Artificial Intelligence, cs, Nanjing University Spring, 2018, Yang Yu

Lecture 10: Uncertainty 2

http://cs.nju.edu.cn/yuy/course_ai18.ashx

Previously...

Conditional Probability
Conditional Independence

Bayesian Network: a network of conditional independence

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that

$$
\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

This choice of parents guarantees the global semantics:

$$
\begin{aligned}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) ? ~ N o \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? Yes }
\end{aligned}
$$

Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters

Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child
Solution: canonical distributions that are defined compactly
Deterministic nodes are the simplest case:

$$
X=f(\operatorname{Parents}(X)) \text { for some function } f
$$

E.g., Boolean functions

$$
\text { NorthAmerican } \Leftrightarrow \text { Canadian } \vee U S \vee \text { Mexican }
$$

E.g., numerical relationships among continuous variables

$$
\frac{\partial \text { Level }}{\partial t}=\text { inflow }+ \text { precipitation - outflow }- \text { evaporation }
$$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy } ?=\text { true }) \\
& =N\left(a_{t} h+b_{t}, \sigma_{t}\right)(c) \\
& =\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range but works OK if the likely range of Harvest is narrow

Continuous child variables

All-continuous network with LG distributions
\Rightarrow full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$
\begin{aligned}
& \Phi(x)=\int_{-\infty}^{x} N(0,1)(x) d x \\
& P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\Phi((-c+\mu) / \sigma)
\end{aligned}
$$

Why the probit?

1. It's sort of the right shape
2. Can view as hard threshold whose location is subject to noise

Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

Sigmoid has similar shape to probit but much longer tails:

Inference in Bayesian networks

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$
e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=$ on, Starts $=$ false $)$

Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?

Exact inference

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
$\mathbf{P}(B \mid j, m)$
$=\mathbf{P}(B, j, m) / P(j, m)$
$=\alpha \mathbf{P}(B, j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B, e, a, j, m)$

Rewrite full joint entries using product of CPT entries:
$\mathbf{P}(B \mid j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$=\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

Enumeration algorithm

function Enumeration- $\operatorname{Ask}(X, \mathbf{e}, b n)$ returns a distribution over X
inputs: X, the query variable
e, observed values for variables \mathbf{E}
$b n$, a Bayesian network with variables $\{X\} \cup \mathbf{E} \cup \mathbf{Y}$
$\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty
for each value x_{i} of X do
extend e with value x_{i} for X
$\mathbf{Q}\left(x_{i}\right) \leftarrow$ Enumerate-AlL $(\operatorname{Vars}[b n], \mathbf{e})$
return Normalize $(\mathbf{Q}(X))$
function Enumerate-All(vars, e) returns a real number
if Empty? (vars) then return 1.0
$Y \leftarrow$ First $(v a r s)$
if Y has value y in e then return $P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), e) else return $\Sigma_{y} P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), \mathbf{e}_{y}) where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes $P(j \mid a) P(m \mid a)$ for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$
\begin{aligned}
& \mathbf{P}(B \mid j, m) \\
&=\alpha \underbrace{\mathbf{P}(B)}_{B} \Sigma_{e} \underbrace{P(e)}_{E} \Sigma_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{A} \underbrace{P(j \mid a)}_{J} \underbrace{P(m \mid a)}_{M} \\
&=\alpha \mathbf{P}(B) \sum_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) f_{M}(a) \\
&=\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) f_{J}(a) f_{M}(a) \\
&=\alpha \mathbf{P}(B) \Sigma_{e} P(e) \sum_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a) \\
&=\alpha \mathbf{P}(B) \Sigma_{e} P(e) f_{\bar{A} J M}(b, e)(\text { sum out } A) \\
&=\alpha \mathbf{P}(B) f_{\bar{E} \bar{A} J M}(b)(\text { sum out } E) \\
&=\alpha f_{B}(b) \times f_{\bar{E} \bar{A} J M}(b)
\end{aligned}
$$

Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation add up submatrices in pointwise product of remaining factors
$\Sigma_{x} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \Sigma_{x} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}$
assuming f_{1}, \ldots, f_{i} do not depend on X
Pointwise product of factors f_{1} and f_{2} :

$$
\begin{aligned}
& f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right) \\
& \quad=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)
\end{aligned}
$$

E.g., $f_{1}(a, b) \times f_{2}(b, c)=f(a, b, c)$

Variable elimination algorithm

```
function Elimination- }\operatorname{Ask}(X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: }X\mathrm{ , the query variable
            e, evidence specified as an event
            bn, a belief network specifying joint distribution P}\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    factors }\leftarrow[]; vars \leftarrowREVERSE(VARS[bn]
    for each var in vars do
        factors \leftarrow[MAKE-FACTOR(var, e)|factors]
        if var is a hidden variable then factors }\leftarrow\mathrm{ Sum-OuT(var, factors)
    return Normalize(Pointwise-Product(factors))
```


Irrelevant variables

Consider the query $P($ JohnCalls \mid Burglary $=$ true $)$

$$
P(J \mid b)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)
$$

Sum over m is identically $1 ; M$ is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in$ Ancestors $(\{X\} \cup \mathbf{E})$
Here, $X=$ JohnCalls, $\mathbf{E}=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$ so MaryCalls is irrelevant
(Compare this to backward chaining from the query in Horn clause KBs)

Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral graph
Thm 2: Y is irrelevant if m -separated from X by E

For $P($ JohnCalls \mid Alarm $=$ true $)$, both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O\left(d^{k} n\right)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow \#P-complete

1. $\mathrm{A} v \mathrm{~B} v \mathrm{C}$
2. $C \vee D v \neg A$
3. $B \vee C v \neg D$

Approximate inference

Inference by stochastic simulation

Basic idea:

1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

About random number generation

How to generate a discrete distribution from the uniform distribution?
given $\mathrm{U}[0,1]$
generate A 30\%, B 60\%, C 10\%

About random number generation

How to generate a continuous distribution from the uniform distribution?
given $\mathrm{U}[0,1]$
generate $\mathrm{N}(0,1)$

About random number generation

How to generate a discrete distribution from a discrete distribution?
given A,B,C 33.33\%
generate A,B,C,D 25\%

Sampling from an empty network

Sampling from an empty network

function Prior-SAMPle($b n$) returns an event sampled from $b n$ inputs: $b n$, a belief network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$ $\mathbf{x} \leftarrow$ an event with n elements for $i=1$ to n do
$x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$ given the values of $\operatorname{Parents}\left(X_{i}\right)$ in x
return x

Sampling from an empty network contd.

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event x_{1}, \ldots, x_{n}
Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

That is, estimates derived from PriorSample are consistent Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

Conditional Probability: Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathbf{e})$ estimated from samples agreeing with \mathbf{e}
function Rejection-SAmpling $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: \mathbf{N}, a vector of counts over X, initially zero
for $j=1$ to N do
$\mathrm{x} \leftarrow$ Prior-SAMPLE $(b n)$
if x is consistent with e then
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x}
return Normalize($\mathrm{N}[\mathrm{X}]$)
E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples

27 samples have Sprinkler $=$ true Of these, 8 have Rain $=$ true and 19 have Rain $=$ false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NormaLIzE}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$
\begin{aligned}
\hat{\mathbf{P}} & (X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) \quad \text { (algorithm defn.) } \\
& =\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) \\
& \text { (normalized by } \left.N_{P S}(\mathbf{e})\right) \\
& \approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) \quad \text { (property of PrIorSAMPLE) } \\
& =\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{aligned}
$$

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if $P(\mathbf{e})$ is small
$P($ e) drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence
function Likelihood-Weighting $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$ local variables: W, a vector of weighted counts over X, initially zero for $j=1$ to N do
$\mathbf{x}, w \leftarrow$ Weighted-Sample $(b n)$
$\mathbf{W}[x] \leftarrow \mathbf{W}[x]+w$ where x is the value of X in \mathbf{x} return Normalize($\mathbf{W}[X]$)
function Weighted-Sample $(b n$, e) returns an event and a weight $\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$
for $i=1$ to n do
if X_{i} has a value x_{i} in \mathbf{e}
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
else $x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
return \mathbf{x}, w

Likelihood weighting example

$$
w=1.0
$$

Likelihood weighting example

$$
w=1.0
$$

Likelihood weighting example

$$
w=1.0
$$

Likelihood weighting example

$$
w=1.0 \times 0.1
$$

Likelihood weighting example

$$
w=1.0 \times 0.1
$$

Likelihood weighting example

$$
w=1.0 \times 0.1 \times 0.99=0.099
$$

Likelihood weighting analysis

Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right)
$$

Note: pays attention to evidence in ancestors only \Rightarrow somewhere "in between" prior and posterior distribution

Weight for a given sample \mathbf{z}, \mathbf{e} is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right)
$$

Weighted sampling probability is

$$
\begin{aligned}
& S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) \\
& \quad=\prod_{i=1}^{l} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right) \\
& \quad=P(\mathbf{z}, \mathbf{e}) \text { (by standard global semantics of network })
\end{aligned}
$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Approximate inference using MCMC

"State" of network $=$ current assignment to all variables.
Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn,N) returns an estimate of P(X|\mathbf{e})
    local variables: }\textrm{N}[X]\mathrm{ , a vector of counts over }X\mathrm{ , initially zero
            Z}\mathrm{ , the nonevidence variables in bn
            x, the current state of the network, initially copied from e
    initialize x with random values for the variables in Y
    for }j=1\mathrm{ to }N\mathrm{ do
        for each }\mp@subsup{Z}{i}{}\mathrm{ in Z do
            sample the value of Z}\mp@subsup{Z}{i}{}\mathrm{ in x from }\mathbf{P}(\mp@subsup{Z}{i}{}|mb(\mp@subsup{Z}{i}{})
            given the values of MB(Z}\mp@subsup{|}{i}{})\mathrm{ in x
            N}[x]\leftarrow\mathbf{N}[x]+1\mathrm{ where }x\mathrm{ is the value of X in }\mathbf{x
    return Normalize(N[X])
```

Can also choose a variable to sample at random each time

The Markov chain

With Sprinkler $=$ true, WetGrass $=$ true, there are four states:

Wander about for a while, average what you see

MCMC example contd.

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain =true, 69 have Rain $=$ false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
$=\operatorname{NormaLIZE}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$
Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass
Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \operatorname{parents}\left(X_{i}\right)\right) \prod_{Z_{j} \in C h i l d r e n\left(X_{i}\right)} P\left(z_{j} \mid \operatorname{parents}\left(Z_{j}\right)\right)
$$

Easily implemented in message-passing parallel systems, brains
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large: $P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ won't change much (law of large numbers)

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

