)Q(s,aA)] − λH (πa) ,
(10)

where Q(s,aA) = Eτi [log(D(s,aA))|s0 = s,a0 = aA] is the state-
action value function of πa , and

l((s,aA),πhb ((s,aA))) = Eπh,πb [logDhb ((s,aA),aB)]−

λΣπ ∈{πh,πb }H (π)

� Eτi [logπhb (aB |s,aA)Q(s,aA,aB)]−
λΣπ ∈{πh,πb }H (π) ,

(11)
whereQ(s,aA,aB) = Eτi [log(D((s,aA),aB))|s0 = s,aA0 = aA,aB0]
is the state-action value function of πhb .

Based on this result, we propose the confounder embedded policy
and the compatible discriminator to achieve the goal of imitating
polices of each agent, thus obtaining the DEMER approach.

3.1 Confounder Embedded Policy
In this study, the interaction between the agent A (known as the
policy agent) and the agent B (known as the environment) could be
observed, while the policy and data of the agentH (known as hidden
confounders) are unobservable. Thus, we combine the confounder
policy πh with policy πb as a joint policy named πhb = πb ◦ πh .
Together with the policy πa , the generator is formalized as an
interactive environment of two policies as shown in the top of
Figure 2. The joint policy can actually be expressed as πhb (oA,aA) =
πb (oA,aA,πh (oA,aA)) in which the input oA,aA and the output aB
are both observable from the historical data. Therefore, we can use
imitation learning methods to train these two policies by imitating
the observed interactions.

The policies in generator are updated respectively for each train-
ing step: firstly the joint policy πhb is updated with the reward
rHB given by the discriminator, secondly the policy πa is updated
with the reward rA. Though there is no explicit updating step for
the hidden confounder policy πh , it has been optimized iteratively
by these two steps. Intuitively, the generated hidden policy πh is
just like a by-product along with the process of optimizing policies
πa and πhb towards the truth and in consequence it can recover
the real confounding effect to some extent. To make the training
process more stable, we employ TRPO to update policies mentioned
above.

3.2 Compatible Discriminator
In most of generative adversarial learning frameworks, there is
only one task to model and learn in the generator. In this study,
it is essential to simulate and learn different reward functions for
the two policies πa ,πhb in the generator respectively. Thus, we
design the discriminator compatible with two classification tasks.
As Figure 2 illustrates, one task is designed to classify the real and
generated state-action pairs of πhb while the other one is to classify
the state-action pair of πa . Correspondingly, the discriminator has
two kinds of input: the state-action pair (oA, aA, aB) of policy πhb
and the zero-padded state-action pair (oA, aA, 0) of policy πa . This
setting indicates that the discriminator splits not only the policy
πhb ’s state-action space, but also the policy πa ’s. The loss function
of each task is defined as

Eτsim [log(Dσ (oA,aA,aB))]+Eτr eal [log(1−Dσ (oA,aA,aB))] (12)

for πhb , and

Eτsim [log(Dσ (oA,aA, 0))] + Eτr eal [log(1 − Dσ (oA,aA, 0))] (13)

𝑜" 𝑎"𝜋%

𝑜" +	𝑎" 𝑎(𝜋)

𝑜" + 𝑎" + 𝑎(𝑎*𝜋+
concatenate

𝜋%

𝜋)+

𝑜"
𝑎"
𝑎*

Discriminator for state-action pair
𝑠*, 𝑎* of 𝜋)+

𝑟)+𝐷

shared weights

Multi-agent Generator

Compatible Discriminator

		𝑠*

𝑎*

𝑜"
𝑎"
𝟎

Discriminator for state-action pair
(𝑠", 𝑎") of 𝜋%

𝑟%𝐷
𝑠"
𝑎"

concatenate

Confounder embedded policy

Figure 2: The generator and discriminator in DEMER.

for policy πa .
The output of the discriminator is the probability that the pair

data comes from the real data. The discriminator is trained with
supervised learning by labeling the real state-action pair as 1 and
the generated fake state-action pair as 0. Then it is used as a reward
giver for the policies while simulating interactions. The reward
function for policy πhb can be formulated as:

rHB = − log(1 − D(oA, aA, aB)) , (14)

and the reward function for policy πa is

rA = − log(1 − D(oA, aA, 0)) . (15)

3.3 Simulation
We simulate interactions in the generator module. The policy-
generated trajectory is generated as follows: Firstly, we randomly
sample one trajectory from the observed data and set its first state
as the initial observation oA0 . Then we can use the two policies
πa ,πhb to generate a whole trajectory triggered from oA0 . Given the
observation oAt as the input of πa , the action aAt can be obtained. In
consequence, the action aBt can be obtained from the joint policy
πhb with the concatenation < oAt ,a

A
t > as input. Then we can get

the simulation reward rHB
t by equation (14) and rAt by equation (15)

which would be used for updating policies in the adversarial train-
ing step. Next, we can get the next observation oAt+1 given o

A
t and

aBt by the predefined transition dynamics. This step is repeated
until the terminal state and a fake trajectory is generated.

3.4 DEMER Algorithm
Based on the confounder embedded policy and the compatible
discriminator, we propose the DEMER method to achieve the goal
of reconstructing environment with hidden confounders from the
observed data.

Algorithm 1 shows the details of DEMER. The whole algorithm
adopts the generative adversarial training framework. In each it-
eration, firstly the generator simulates interactions using policies

Algorithm 1 DEMER

Input: Dr eal = {τ1,τ2, . . . ,τn } : The observed real trajectories
over T steps;
N : Number of trajectories generated in each iteration;
K : Steps of generator per discriminator step;

1: Initialize parameters θhb and θa of policy πhb and πa , param-
eters σ of discriminator D;

2: for i = 1, 2, . . . do
3: for k = 1, 2, . . . ,K do
4: τsim = � ;
5: for j = 1, 2, . . . ,N do
6: τj = � ;
7: Randomly sample one trajectory τr from Dr eal and

set its first state as the initial observation oA0 ;
8: for t = 0, 2, . . . ,T − 1 do
9: Simulate the action aAt = πa (o

A
t) ;

10: Simulate the action aBt = πhb (o
A
t ,a

A
t) ;

11: Get reward rAt according to Equation (15) ;
12: Get reward rHB

t according to Equation (14) ;
13: Get next observation oAt+1 given o

A
t , a

B
t by pre-

defined transition;
14: Add {oAt , a

A
t , a

B
t , r

A
t , r

HB
t } to τj ;

15: end for
16: Add τj to τsim ;
17: end for
18: TRPO update θa and θhb with simulation trajectories

τsim according to the equation (10) and (11) respectively;
19: end for
20: Update the parameters σ of the discriminator D by mini-

mizing the losses in equation (12) and (13) in turn;
21: end for
22: return the trained policies πa , πb , πh .

πa , πhb to collect the trajectory set τsim corresponding to the line
5 to line 17. Then the policy πa and πhb are updated in turn using
TRPO with generated trajectories τsim in line 18. After K generator
steps, the compatible discriminator is trained by two steps as shown
in line 20. Specifically, the predefined transition dynamics in line
13 depends on specific tasks. The DEMER method can effectively
imitate the policies of observed interactions and recover the hidden
confounder beyond observations.

4 APPLICATION IN DRIVER PROGRAM
RECOMMENDATION

4.1 Driver Program Recommendation
We have witnessed a rapid development of on-demand ride-hailing
services in recent years. In this economic pattern, the platform
often recommends programs to drivers, aimed to help them finish
more orders. Specifically, the platform would select the appropriate
program to recommend the drivers to participate every day, and
then adjust the program content according to the drivers’ feedback
behavior. This is a typical reinforcement learning task. However,
since the behavior of drivers is not only affected by the recom-
mended programs, but also affected by some other unobservable

Figure 3: DEMER framework
applied in the driver program
recommendation. While real-
world data only collects the
interactions between the drivers
and the Didi Chuxing platform,
the virtual environment con-
tains three policies simulating
the drivers, the platform, and
the confounding variable.

drivers platform

hidden confounder

real-world
data

real-world environment

generated data

rewards for training

compatible discriminator

recommendation

response

int
era

cti
on

s observation

virtual driver policy platform policy

confounder policy
virtual environment with confounder policy

recommendation

response

int
era

cti
on

s

observation

factors, such as the response to special events and so on, that is,
hidden confounders. In order to achieve the goal of policy optimiza-
tion, it is essential to take into account the potential influence of
hidden factors when recommending programs.

However, traditional reinforcement learning approaches are ap-
plied in these problems without exploring the impact of hidden
confounders, which would consequently degrade the learning per-
formance. Thus, a more adaptive approach such as DEMER pro-
posed in this paper is desirable to tackle these problems.

4.2 DEMER based Driver Program
Recommendation

As for the driver program recommendation, we apply DEMER to
build a virtual environment with hidden confounders by using his-
torical data. As shown in Figure 3, there are three agents in the
environment, representing driver policy πd , platform policy πp and
confounder policy πh . We can see that the driver policy and the
platform policy have the nature of “mutual environment" from the
perspective of MDP. From the platform’s point of view, its observa-
tion is the driver’s response, and its action is the recommendation
program to the driver. Correspondingly, from the driver’s point of
view, its observation is the platform’s recommendation program,
and its action is the driver’s response to the platform. The hidden
confounder is modeled as a hidden policy same as DEMER, so as to
make a dynamic effect at each time step.

Data preparation. Based on the above scenario, we integrate
the historical data and then construct historical trajectoriesDhist =

{τ1, . . . ,τi , . . . ,τn } representing trajectories of n drivers. Each tra-
jectory τi = {oP0 ,a

P
0 ,a

D
0 ,o

P
1 , . . . ,o

P
t ,a

P
t ,a

D
t ,o

P
t+1, . . . ,o

P
T } repre-

sents the T steps of interactions of driver di .
Definition of policies. According to the interaction among

agents in this scenario, the observation and action of each agent
policy are defined as follows:

• platform policy πp : The observation oPt consists of the dri-
ver’s static characteristics (using real data) and the simulated
response behavior aDt−1; the action aPt is the program infor-
mation recommended for the driver.

• hidden policy πh : The observation oHt consists of oPt and aPt ;
the action aHt is the same format as aPt .

• driver policy πd : The observation oDt consists of oPt , a
P
t and

aHt ; the action aDt is the simulated driver’s behavior at the
current step.

Similar to the DEMER setting, we further combine the policies
πh , πd into a joint policy named πjoint . We then apply DEMER to
train πjoint and πp . Afterwards, the deconfounding environment
of driver program recommendation is reconstructed.

RL in virtual environment. Once the deconfounding virtual
environment is built, we perform reinforcement learning efficiently
to optimize the policy πp by interacting with the environment. Due
to the simulated confounders in the environment, the reinforce-
ment learning approach could learn a deconfounding policy with
improved performance in the real world.

5 EXPERIMENTS
In this section, we conduct two groups of experiments to validate
the effect of DEMER method. One is a toy experiment in which
we design an environment with predefined rules, the other is a
real-world application of driver program recommendation on a
large-scale ride-hailing platform Didi Chuxing.

5.1 Artificial Environment
We firstly hand-craft an artificial environment, consisting of the
artificial platform policy πp , the artificial driver policy πd , and
the artificial confounder πh , with deterministic rules to mimic the
real environment. Then we use DEMER to learn the policies and
compare with the real rules. Besides, we conduct the MAIL method,
without modeling hidden confounders, as a comparison.

Description of the artificial environment. Similar to the in-
teraction in the scenario of driver program recommendation, we
define a triple-agents environment to simulate a Markov decision
process. The semantic drawing of this toy scenario is shown in
Figure 4. In a Markov decision process, the key variant v (denotes
the driver’s response) is affected by three policies at each time step.
The policy πd has an intrinsic evolution trend on the variant v in
the period of 7 time steps, as defined in equation (19). The policy πp
has a positive effect on the variant v if the value of v is under the
green line else no effect. Oppositely, the policy πh has a negative
effect on the variant v if the value of v is above the blue line else
no effect. The green and blue lines can be seen as the thresholds of
πp and πh to make effect on the evolution trend of v . Here we set
the policy πh as a role of hidden confounders in this environment,
of which the effect on the interaction would not be observed.

MDP definition. The observation o is a tuple (tw, r ,v), in which
tw ∈ {1, 2, . . . , 7} is the time step in one period, r is a static factor

12
11
10
9
8
7
6

𝑣

𝑡

𝑇𝑃

𝑇𝐻

𝑉(𝑡)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4: Schematic drawing of interaction in the toy envi-
ronment: t represents the time step and v is a variant af-
fected by all three policies.TP andTH are the thresholds for
policies taking effect, and V (t) describes the intrinsic evolu-
tion trend of the artificial driver policy πd .

used to make a difference on the effect of each agent andv is the key
variant in the interaction process. The initial value v0 is sampled
from a uniform distributionU (9+wave, 9−wave),wave = 1.2. We
add the static factor r = 1 − 0.5 × v0−9

wave into the state to make the
episodes generated by this setting more diverse.

The action is defined as the output of the deterministic policy.
The thresholds of green line TP and blue line TH are 10 and 8
correspondingly. Then we define the deterministic policy rule of
each agent as follows:

ap = πp (tw, r ,v) = max(0,min(1, r × (TP −v) ×
tw

7
)) , (16)

ah = πh (tw, r ,v,ap) = max(−1,min(0, r × (TH −v −
ap

2
) ×

tw

7
)) ,

(17)
ad = πd (tw, r ,v,ap ,ah) = ∆V (tw) + ap + ah . (18)

where

∆V (tw) =

1 if tw = 5;
−1 else if tw = 7;
0 otherwise.

(19)

The transition dynamics is simply defined as: vt+1 = vt +atd and
r is a constant once initialized. tw is a timestamp indicator cycling
in the sequence [1, 2, . . . , 7]. In this experiment, we set the length
of trajectory T to 8.

By running in the toy environment, we collect many episodes as
training data. Each episode is formatted as {o0p ,a0p ,a0d ,o

1
p , . . . ,o

T
p }.

Note that there is no action of policy πh in the episode.
Implementation details. We conduct two training settings on

this artificial environment: DEMER andMAIL. The major difference
is that there is no confounding policy in the MAIL setting. We aim
to compare the similarity between the generated policies and the
defined rules. In detail, each policy is embodied by a neural network
with 2 hidden layers and combined sequentially into a joint policy
network illustrated in Figure 2. There are 64 neurons in each hidden
layer activated by tanh functions. To control the same complexity
of the policy model, the joint policy network in MAIL has the same
number of hidden layers as DEMER. The discriminator network
adopts the same structure as each policy network. Different from
GANs training, we performK = 3 generator steps per discriminator
step, and sample N = 200 trajectories per generator step. The detail
of the training process is described in Section 3.

Results. The generated policy functions trained by DEMER and
MAIL are shown in Figure 5.

First of all, from the perspective of the two observable policies,
the policy function maps of πp and πd produced by DEMER are
both more similar to the real function space than those by MAIL,
as shown in Figures 5 [a] and [c]. MAIL produces sharp distortion
shape locally when r is large. We believe that this is because the
hidden confounder has a greater impact on the interaction as r
increases, and a large confounding bias has reached a point where
it cannot be neglected.

Then we further compare the similarity between the confounder
policy generated byDEMER and the true policy πh . In Figure 5 [b], it
can be seen the generated confounder policy can describe threshold
effects well and match the real function map roughly, although it is
difficult under the setting of fully unobservable confounders. Our
results show the great potential of using observational data to infer
the hidden confounder model.

5.2 Real-world Experiment
In this part, we apply DEMER to a real-world scenario of driver
program recommendation as introduced in Section 4.1. Firstly, we
use historical data to reconstruct four virtual environments by four
comparative methods. Next, we evaluate these environments from
various statistical measures. Finally, we train four recommendation
policies in these environments by the same training method and
evaluate these policies in offline and online environments.

Specifically, we include four methods in our comparison:
• SUP: Supervised learning of the driver policy with historical
state-action pairs, i.e., behavioral cloning;

• GAIL: GAIL to learn the driver policy, given the historical
record of program recommendation as a static environment;

• MAIL: Multi-agent adversarial imitation learning, without
modeling the hidden confounder.

• DEMER: The proposed method in this study;
We evaluate the models by different statistical metrics.

Log-likelihood of real data on models. We evaluate the pol-
icy distribution of four different models by the mean log-likelihood
of real state-action pairs on both training set and testing set. As
shown in Table 1, the model trained by DEMER achieves the highest
mean log-likelihood on both data sets. Since the evaluation is on
the view of each state-action pair, the behavioral cloning method
SUP achieves a better performance than MAIL. While our method
DEMERmakes a significant improvement onMAIL, which indicates
the positive influence of our confounder setting.

Correlation of key factors trend. Another important mea-
surement of generalization performance is the trend of drivers’
response. We use two indicators’ trend lines to compare differ-
ent simulators: Number of finished orders (FOs) and Total Driver
Incomes (TDIs). The same as above, we apply the simulator to a
subsequent testing data and simulate the trend of FOs and TDIs.
Then we calculate the Pearson correlation coefficient between the
simulation trend line and the real. As shown in Table 2, the simu-
lation trend lines of two indicators by DEMER and MAIL achieve
high correlations to the real with Pearson correlation coefficient
of 0.8 approximately. While the methods SUP and GAIL, trained
directly with real data, get bad performance in this evaluation.

Distribution of program response. To compare the general-
ization performance of models, we apply the built simulators to

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

real πp

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

DEMER πp

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

real πd

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

MAIL πd

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

DEMER πd

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

real πh

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

− 1.0
− 0.8
− 0.6
− 0.4
− 0.2
0.0

DEMER πh
(a) Artificial platform policy: the ground-truth, the learned by DEMER, and the learned by MAIL

(c) Artificial driver policy: the ground-truth, the learned by DEMER, and the learned by MAIL
(b) Artificial confounder policy: the

ground-truth, and the learned by DEMER

Figure 5: Visualization and comparison of policy functions, with r = 1.3. More visualizations with various of r values are
presented in the supplement material.

0 6 12 18 24 30

FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
o
r
o
f
R
a
ti
o
)

Error of FOs distribution by SUP

ER = Rreal −Rsim

0 6 12 18 24 30

FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
o
r
o
f
R
a
ti
o
)

Error of FOs distribution by GAIL

ER = Rreal −Rsim

0 6 12 18 24 30

FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
o
r
o
f
R
a
ti
o
)

Error of FOs distribution by MAIL

ER = Rreal −Rsim

0 6 12 18 24 30

FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
o
r
o
f
R
a
ti
o
)

Error of FOs distribution by DEMER

ER = Rreal −Rsim

Figure 6: Error of FOs distribution generated by four different methods on testing data. Y-axis is the error of FOs distribution
between the simulation and the real data. The original distribution is presented in the supplement material.

Table 1: Comparison of test log-likelihood on real data.

Methods Training set Testing set
SUP 17.09 18.00
GAIL 18.43 17.85
MAIL 15.27 14.52
DEMER 21.74 21.21

Table 2: Comparison of Pearson correlation coefficients on
FOs and TDIs trend lines.

Methods FOs TDIs
SUP -0.0213 0.0010
GAIL 0.4987 0.4252
MAIL 0.8129 0.7861
DEMER 0.7945 0.8596

subsequent program recommendation records. We simulate the dri-
vers’ responses by using real program records on testing data, then
compare the simulation distribution of drivers’ responses with the
real distribution. Here we use FOs as an indicator. Figure 6 shows
the error of FOs distributions simulated in four simulators . The

simulation distributions by SUP and GAIL are biased apparently
when FOs is low. The reason is that these two methods use whole
or partial real data directly for building simulators, which limits
the generalization performance of simulators, and the lower FOs
means the higher uncertainty, especially zero. Furthermore, the
FOs distribution by DEMER is exactly closer to the real than by
MAIL, where the confounder setting makes difference explicitly.

Policy evaluation results in semi-online tests. In this part,
we evaluate the effect of different simulators for reinforcement
learning. Firstly, we use policy gradient method to train a recom-
mendation policy in each simulator. Then we apply MAIL and DE-
MER respectively to build a virtual environment using testing data
for policy evaluation, namely EvalEnv-MAIL and EvalEnv-DEMER.
Given these two environments, we execute the optimized policies
and compare the improvement of FOs. As shown in Figure 7, the pol-
icy πDEMER optimized in the simulator built by DEMER achieves
best performance on both EvalEnv-MAIL and EvalEnv-DEMER,
while the control policies πSU P and πGAIL perform bad on both
environments. The promotion by πDEMER compared to πMAIL can
further verify that a virtual environment with hidden confounders
can bring better performance to traditional reinforcement learn-
ing. Besides, the performance of policies πSU P , πGAIL shows a
significant degradation in EvalEnv-DEMER, while not shown up

EvalEnv-MAIL EvalEnv-DEMER
10

15

20

25

m
ea
n
F
O
s

Data default

Simulated default

πSUP

πGAIL

πMAIL

πDEMER

Figure 7: Comparison of different policies trained from dif-
ferent simulators in EvalEnv-MAIL and EvalEnv-DEMER. Y-
axis is the mean FOs by executing different policies. The
Data default is the mean FOs in the real testing data. The
Simulated default is themean FOs of the original simulation
in each evaluation environments.

Table 3: Results of online A/B tests on the platform of Didi
Chuxing. Improvements of FOs and TDIs by policy πDEMER .

Cities ∆FOs(%) ∆TDIs(%)
City A +10.73 +6.16
City B +10.16 +9.38
City C +18.47 +17.84
Total +11.74 +8.71

in EvalEnv-MAIL, which indicates that the environment built by
DEMER can recover the real environment more precisely.

Policy evaluation results in online A/B tests. We further
conduct onlineA/B tests to evaluate the effect of the policyπDEMER .
The online tests are conducted in three cities of different scale. The
drivers in each city are divided randomly into two groups of equal
size, namely control group and treatment group. The programs
for the drivers in the control group are recommended by an ex-
isting recommendation policy, which can be viewed as a baseline
policy. The drivers in the treatment group are recommended by
πDEMER . The results of online A/B tests are shown in Table 3. The
proposed policy πDEMER achieves significant improvements on
FOs and TDIs in all three cities, and the overall improvements are
11.74% and 8.71% respectively.

6 CONCLUSION
This paper explores how to construct a virtual environment with
hidden confounders from observed interactions. We propose the
DEMERmethod following the generative adversarial training frame-
work. We design the confounder embedded policy as an important
part of generator and make the discriminator compatible with two
different classification tasks so as to guide the optimization of each
policy precisely. Further, we apply DEMER to build a virtual envi-
ronment of driver program recommendation task on a large-scale
ride-hailing platform, which is a highly dynamic and confounding
environment. Experiment results verify that the policies generated
by DEMER can be very similar to the real ones and have better
generalization performance in various aspects. Furthermore, the
simulator built by DEMER can produce better policy. It is worth
noting that the proposed method DEMER can be used not only in
this task, but also in many real-world dynamic environments with
hidden confounders and can lead to better learning performance.

ACKNOWLEDGMENTS
We would like to thank Prof. Yuan Jiang for her constructive sug-
gestions to this work.

REFERENCES
[1] Brenna Argall, Sonia Chernova, Manuela M. Veloso, and Brett Browning. 2009. A

survey of robot learning from demonstration. Robotics and Autonomous Systems
57, 5 (2009), 469–483.

[2] Elias Bareinboim, Andrew Forney, and Judea Pearl. 2015. Bandits with Unob-
served Confounders: A Causal Approach. In Advances in Neural Information
Processing Systems 28. 1342–1350.

[3] Chelsea Finn, Paul F. Christiano, Pieter Abbeel, and Sergey Levine. 2016. A
Connection between Generative Adversarial Networks, Inverse Reinforcement
Learning, and Energy-Based Models. arXiv abs/1611.03852 (2016).

[4] Andrew Forney, Judea Pearl, and Elias Bareinboim. 2017. Counterfactual Data-
Fusion for Online Reinforcement Learners. In Proceedings of the 34th International
Conference on Machine Learning. 1156–1164.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative Adver-
sarial Nets. In Advances in Neural Information Processing Systems 27. 2672–2680.

[6] JonathanHo and Stefano Ermon. 2016. Generative Adversarial Imitation Learning.
In Advances in Neural Information Processing Systems 29. 4565–4573.

[7] Christos Louizos, Uri Shalit, Joris M. Mooij, David Sontag, Richard S. Zemel, and
Max Welling. 2017. Causal Effect Inference with Deep Latent-Variable Models.
In Advances in Neural Information Processing Systems 30. 6449–6459.

[8] Chaochao Lu, Bernhard Schölkopf, and José Miguel Hernández-Lobato. 2018.
Deconfounding Reinforcement Learning in Observational Settings. arXiv
abs/1812.10576 (2018).

[9] Jacob Menick and Nal Kalchbrenner. 2018. Generating High Fidelity Images with
Subscale Pixel Networks and Multidimensional Upscaling. arXiv abs/1812.01608
(2018).

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518 (2015),
529–533.

[11] Judea Pearl. 2009. Causal inference in statistics: An overview. Statistics surveys 3
(2009), 96–146.

[12] Dean Pomerleau. 1991. Efficient Training of Artificial Neural Networks for
Autonomous Navigation. Neural Computation 3, 1 (1991), 88–97.

[13] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. 2011. A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics. 627–635.

[14] Stuart J. Russell. 1998. Learning Agents for Uncertain Environments (Extended
Abstract). In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory. 101–103.

[15] Stefan Schaal. 1999. Is imitation learning the route to humanoid robots? Trends
in cognitive sciences 3, 6 (1999), 233–242.

[16] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp
Moritz. 2015. Trust Region Policy Optimization. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015. 1889–1897.

[17] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and Anxiang Zeng. 2018.
Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforce-
ment Learning. arXiv abs/1805.10000 (2018).

[18] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[19] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (2nd Edition). MIT Press.

[20] Zeyang Ye, Keli Xiao, Yong Ge, and Yuefan Deng. 2019. Applying Simulated
Annealing and Parallel Computing to the Mobile Sequential Recommendation.
IEEE Transactions on Knowledge and Data Engineering 31, 2 (2019), 243–256.

[21] Zeyang Ye, Lihao Zhang, Keli Xiao, Wenjun Zhou, Yong Ge, and Yuefan Deng.
2018. Multi-User Mobile Sequential Recommendation: An Efficient Parallel
Computing Paradigm. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2624–2633.

A SUPPLEMENT MATERIAL

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

real πp [r = 0 .9]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

real πp [r = 1 .1]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

real πp [r = 1 .3]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

DEMER πp [r = 0 .9]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

DEMER πp [r = 1 .1]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

DEMER πp [r = 1 .3]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp [r = 0 .9]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp [r = 1 .1]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp [r = 1 .3]

Figure 8: Visualization of the artificial platform policy function πp with respect to v and tw on different values of r . The
first line is the ground-truth rule function. The second line is the policy function generated by DEMER and the third line
corresponds to MAIL.

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

real πh [r = 0 .9]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

real πh [r = 1 .1]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

real πh [r = 1 .3]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

− 1.0
− 0.8
− 0.6
− 0.4
− 0.2
0.0

DEMER πh [r = 0 .9]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

− 1.0
− 0.8
− 0.6
− 0.4
− 0.2
0.0

DEMER πh [r = 1 .1]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

− 1.0
− 0.8
− 0.6
− 0.4
− 0.2
0.0

DEMER πh [r = 1 .3]

Figure 9: Visualization of the artificial confounder policy function πh with respect to v and ap on different values of r . The
first line is the ground-truth rule function. The second line is the policy function generated by DEMER.

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

real πd [r = 0 .9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

real πd [r = 1 .1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

real πd [r = 1 .3]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

DEMER πd [r = 0 .9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

DEMER πd [r = 1 .1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

DEMER πd [r = 1 .3]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

MAIL πd [r = 0 .9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

MAIL πd [r = 1 .1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

MAIL πd [r = 1 .3]

Figure 10: Visualization of the artificial driver policy function πd with respect tov and ap on different values of r . The first line
is the ground-truth rule function. The second line is the policy function generated by DEMER and the third line corresponds
to MAIL.

0 6 12 18 24 30

FOs

0.0

0.1

0.2

0.3

R
a
ti
o

FOs distribution by SUP

real

simulation

0 6 12 18 24 30

FOs

0.0

0.1

0.2

0.3

R
a
ti
o

FOs distribution by GAIL

real

simulation

0 6 12 18 24 30

FOs

0.0

0.1

0.2

0.3

R
a
ti
o

FOs distribution by MAIL

real

simulation

0 6 12 18 24 30

FOs

0.0

0.1

0.2

0.3

R
a
ti
o

FOs distribution by DEMER

real

simulation

Figure 11: The original FOs distribution generated by four different methods on testing data. Y-axis is the ratio of FOs.

	Abstract
	1 INTRODUCTION
	2 Reinforcement Learning and Environment Reconstruction
	2.1 Reinforcement Learning
	2.2 Environment Reconstruction

	3 Deconfounded Multi-agent Environment Reconstruction
	3.1 Confounder Embedded Policy
	3.2 Compatible Discriminator
	3.3 Simulation
	3.4 DEMER Algorithm

	4 Application in Driver Program Recommendation
	4.1 Driver Program Recommendation
	4.2 DEMER based Driver Program Recommendation

	5 EXPERIMENTS
	5.1 Artificial Environment
	5.2 Real-world Experiment

	6 CONCLUSION
	Acknowledgments
	References
	A Supplement Material

